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Feedback design is an important issue in motor imagery BCI systems. Regardless, to
date it has not been reported how feedback presentation can optimize co-adaptation
between a human brain and such systems. This paper assesses the effect of realistic
visual feedback on users’ BCI performance and motor imagery skills. We previously
developed a tele-operation system for a pair of humanlike robotic hands and showed
that BCI control of such hands along with first-person perspective visual feedback of
movements can arouse a sense of embodiment in the operators. In the first stage of this
study, we found that the intensity of this ownership illusion was associated with feedback
presentation and subjects’ performance during BCI motion control. In the second stage,
we probed the effect of positive and negative feedback bias on subjects’ BCI performance
and motor imagery skills. Although the subject specific classifier, which was set up
at the beginning of experiment, detected no significant change in the subjects’ online
performance, evaluation of brain activity patterns revealed that subjects’ self-regulation
of motor imagery features improved due to a positive bias of feedback and a possible
occurrence of ownership illusion. Our findings suggest that in general training protocols for
BCIs, manipulation of feedback can play an important role in the optimization of subjects’
motor imagery skills.
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INTRODUCTION
Brain computer interfaces (BCIs) have widely become popular
in many fields as a new communication and control channel
between the human brain and an external device. However, the
application of this technology is not as simple and intuitive as
its concept suggests. To operate a BCI, subjects need to perform
certain tasks and learn how to intentionally modulate certain
characteristics of their brain activities in order to express their
intentions. The motor imagery method, for instance, is one of the
most commonly employed methods for BCI control of intended
motions (Curran and Stokes, 2003). Subjects imagine the move-
ment of a certain limb of their own body to induce changes in mu
and beta rhythms over the corresponding sub-region of sensori-
motor cortex. These changes are detected by BCI and translated
into control commands. Motor imagery task requires relatively
longer training compared to other BCI paradigms such as P300
or steady state visually evoked potential (SSVEP) since the mental
rehearsal of a movement without actual execution is not a nor-
mal and daily practice for subjects and hence the task of motor
imagery is an unfamiliar experience to most of them.

While the importance of subject’s motor imagery skills in BCIs
is well recognized, most studies have focused on the computer
side and improving classification algorithms and very few have
attended the human side and training paradigms that can facili-
tate the skill acquisition process for subjects (Lotte et al., 2013). As
in any form of interface, users of BCIs learn to co-adapt with the
system through the feedback they receive of their performance.

Therefore feedback design is particularly influential in the pro-
cess of motor imagery learning and performance improvement.
Standard BCI protocols typically provide online visual feedback
in the form of a moving cursor or target on the computer screen.
Neuper et al. compared realistic presentation of feedback, in form
of a grasping hand vs. abstract feedback in the form of an extend-
ing bar, on a computer screen (Neuper et al., 2009). However, they
found no evidence of a significant difference between the perfor-
mances of two feedback groups. In another study, the influence of
motivation on BCI performance was also investigated by biasing
the feedback accuracy (Barbero and Grosse-Wentrup, 2010). The
results indicated that subjects with poor performance benefitted
from positive biasing while those with better performance were
impeded by inaccurate feedback. In a similar work (Gonzalez-
Franco et al., 2011), authors provided subjects fake negative and
positive feedback of their performance and reported that negative
feedback had a greater learning effect on motor imagery BMIs.

Although in the above works, the effect of feedback presenta-
tion and accuracy has been probed, none of them has actually
discussed the direct interaction between subject and BCI sys-
tem. When performing a motor imagery task, subjects are asked
to imagine their own body movements while the output is fed
back in the form of movement for objects other than their own
body. This mismatch and dissociation between subject’s life expe-
rience and BCI task can in fact interfere with the imagination and
impair the performance of motor imagery especially for novice
users.
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The goal of the present study is to explore the influence
of feedback design on enhancement of user’s performance and
interaction with a BCI system. Previously we showed that BCI-
operation of a pair of humanlike robotic hands by motor imagery
while watching first-person perspective images of robot’s move-
ment could induce an illusion of body ownership transfer (BOT)
for the operators (Alimardani et al., 2013). In post-experiment
interviews, some subjects stated that when the robot moved as
they intended, it felt like their own hand was moving and motor
imagery became easier. We hypothesize that inducement of such
feeling of ownership and the sense of agency driven toward the
seen motions may have a positive loop effect on execution of
motor imagery during BCI-operation. In other words, we spec-
ulate that once the thought of “I am the one moving the hands”
raises the feeling of “These hands are mine,” the illusion of own-
ing hands enhances the imagery ability in subjects and boosts the
inverse thought of “These are my hands so I can move them.”

