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1975), the  evidence for the existence of specific mechanisms for 
vesicular storage is still controversial. Recently, both vesicular and 
non- vesicular release of TAs has been described (Kosa et al., 2000; 
Grandy, 2007). Due to their highly lipophilic nature (particularly 
of β-PEA) it is possible that TAs are mainly released from axon 
terminals by diffusion across the cell membrane, and that their 
levels reflect an equilibrium between synthesis and catabolism 
(Berry, 2004).

In invertebrates, TAs act as neurotransmitters to control a vari-
ety of physiological functions, including locomotion, feeding, and 
learning-associated behaviors (Roeder, 2005; Sotnikova et al., 2008). 
In contrast, in the mammalian brain the physiological role and 
the mechanisms of action of TAs remain poorly understood. They 
have been often regarded as by-products of amino acid metabolism 
with no clear functional relevance. TAs have also been considered 
to act as “false” neurotransmitters, due to their ability to release 
catecholamines in amphetamine-like manner, via their displace-
ment from synaptic vesicles and a reversal of plasma membrane 
transporters. It could be possible that by emptying synaptic vesicles 
(but with no affinity to monoaminergic receptors), TAs could pro-
duce, in the long run, a weakening of monoaminergic transmission. 

Trace amines (TAs) are a class of endogenous compounds strictly 
related to classic monoaminergic neurotransmitters, regarding 
the structure, metabolic pathways, cellular localization, and tis-
sue distribution (Berry, 2004; Grandy, 2007). The group includes 
β-phenylethylamine (β-PEA), tyramine (TYR), octopamine 
(OCT), synephrine (SYN), and tryptamine (TRP). TAs have been 
identified in several prokaryotic and eukaryotic organisms and in all 
investigated vertebrate and invertebrate species, including humans 
(Grandy, 2007). Their distribution in the mammalian brain strictly 
corresponds to the location of the main monoaminergic nuclei and 
their projecting areas.

Trace amines and biogenic amines share the same biosynthetic 
and metabolic pathways (Figure 1). They are produced in mono-
aminergic neurons from aromatic amino acids l-phenylalanine 
and tyrosine by amino acid decarboxylase (AADC), and are mainly 
catabolized by monoamine oxidase (MAO). Although the rates 
of synthesis are similar, TAs levels in the brain are two orders 
of magnitude lower than of classic monoaminergic neurotrans-
mitters, most likely due to a rapid turnover, with a half-life of 
approximately 30 s. Although synaptosomal localization of TAs has 
been reported (Baldessarini and Vogt, 1972; Boulton and Baker, 
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Recently, altered brain TAs levels have been reported in several 
 neuropsychiatric disorders, including schizophrenia, attention defi-
cit hyperactivity disorder (ADHD), depression, and Parkinson’s 
disease (PD), suggesting the involvement of these amines in patho-
physiology of monoaminergic systems (Branchek and Blackburn, 
2003; Burchett and Hicks, 2006).

Interest in TAs has been re-ignited following the discovery, in 
2001, of a novel class of G-protein-coupled receptors (GPCRs) that 
can be activated by these amines (Borowsky et al., 2001; Bunzow 
et al., 2001). The family of these “trace amine-associated receptors” 
(TAARs) consists of 15 members. However, only two, “trace amine 
receptor 1” (TA

1
) and “trace amine receptor 2” (TA

2
) (Maguire et al., 

2009) were shown to be sensitive to TAs. TA
1
, the best characterized 

receptor subtype, is coupled to G
s
 protein and exerts its intracellular 

effect by activation of the adenylyl cyclase (Borowsky et al., 2001; 
Bunzow et al., 2001).

