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Humans and animals may encounter numerous events, objects, scenes, foods and
countless social interactions in a lifetime. This means that the brain is constructed by
evolution to deal with uncertainties and various possibilities. What is the architectural
abstraction of intelligence that enables the brain to discover various possible patterns
and knowledge about complex, evolving worlds? Here, I discuss the Theory of
Connectivity–a “power-of-two” based, operational principle that can serve as a unified
wiring and computational logic for organizing and constructing cell assemblies into
the microcircuit-level building block, termed as functional connectivity motif (FCM).
Defined by the power-of-two based equation, N = 2i−1, each FCM consists of the
principal projection neuron cliques (N), ranging from those specific cliques receiving
specific information inputs (i) to those general and sub-general cliques receiving
various combinatorial convergent inputs. As the evolutionarily conserved logic, its
validation requires experimental demonstrations of the following three major properties:
(1) Anatomical prevalence—FCMs are prevalent across neural circuits, regardless of
gross anatomical shapes; (2) Species conservancy—FCMs are conserved across
different animal species; and (3) Cognitive universality—FCMs serve as a universal
computational logic at the cell assembly level for processing a variety of cognitive
experiences and flexible behaviors. More importantly, this Theory of Connectivity further
predicts that the specific-to-general combinatorial connectivity pattern within FCMs
should be preconfigured by evolution, and emerge innately from development as the
brain’s computational primitives. This proposed design-principle can also explain the
general purpose of the layered cortex and serves as its core computational algorithm.

Keywords: theory of connectivity, brain evolution, origin of intelligence, cell assembly, computational logic, neural
cliques, functional connectivity motif, artificial intelligence

Some of us may recall what Jeff Hawkins once told a Silicon Valley audience: ‘‘We don’t want to
solve vision, we don’t want to solve language. We want to solve something in the brain that is more
fundamental.’’ (Hawkins, 2004). What could be more fundamental to our understanding of the
brain than the fascinating fields of vision, smell, touch, hearing, emotion, learning and memory,
decision-making and motor control? The answers may find their roots in the Einsteinian quest for
unifying principles in science (Adolphs, 2015).

Different animals can exhibit a drastically different sensory apparatus—such as electroreception
(in electric eels and honeybees), magnetoception (in homing pigeons and mole rats), sonar
(in bats and dolphins) or infrared detectors (in snakes and bed bugs). As such, different
animals clearly construct very different models and perceptions in their brains about the worlds.
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Moreover, motor skills are also widely different—from digging
beneath the dirt, swimming in the ocean, walking on the surface
of the Earth or flying high in the sky. Therefore, the central
mission of intelligence is to solve various problems in their
natural and social environments in order to survive and thrive.
This means that intelligence is ultimately about the ability
to self-discover knowledge and patterns from a world full of
uncertainties and infinite possibilities. If so, what is the wiring
and computational logic that evolution should use to construct
the brains?

Throughout history, attempts to understand how the brain
works have been frequently made via comparing the brain with
various machines of that particular time—from pumps and
engines to calculators and computers (von Neumann, 1958).
Current comparisons between the brain and computers are
often illustrated by a set of striking numbers; for example, the
three-pound human brain, which consumes only 20 watts, vs.
large supercomputers, which occupy an entire floor and burn
tens of thousands of watts of electricity (Merolla et al., 2014).
However, such superficial comparisons simply miss the point.
The fundamental contrast between the brain and a computer lies
in their design principles. These two devices have two completely
different missions; computers are designed and programmed
to perform well-defined, specific tasks with maximal speed and
energy efficiency, whereas the brains have evolved to generate
knowledge and adaptive behaviors. Thus, the fundamental
question posed to neuroscientists and engineers alike is: how
does the brain achieve this amazing feat?

Biologists have approached the question by using what
is known as ‘‘the disassembling approach.’’ Roman Y. Cajal
pioneered this approach one century ago, revealing the basic
structural elements of the brain—such as neurons, axons,
dendrites and synapses (Cajal, 1909, 1910; DeFelipe and Jones,
1988). Over the past few decades, a wealth of knowledge has
been collected on many component parts of the brain from
molecular to behavioral levels—ranging from the identification
of neurotransmitters, ion channels and receptors (Noda et al.,
1984; Seeburg et al., 1990; Monyer et al., 1992; Carlsson,
1993), elucidations of sensory detectors and cortical columns
(Mountcastle, 1957; Hubel and Wiesel, 1962; Buck and Axel,
1991), the discovery of synaptic machineries and plasticity
(Bliss and Collingridge, 1993; Frey and Frey, 2008; Südhof,
2012), the genetic manipulation or decoding of specific
circuits (Tsien et al., 1996; Zemelman et al., 2002; Boyden
et al., 2005; Zhang et al., 2013), and the enhancement of
cognitive behaviors (Tang et al., 1999; Wang et al., 2009). Yet,
this relentless push—or downward spiral—into ever finer details
has created its own attraction—or black holes—from which
too many of us may find too hard to resist intellectually and
professionally.

Physicists, on the other hand, tend to use a very different
approach; that is, they tend to first come up with a theory
to describe the general principle of physical worlds using
mathematics. Perhaps this is out of necessity, because the
mysterious objects physicists study—such as the solar system
and universes—are usually intangible. Their reliance on thought-
experiments has served physics extremely well. Can we

borrow this trick from physicists and perform some thought
experiments?