To that end, in this study we used the same BCI-teleoperation
paradigm while exposing naïve subjects to different feedback
conditions in order to probe the relationship between subject’s
experience of BOT and BCI-performance. Two experiments are
presented. In the first experiment, by manipulating the presen-
tation of misperformance, we surveyed how subjects’ perception
of their own performance could affect the intensity of BOT. In
the second experiment, we then examined how this effect can
be influential on subjects’ real performance and trend of motor
imagery learning.

Both experiments in this study were approved by the Ethics
Committee of Advanced Telecommunications Research Institute
International (12-506-3). All subjects read and signed a written
consent form prior to experiment and received payment for their
participation.

EXPERIMENT 1
This experiment was designed to investigate the inducement of
body ownership illusion for a pair of BCI-operated human-like
robotic hands under different presentations of feedback.

PARTICIPANTS
Forty healthy participants (26 male, 14 female, age M = 21.13,
SD = 1.92) were selected for the experiment. Thirty eight partic-
ipants were right-handed and 2 left-handed. All participants were
naive to the research topic and received explanation prior to the
experiment.

METHOD
Participants sat in a comfortable chair and were asked to remain
motionless. They wore an EEG electrode cap and 27 EEG elec-
trodes were placed over their primary sensori-motor cortex
according to the international 10–20 system (FT7, FC5, FC3,
FC1, FCz, FC2, FC4, FC6, FT8, T7, C5, C3, C1, Cz, C2, C4,
C6, T8, TP7, CP5, CP3, CP1, CPz, CP2, CP4, CP6, TP8). A ref-
erence electrode was mounted on the right ear and a ground
electrode on the forehead. Participants were asked to imagine a
grasp or squeeze motion for their own hand while their cere-
bral activities were recorded by g.USBamp biosignal amplifiers
(Guger Technologies). In an initial training session, they practiced

a motor imagery task by extending a feedback bar to left or right
side on a 15-inch laptop computer screen. A visual cue in the form
of a horizontal pointing arrow specified the timing and the hand
they were supposed to hold image for. Each trial lasted 7.5 s and
started with the presentation of a fixation cross on the display.
After 2 s an acoustic warning was given in the form of a “beep.”
From second 3 to 4.25, an arrow pointing to the left or right side
randomly was shown. Depending on the arrow’s direction partic-
ipants were instructed to perform motor imagery. They watched
the feedback bar and continued the imagery task until the fixation
cross was erased. After a short pause, which took 1 second, the
next trial started. The first run consisting of 40 trials (20 trials per
class left/right presented in a randomized order) was conducted
without feedback and lasted 5 min. The recorded brain activities
in the initial non-feedback run were used to set up a subject spe-
cific classifier for the classification in the following feedback runs.
In the feedback runs, participants performed similar trials but
received online classification results of their performance in form
of a horizontal feedback bar on the screen. Subjects’ task was to
extend the feedback bar in the correct direction.

The classification of recorded signals was conducted under
Simulink/MATLAB (Mathworks) for offline and online param-
eter extraction. This process included bandpass filtering between
0.5 and 30 Hz, sampling at 128 Hz, cutting off artifacts by notch
filter at 60 Hz, and adopting the Common Spatial Pattern (CSP)
algorithm for discrimination of Event Related Desynchronization
(ERD) and Event Related Synchronization (ERS) patterns asso-
ciated with the motor imagery task (Guger et al., 2000). The
classifier was trained using CSP analysis of calibration measure-
ments. CSP found weight vectors that weighed each electrode
based on its importance for the discrimination task. The spatial
filters were designed such that the resulting signal had maximum
variance for left trials and minimum variance for right trials.
Therefore, the difference between left and right populations was
maximized to show where the EEG variance fluctuated the most.
Finally, when the discrimination between left and right imagina-
tions was made, the classifier outputted a linear array signal in
the range of [−1,1], where −1 denotes the extreme left and 1
denotes the extreme right. Negative values were then translated
as the robot’s left hand grasp motions and positive values as the
robot’s right hand grasp motions. A threshold of ±0.1 was con-
sidered in the system, in order to avoid multiple movements of
both hands for subjects with unstable classification results.