Trace amine receptor 1 receptors are distributed in the CNS 
mainly in the monoaminergic systems, including mesencephalic 
dopaminergic (DAergic) neurons, where they are co-localized with 
dopamine (DA) transporter, DAT (Xie et al., 2007). However, the 
physiological role of TA

1
 receptors in the CNS in general, and in 

mesencephalic DAergic neurons in particular, is still not known. 
Recent studies suggest that these receptors modulate monoamin-
ergic transmission (Sotnikova et al., 2008; Xie and Miller, 2009) by 
acting on monoamine transporters (e.g., DAT) and/or by directly 
affecting neuronal firing (Lindemann et al., 2008; Bradaia et al., 
2009; Revel et al., 2011)

In addition to the TA
1
 receptor-mediated effects, other cellular 

mechanisms by which TAs affect the activity of monoaminergic 
neurons have been described. It has been reported that TAs can 
activate sigma (σ) receptors which inhibit K+ and Ca2+ ion chan-
nels (Nguyen et al., 1998; Zhang and Cuevas, 2002). In addition, 
in invertebrates TAs activate ligand-gated chloride channels (Pirri 

et al., 2009; Ringstad et al., 2009), suggesting that these endogenous 
compounds may modulate neuronal activity by triggering rapid 
ionic events also in vertebrates (Branicky and Schafer, 2009).

The first electrophysiological investigation of the effects of TAs 
on DAergic neuronal activity was an extracellular study conducted 
in midbrain slices by Pinnock (1983). He demonstrated an inhibi-
tory effect of TYR and OCT on firing of DAergic neurons in the 
Substantia nigra pars compacta (SNpc). A similar inhibitory effect 
was demonstrated for β-PEA in extracellular recordings conducted 
from the same group of neurons in vivo (Rodriguez and Barroso, 
1995). Intravenous applications of this amine (0.4–3.4 mg/kg) 
evoked a rapid but short-lasting (2–4 min) reduction in the firing 
frequency and in the occurrence of bursting.

Trace amines-induced inhibitory effect on firing of SNpc 
DAergic neurons has been further characterized in our labora-
tory (Geracitano et al., 2004). Using intracellular recordings with 
sharp microelectrodes in rat midbrain slices, we have demonstrated 
that TAs reduce the spontaneous firing rate of these neurons in a 
reversible and concentration-dependent manner (Figure 2A). The 
inhibitory effect was mediated by indirect activation of somatoden-
dritic D2 autoreceptors (D2 receptors located on DAergic neurons), 
consequent to increased DA release (Figure 2B). In particular, TAs-
induced efflux of newly synthesized DA from reserpine- insensitive 
pools, through a mechanism involving both the membrane 
 transporter-dependent and -independent mechanisms (Geracitano 
et al., 2004). More recent electrophysiological data demonstrated 
that TYR releases DA and indirectly activates D2 receptors also in 
subthalamic neurons (Zhu et al., 2007).

Trace amines can also modulate the activity of DAergic mesen-
cephalic neurons by a direct action on TA

1
 receptors. Patch-clamp 

recordings of ventral tegmental area (VTA) DAergic neurons in 
mice with a knockout of TA

1
 receptors (TA

1
 KO mice) have dem-

onstrated that these neurons have a higher spontaneous firing rate 
than in wild-type littermates (Lindemann et al., 2008; Bradaia 
et al., 2009). The increased firing rate of VTA neurons in TA

1
 KO 

mice supports the contention that, under normal conditions, 
there is a tonic inhibitory effect of TAs on DAergic neuron activ-
ity exerted through TA

1
 receptors. The inhibitory effect of TYR 

was not present in TA
1
 KO mice, further indicating that the slower 

firing in wild-type animals is mediated by constitutive activation 
of TA

1
 receptors by TAs (Lindemann et al., 2008). This was con-

firmed by using a selective TA
1
 receptor antagonist, N-(3-Ethoxy-

phenyl)-4-pyrrolidin-1-yl-3-trifluoromethyl-benzamide (EPPTB) 
that increased firing frequency of DAergic neurons in the VTA of 
wild-type mice, but not in TA

1
 KO mice (Bradaia et al., 2009). The 

latter study also demonstrated that TYR inhibits firing of these 
neurons by activation of TA

1
 receptors linked to G-protein-gated 

inwardly rectifying K+ channels (GIRK channels; also known as 
Kir3) and additional experiments performed with heterologously 
expressed receptor and channel proteins in Xenopus oocytes 
showed that the TA

1
-induced GIRK channel activation involves a 

PTX-insensitive, G-protein-dependent mechanism (most likely 
Gs; Bradaia et al., 2009).