Following training sessions the main test sessions commenced,
in which subjects wore a head mounted display (Vuzix iWear
VR920) and tele-operated the robot’s hands using the same BCI
system. They performed a motor imagery task for their right or
left hand while they watched first-person images of the robot’s
hands performing the motions respectively (Figure 1A). Two
LED-embedded balls were installed in the robot’s grasp and pro-
vided motor imagery cues by randomly lighting. During the
experiment subjects were told to look down as if they were watch-
ing their own hands and the same blankets were laid on both the
robot’s and participants’ legs to give a similar view. Participants
placed their arms in a similar position and orientation as the
robot’s arms. In order to measure subjects’ physiological reac-
tions to a threatening stimulus, skin conductance response (SCR)
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FIGURE 1 | Experiment setup. (A) EEG electrodes installed on a subject’s
sensorimotor cortex recorded brain activities during a motor imagery task.
Subjects watched first-person images from a robot’s perspective through a
head mounted display. A lighting ball in front of each of the robot’s hands
gave motor imagery cues and subjects imagined grasping their corresponding
hands. The classifier detected two classes of results (right or left) and motion

command was sent to the robot’s hand. (B) Subjects repeated the
experiment under three different conditions: Still, where the robot’s hand
didn’t move at all. Match in which the robot’s hand only moved in successful
trials, and Raw where the robot’s hand also performed failed trials using the
wrong hand. (C) Experimental procedure consisted of a non-feedback
session for classifier setup, training sessions and three operational sessions.

electrodes were installed on their left palms. A bio-amplifier
recording device (Polymate II AP216, TEAC, Japan) with sam-
pling rate of 1000 Hz was used to record SCR measurements.
Prior to the testing sessions, participants watched an act of injec-
tion via a syringe to the robot’s hand (painful stimulus) through
the head mounted display, which was explained to them as a
necessary procedure for preparing the robot. The injection was
continued until subjects’ SCR responses disappeared (Armel and
Ramachandran, 2003). Afterwards, testing sessions were carried
out in a random order under three conditions (Figure 1B):

(1) Still (no feedback): The robot’s hands did not move at all
throughout the whole session although a subject performed
motor imagery according to cues.

(2) Match (no negative feedback): The robot’s hands moved only
in those trials that the classification result was correct and in
accordance with cue.

(3) Raw: The robot’s hands moved according to the classification
results in all trials. In case of wrong result that was not in
accordance with cue, the robot’s opposite hand moved.

Still was designed as control condition where visual images
of hands without motion feedback were expected to raise no
body ownership illusion. The last session is called Raw since
we inputted the unprocessed values obtained from the classi-
fier as the robot’s motion parameter. In all conditions above,

participants performed trials that were designed to be identical
to the trials in training sessions regarding duration and stim-
ulus timing. Each session was followed by a break of 3 min.
Test sessions comprised 20 trials, lasting 2 min and 40 s each
(Figure 1C). Following the last trial, an injection was applied to
the robot’s left hand to examine if the illusion of ownership could
cause a response to a pain-causing stimulus (Nishio et al., 2012).
Immediately after injecting the session was terminated and par-
ticipants were orally asked the following questions: (Q1) When
the robot’s hand was injected, did it feel as if your own hand
was receiving the injection? (Q2) Throughout the entire session
while you were operating the robot’s hands, did it feel as if they
were your own hands? Participants scored Q1 and Q2 based on
the seven-point Likert Scale, 1 meaning, “Didn’t feel such thing
at all” and 7 meaning, “Felt it very strongly.” In addition to the
self-assessment, we physiologically measured the body ownership
illusion by recording the SCRs.

RESULT
The response variables for 40 participants were obtained from
questionnaires and SCR recordings. Participants’ responses in
three conditions of Still, Match and Raw were averaged and
compared. The mean value, standard deviation, and p-value are
depicted on each graph (Figure 2).

For both Q1 and Q2, the Match condition showed a
higher average value compared to the other two conditions
(Figures 2A,B). Non-parametric statistical analysis was used
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FIGURE 2 | Results for experiment 1 (A) Mean values and standard
deviations for Q1 in each session, with Match significantly higher
than Still and Raw (B) Mean values and standard deviations for Q2
in each session, with Match and Raw significantly higher than Still
(C) Mean values and standard deviations of SCR values for 35
subjects, with Match associated with significantly higher responses to

injection than Still (D) Subjects’ performances vs. their scores of
illusion in the Match condition. For those with the same
performance and score, the score has been slightly modified to a
non-integer neighbor value to avoid the overlap of the markers. A
significantly positive correlation was found between BCI-performance
and intensity of illusion.

to compare as Shapiro-Wilks test rejected the normal distri-
bution for the Likert scores. Kruskal-Wallis tests showed a
significant effect of BCI tele-operation on the level of BOT
between the three Still, Match and Raw conditions for Q1 scores
[χ2

(2) = 19.11, p < 0.0001] and for Q2 scores [χ2
(2) = 34.52,

p < 10−6]. Post-hoc Mann-Whitney U-tests for comparison
with Bonferroni adjustment indicated that in Q1 Match
(M = 4.38, SD = 1.51) raised BOT significantly higher than Still
(M = 2.83, SD = 1.43); [Match > Still, p < 0.0001] and than
Raw (M = 3.15, SD = 1.57); [Match > Raw, p < 0.01]. Similarly,
Mann-Whitney U-tests with Bonferroni adjustment for Q2
scores showed significant difference between Match (M = 5.15,
SD = 1.10) and Still (M = 2.93, SD = 1.25); [Match > Still,
p < 10−6] and also between Raw (M = 4.18, SD = 1.38) and
Still; [Raw > Still, p < 0.01].

The SCR peak value within a 6-s interval (1 s after the appear-
ance of syringe in the participant’s view to 5 s after the injection)
was selected as the reaction value (Alimardani et al., 2013). In this
experiment, we only evaluated the response values of 35 partici-
pants, since five participants showed unchanged responses during
the experiment and were excluded from analysis. Results showed
a higher mean value for the Match condition compared to the
other two conditions (Figure 2C). Due to non-normal distribu-
tion of SCR values revealed by Shapiro-Wilks test, we performed
Kruskal-Wallis tests on participants’ reaction values and the
analysis was significant, [χ2

(2) = 8.39, p < 0.01]. Post-hoc com-
parisons by Mann-Whitney U-tests with Bonferroni adjustment
confirmed significant differences only between Match (M = 1.68,
SD = 1.98) and Still (M = 0.90, SD = 1.42); [Match > Still,
p < 0.05]. Moreover, a significantly positive correlation was
found between subjects’ performances and the Q1 scores only
in the Match condition (Pearson correlation coefficient r = 0.56,
p < 0.05, Figure 2D). The term performance here refers to the

rate of trials subjects could successfully grasp the lightened ball
out of the total 20 trials in each run scaled in percentage.

DISCUSSION
In study 1, we investigated the inducement of body ownership
illusion for a pair of BCI-operated human-like robotic hands
under different feedback conditions. Results from both mea-
surement methods (Q1 and SCR) indicated significantly high
responses to the injection in the Match condition, where robot’s
hands moved only if the classification result was correct and same
as the cue. This shows that the feeling of receiving an injection
was significantly stronger when the robot’s hands moved exclu-
sively in agreement with the operator’s intentions than when the
robot made no motion (Still) or performed a wrong motion in
the case of errors (Raw). Since this is a feeling aroused due to
the illusion of ownership over robot’s body, we can state that
the transfer of body ownership could be evoked more reliably by
precise mind-control of a robot’s hands.

On the other hand, in Q2 participants directly scored their sen-
sation of ownership for robot’s body during the entire operation
time. Based on participants’ assessments, the feeling of ownership
was significantly stronger in both the Match and Raw conditions,
when the robot dynamically moved and reacted to the partici-
pant’s intentions, compared to the control condition, Still, when
the robot did not show any motion at all. Although Match showed
a higher average response compared to Raw, no significant differ-
ence between these two conditions was confirmed in Q2. This can
imply that in both the Raw and Match conditions the robot’s suc-
cessive motions following the participant’s act of motor imagery
raised a sense of agency during the session that led to a perception
of owning the hands in participants.

Meanwhile, the results of this experiment showed a wide dis-
persion over the response values of illusion in each condition,
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which we presumed is due to the difference of performance level
among subjects. A positive correlation was confirmed between
participants’ performances and their indicated scores for Q1
(Figure 2D), which indicates that participants with a better oper-
ational performance experienced a stronger illusion of BOT.
Therefore, we can tell that subjects’ skill in a motor imagery
task and BCI performance are associated with the intensity of
ownership illusion in such a tele-operational system.