Trace amines modify neuronal responses to classic neurotransmit-
ters, and thus exert neuromodulatory effects. Electrophysiological 
recordings conducted in our laboratory with sharp microelec-
trodes from SNpc DAergic neurons in midbrain slices revealed 

Figure 1 | Biosynthetic and catabolic enzymatic pathways of 
endogenous TAs (β-PeA and tyramine) and dopamine. The aromatic amino 
acids phenylalanine and tyrosine represent common precursors of TAs and 
dopamine. TAs are directly produced by decarboxylation by l-aromatic amino 
acid decarboxylase (AADC), while dopamine derives from l-DOPA, which is 
synthesized from tyrosine by tyrosine hydroxylase (TH). The catabolism is 
mainly via monoamine oxidase (MAO), with the production of phenyl acetic 
acid (PAA), hydroxyphenyl acetic acid (HPA), and dihydroxyphenyl acetic acid 
(DOPAC) from β-PEA, tyramine, and dopamine, respectively.
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Trace amines also reduce GABA
B
-mediated responses at the 

presynaptic level. It is known that the inhibitory synaptic input to 
midbrain DAergic neurons mediated by GABA involves not only 
activation of postsynaptic GABA

A
 receptors, but also presynaptic 

GABA
B
 receptors which reduce GABA release (Giustizieri et al., 

2005). We have reported that both β-PEA and TYR antagonize the 
GABA

B
-dependent presynaptic inhibition of GABAergic inputs to 

SNpc DAergic neurons, by limiting the inhibitory effect of baclofen 
on the frequency of the spontaneous inhibitory postsynaptic cur-
rents (GABA

A
-induced sIPSCs; Berretta et al., 2005).

In addition, TAs have a neuromodulatory effect on the post-
synaptic responses mediated by D2 receptors in DAergic neurons. 
Using conventional intracellular and single-electrode voltage-clamp 

that TAs reduce GABAergic inhibitory  neurotransmission to these 
 neurons (Federici et al., 2005). In particular, both β-PEA and TYR, 
in micromolar concentrations, depressed the amplitude of electri-
cally evoked inhibitory postsynaptic potentials (IPSPs) mediated 
by GABA

B
 receptors (Figure 2C), without modifying the GABA

A
-

evoked synaptic responses (Federici et al., 2005). Moreover, the cel-
lular responses (hyperpolarization/outward current) evoked by the 
stimulation of postsynaptic GABA

B
 receptors with a GABA

B
 ago-

nist baclofen were reduced by both β-PEA and TYR (Figure 2D). 
The TAs-induced depression of GABA

B
-mediated outward cur-

rents (involving GIRK channels) was neither dependent on pro-
tein kinases activity, nor on changes in the intracellular Ca2+ levels 
(Federici et al., 2005).

Figure 2 | electrophysiological effects of TAs on mesencephalic 
dopaminergic neurons. (A) β-PEA produces a reversible hyperpolarization 
and inhibition of spontaneous firing in mesencephalic dopaminergic neurons. 
(B) The TAs-induced inhibition of firing is mediated by indirect activation of D2 
autoreceptors, subsequent to the release of newly synthesized dopamine. 
The effect was absent in dopaminergic neurons treated with an inhibitor of 
DA synthesis (carbidopa, 300 μM for 30 min) and was blocked by a D2 
receptor antagonist, sulpiride (1 μM; data not shown). (C) The amplitude of 
electrically evoked inhibitory postsynaptic potentials (IPSPs) mediated by 

GABAB receptors is reduced by bath application of β-PEA (100 μM) and TYR 
(100 μM). (D) TAs reduce the outward currents produced by pressure 
application of the GABAB agonist, baclofen (arrows) in a reversible manner.  
(e) Negative modulatory effects of TAs on the D2-autoreceptors-mediated 
responses. The quinpirole-induced GIRK channel activation is reduced by  
both β-PEA and TYR in a reversible and concentration-dependent manner.  
(F) The D2/GIRK-mediated outward current evoked by TAs is not mediated  
by the activation of TA1 receptors, since it was present in TA1 receptor 
knockout mice.
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