From the obtained results in this experiment, we conclude that
in a BCI-teleoperation system for humanlike hands, the feedback
presentation could affect the eliciting of ownership illusion over
the controlled hands; the illusion was augmented when negative
feedback of subject’s misperformance was eliminated. Also, a pos-
itive correlation was found between the intensity of BOT and
subjects’ performance, which suggests that subjects with better
BCI-performance experienced a stronger illusion. Therefore BOT
could be affected both by subjects’ BCI-performance, and feed-
back design, which regulated subjects’ perceptions of their own
performance. On the other hand, although an intuitive conclu-
sion of this experiment could be that better BCI-performance
caused a stronger perception of illusion in subjects, the reverse
thought could also be claimed; that is, higher BOT motivated
subjects to perform better on the motor imagery task. Therefore,
it remains to be clarified how the mutual interaction between
performance and BOT is formed and how feedback design con-
tributes to improvement of each element and their interaction
(Figure 3). Thus, in experiment 2 we focused on the effect of
feedback design on a subject’s BCI-performance and examined
how manipulation of subjects’ perceptions of self-performance
can affect the trend of their motor imagery learning and BCI-
performance.

EXPERIMENT 2
From experiment 1 we found that subjects’ perceptions of their
own performance was important for the inducement of owner-
ship illusion. Moreover, a close relationship between the intensity
of illusion and a subject’s performance was found. We were fur-
ther interested in knowing how the subjects’ self-evaluations and
subsequent inducement of BOT can directly affect their skills in a
motor imagery operational system. Therefore in this experiment,
by manipulating the presentation and accuracy of subjects’ per-
formances we designed four different feedback conditions includ-
ing two in which each subjects’ performance was positively and
negatively biased in the first half of each session. We then exam-
ined how conditioning feedback can affect the trend of learning

FIGURE 3 | Model diagram for effect of feedback design. Feedback bias
can affect the interaction between BCI-performance and BOT illusion.

by two methods; (1) measuring subjects’ online performance in
the second half of sessions and (2) comparing time-variant distri-
bution of EEG features regarding right and left hand imagery in
each half of the session.

PARTICIPANTS
Sixteen healthy subjects (6 male and 10 female, age M = 21.1,
SD = 1.4) participated in this experiment. 15 participants were
right-handed and one left-handed. None of them had partici-
pated in our previous experiments and they were all unfamiliar
with the research topic. Participants received explanation prior to
the experiment.

METHOD
The BCI devices, preparation procedure and session paradigms
of Experiment 2 were identical with Experiment 1, except in
this experiment we used a new type of head mounted display
(Sony HMZ-T1) for the real time first-person visual feedback
(Figure 1A).

Participants performed 4 experimental sessions each consist-
ing of 40 imagery trials which lasted 5 min. Each session was
followed by a break of 3 min. The first half of each session (20
trials) was randomly conditioned as below:

(1) Raw: Participants’ performance was not biased. The robot’s
hands grasped the ball according to the classification result.

(2) Match: Participants’ performance was not biased. However,
the robot’s hands only grasped the lit ball when the classifica-
tion results matched the cue.

(3) Positive Feedback (Fake-P): Participants’ performance was
biased positively. The robot’s hands grasped the lit ball
correctly in 90% of trials regardless of the subject’s real
performance.

(4) Negative Feedback (Fake-N): Participants’ performance was
biased negatively. The robot’s hands grasped the lit ball cor-
rectly only in 20% of trials regardless of the subject’s real
performance.

In the first two conditions, Raw and Match (Figure 1B), a sub-
ject’s performance was not biased although the robot’s hand
motion in mistaken trials differed—one with execution of wrong
hand motion and one without robot motion. Raw is an equiva-
lent feedback design of the one used in general motor imagery
BCIs where subject’s failure in executing motor imagery for one
class results in feedbacks of the other class. However, since Raw
and Match conditions previously revealed a different level of illu-
sion (Experiment 1) we made the assumption that presentation of
negative feedback affects subject’s perception of self-performance
and therefore influences subject’s interaction with the system.
To clarify this point, we respectively designed two more sessions
(Fake-P and Fake-N) in which we deliberately biased feedback
of performance regardless of subjects’ real performance accuracy
in order to extremely enhance or decrease their self-evaluation.
In the second half of all sessions subjects received feedback of
their real performance as they did in Raw. The goal was to seek
changes in BCI-performance and motor imagery skills in the sec-
ond half of each session due to the positive or negative bias of
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feedback. Subjects’ performance in the second half of all sessions
was registered.

In addition to subjects’ online performance, we conducted an
offline re-analysis of data to extract the feature distribution of
right and left motor imagery in each session. We speculated that
by receiving biased feedback or experiencing illusion, subjects
may consciously or unconsciously modify the generation of their
brain activity patterns throughout the experiment, although the
classifier could fail to detect these changes because it did not use
a learning algorithm and once the classification boundary for the
two classes, Right and Left, was defined within the feature space
in the initial training session, the same classifier and parameters
were used to the end of the experiment. Therefore, we used the
original brain signals and ran the following offline processing to
seek changes in motor imagery patterns.

After artifact removal and temporal filtering (Guger et al.,
2000), the features used for classification were obtained by the
method of CSP. Having N channels of EEG for each left and right
trial X, the CSP builds an N × N projection matrix W . With the
projection matrix W , the mapping of a trial is given as

Z = WX

The columns of W−1 are the CSPs and can be seen as time-
invariant EEG source distribution vectors. By design the variance
for imagining left hand motion is largest in the first row of Z
and decreases with the increasing number of subsequent rows. To
obtain reliable features, it is not necessary to calculate the vari-
ances of all N time series. The optimal number of CSPs used
to build the feature vector is four (Müller-Gerking et al., 1999).
Therefore, only the first and last two rows (p = 4) of W were
used to filter data X and build a new signal Zp (p = 1. . . 4). The
variance of the resulting four time series is obtained for a time
window T = (t0, t1)

varp =
t1∑

t = t0

(
Zp(t)

)2

where window length was set to be 1 s, starting 1500 ms after the
presentation of the cue (Pfurtscheller and Neuper, 2001). Feature
vectors were obtained after normalizing and log-transforming as
following:

f p = log

(
var

(
Zp
)∑p

i = 1 var
(
Zp
))

The online classifier uses each trial’s feature vector f p to catego-
rize it into two classes of right and left. In order to estimate the
goodness of this classification, we used Fisher’s discriminant cri-
terion measures in a linear discriminant analysis to observe the
distribution of two classes feature vectors in a 4-dimential space.
Fisher’s parameter J is defined as

J =
∣∣µ̃R − µ̃L

∣∣2
s̃2

R + s̃2
L

where µ̃R and µ̃L are the means of feature vectors for two
right and left classes and the quantity |µ̃R − µ̃L|2 is the dis-
tance between the two classes’ means. For each class s̃2

R and s̃2
L

were defined as the scatter, an equivalent of the variance, and
obtained by

s̃2
i =

∑
x ∈ f i

(
x − µ̃i

)2

The quantity s̃2
R + s̃2

L indicates the within-class scatter. When per-
forming motor imagery a larger J corresponds to closer dispersion
of feature vectors per each class and further distance between
two class means, which represents better feature distribution for
classification, and therefore better execution of motor imagery
task.

In each session, the J parameter for the first 20 conditioned tri-
als (J1) and for the second 20 test trials (J2) was calculated. Since
subjects’ initial skills were diverse, and for every subject the order
of sessions was considerable in the amount of motor imagery
skills, the ratio �J = J2/J1 was selected as a measurement of
subjects’ motor imagery learning in that session.

RESULT
Online performance
Performances of 16 subjects in the second half of each session
were averaged and demonstrated in Figure 4A. The term perfor-
mance refers to the percentage of successful trials among the post
20 trials. Fake-P (M = 60.78, SD = 10.24) showed the highest
performance compared to Raw (M = 49.22, SD = 9.07), Match
(M = 54.37, SD = 10.89) and Fake-P (M = 50.47, SD = 10.58).
However, One-Way ANOVA test did not reject the null hypothe-
sis, [F(3, 60) = 2.51, p = 0.07].

FIGURE 4 | Results for experiment 2 (A) Mean value of subjects’
performances in the second half of each session is demonstrated. No
significant difference was found. (B) Mean value of the ratio J2/J1, an
identifier of motor imagery quality, showed significantly higher values in the
Fake-P and Match conditions compared to Raw.
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Offline classification
We calculated �J for 16 subjects. Using interquartile range
(IQR) for statistical dispersion in each condition (Moore and
McCabe, 1998), two outliers were detected in the Fake-N con-
dition (S2 and S4) and one outlier was detected in the Raw
condition (S15). The data of these three subjects were dis-
carded from further analysis. The mean value of �J for the
remaining 13 subjects was highest in the Fake-P condition
(M = 2.12, SD = 1.78) compared to the other three conditions,
Raw (M = 1.07, SD = 0.75), Match (M = 1.87, SD = 0.95) and
Fake-N (M = 1.35, SD = 0.84) (Figure 4B). A One-Way ANOVA
test yielded a significant effect of feedback design for the four con-
ditions, [F(3, 48) = 3.53, p < 0.05]. Using Tukey post-hoc com-
parisons, a significance difference was obtained between Fake-P
and Raw; [Fake-P > Raw, p < 0.05] and between Match and Raw;
[Fake-P > Raw, p = 0.08].

DISCUSSION
In experiment 2, we biased the visual feedback of performance
in a BCI-teleoperation system of a human-like robot in order to
probe the effect of positive and negative feedback on subjects’
BCI-performance and motor imagery skills.

Online results demonstrated no significant changes in the sub-
jects’ real time performances and the mean value of subjects’
performances remained in the chance level for all conditions.
On the other hand, results from offline classification revealed
that the ratio J2/J1, an identifier of class separation between
the two halves of sessions, was significantly higher in the Fake-
P than in the Raw condition. This indicates that subjects could
generate motor patterns that are more classifiable by CSP algo-
rithm by receiving positive feedback of their performance in the
Fake-P condition. Using a statistical significance level of 10%, a
similar relation was confirmed between Match and Raw condi-
tions, indicating that in the Match condition where subjects did
not receive negative feedback of their failed performance, motor
imagery improved and they could produce more separable activ-
ity patterns for two classes of right and left hand movement. Both
results imply that positive bias of feedback had an enhancing
effect on motor imagery learning which is consistent with some
previous reports (Lotte et al., 2013). One probable cause could be
the inducement of a stronger BOT due to biased feedback, which
facilitated imagination of movement in motor imagery task and
eventually enhanced self-regulation of brain patterns in subjects
(Figure 3).

Unlike previous reports on biased BCI feedback, no signifi-
cant improvement (Gonzalez-Franco et al., 2011) or impediment
(Barbero and Grosse-Wentrup, 2010) was found in the Fake-
N condition compared to other conditions. However, S2 and
S4 who were discarded from analysis as outliers showed drastic
�J increase in Fake-N. Since subjects majorly received enhanced
learning in Fake-P condition, we assume that the effect of biasing
is closely relevant to the subject’s personality and the influence
of motivation on different individuals. While there are learners
who benefit from encouragement and positive feedback of their
performance, there are a few who benefit more from negative
feedback and try harder when the feedback informs them that
they are not performing well. In future experiments, a personality

test could be used in order to categorize subjects into groups,
so that results can be analyzed according to stratified personality
groups.

Lastly, although in this experiment we hypothetically assume
that enhancement of motor imagery learning due to positive
bias of feedback was associated with ownership illusion over the
controlled robot’s hands (Figure 3), further study is required to
veritably measure the intensity of illusion at the end of each con-
ditioned section. In this experiment we suspected that pausing
the sessions and asking assessment questions could shatter the
illusion. In the future, comparison between human-like and non-
human-like visual feedback under biased feedback is necessary to
precisely verify whether illusion of body ownership influences the
trend of motor imagery learning.

CONCLUSION
In this study, we designed two experiments to answer the fol-
lowing questions: (1) How can presentation of visual feedback
affect the inducement of body ownership illusion in the BCI-
operators of human-like hands, and (2) How can positively and
negatively biased feedback in such a system influence operators’
interaction with the system and improve their BCI performances.
Results of the first experiment revealed that negative feedback of
subjects’ errors impeded the intensity of ownership illusion. Also
BOT was correlated with subjects’ performance in BCI and how
well subjects felt they were in control of the hands. In the second
experiment, we realized that biasing feedback could not immedi-
ately boost subjects’ performance in the same session. However,
the analysis of brain patterns showed that in fact it could change
the trend of motor imagery learning.

In terms of feedback design for future BCI systems, it is con-
ceivable that a more realistic feedback presentation can assist
novice users to train and adapt to a system faster and more
efficiently. Also, BCI users may benefit from positive bias of feed-
back in training sessions, although their personality should be
taken into account. Meanwhile, since subjects motor imagery
skills dynamically change during a session based on their state
of mind, further development of sophisticated classifiers that
customize classification parameters in an online session are
required.
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