POWER-OF-TWO BASED LOGIC FOR
COPING WITH UNCERTAINTIES AND
INFINITE POSSIBILITIES

Theoretical physicist Michio Kaku has pointed out that there
are so many people who have worked so hard for so long, the
neuroscientists have hardly come up with any theory about the
design principles of intelligence (Kaku, 2014). Not necessarily
agreeing with his conclusion, but I think that Dr. Kaku’s
point should be well taken. Here, I would like to take the
liberty to explore and discuss a mathematical approach to
the following three questions: (1) What is the architectural
abstraction principle for evolution to build the brain?; (2) How
do neural networks give rise to intelligence that is capable of
dealing with uncertainties and infinite possibilities, subsequently
discovering knowledge and generating adaptive skills?; and (3) Is
there a common mathematical principle that may relate to both
of these questions?

If the ability to discover specific features and generalized
knowledge from the complex, ever-changing worlds is the
core function of the brain, the search for the brain’s design
logic, I believe, can then be reduced to the question of how
neurons should be wired to intelligently discover and organize
various possible patterns. Recently, I put forth a ‘‘power-of-two’’
based Theory of Connectivity to explain how evolution and
development might construct cell assemblies in such a way that
would inherently cover all possible information (Tsien, 2015). At
its core, I postulate the cell assemblies are not random, but rather
should conform to the power-of-two based equation,N = 2i−1, to
form the pre-configured building block termed as the functional
connectivity motif (FCM). Instead of using a single neuron as the
computational unit in some extremely simple brains, I denote
that in the most of the brains, a group of neurons exhibiting
the similar tuning properties, termed as a neural clique, should
serve as the basic computing unit. This allows the system to
avoid a catastrophic failure in the event of losing a single neuron
(in engineering, the term for this phenomenon is ‘‘graceful
degradation’’ or, simply, ‘‘robustness’’). Here, N is the number
of distinct neural cliques connected in different possible ways; i
is the information types this FCM is dealing with. According to
this equation, each FCM is predicted to consist of a full range
of neural cliques that extract and process a variety of inputs in
a combinatorial manner (Figure 1). Thus, depending on how
many distinct information input a microcircuit is designed to
handle, this equation,N = 2i−1, defines howmany neural cliques
are needed for a particular FCM.

To illustrate what this equation means in evolutionary
and neurobiological terms, let’s imagine that 500∼650 million
years ago, a simple animal organism had only two missions:
to find foods and mates (information i = 2); then, three
neurons would be needed at a central node (the brain) to
present all possible relationships or features, (N =22−1 = 3;
Figure 1A, left subpanel). In this case, N#1 or #2 encodes for
foods or mates, respectively, with the N#3 receiving convergent
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FIGURE 1 | Evolutionary logic guiding brain’s wiring and computation at the cell-assembly level. (A) Examples of connectivity patterns within representative
FCMs. On the left, a simple functional connectivity motif (FCM) with only three neurons for covering two distinct inputs (in red or yellow, i1 or i2, respectively). In the
middle, a FCM consists of 15 distinct neural cliques (n1–5), which cover all possible connectivity patterns in order to process four distinct inputs (i1–4) by following the
specific-to-general combinatorial wiring and computational logic. The proposed FCMs are predicted to be the cell-assembly level building blocks for constructing
various brains (e.g., mouse, dog, and human are illustrated here). (B) Universality of this computational logic, which can be detected by measuring neural activation
patterns in the form of a “bar-code”. Warm color bars illustrate the activations of these cell cliques. Schematic “bar-code” illustration of specific-to-combinatorial
input connectivity motifs are predicted to be present in a wide range of brain regions regardless of anatomical shapes. Three bar codes all contain FCMs for
processing four distinct inputs (i = 4), each consists of 15 distinct neural cliques (n1–15). (C) On the right, a “cognitive example” is provided for how the bar code-like
activation patterns of FCMs give rise to a specific-to-general feature-extraction assembly that encodes specific features or memories, as well as various relational or
generalized knowledge about four distinct fearful events. This specific-to-general computational logic can also be used to generate categorical motor behaviors.

inputs from i1 and i2. And representing the presence of both
food and mates (thereby serving as a command neuron for
concept or motor behavior, such as good or approaching,
respectively). Likewise, if i increases to 3 or 4, the corresponding
N required to cover all possible relationships or combinations
arranged from a set of specific units to sub-general units
and general units will be 7 or 15, respectively (Figure 1A,
middle subpanel). Therefore, through this power-of-two based
mathematical logic, evolution constructs the specific-to-general

neural clique assembly, or FCM, as its basic building block of
various brains (Figure 1A, right subpanels). Such conserved
FCM architecture enables the representation of a range of
possible combinations of relational features that the network
can extract from various information sources. In other words,
by conforming to this mathematical principle of N = 2i−1,
the specific-to-general neural clique assembly provides an
efficient and flexible algorithmic framework for encoding
specific events, as well as various relational knowledge or
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skills (Figure 1B). As the evolutionary conserved wiring and
computational logic, the following three critical predictions
should be fulfilled:

Anatomical Prevalence
The proposed FCMs should be widely employed across the
brain’s deep central circuits, regardless of their anatomical
shapes and appearances (Figure 1B). It should be noted
that while principal projection neurons are usually excitatory
neurons using fast neurotransmitter (i.e., pyramidal cells in the
CA1), some GABAnergic interneuron types can also serve as
projection neurons (e.g., medium spiny neurons in the striatum,
PV interneurons in certain parts of the amygdala). For the
purpose of theoretical abstraction, local inhibitory interneurons
crucial for controlling the local microcircuit dynamics are not
discussed here. This anatomical prevalence can be tested by
the demonstration of FCM’s existence in the almond-shaped
amygdala, the stratum of the CA1 region, or the multi-layered
cortex.

Species Conservancy
The proposed FCM should be observed across the brains
of different species. In other words, the specific-to-general
neural clique assembly-based computational logic should also
be conserved across a variety of animal species, from simple
invertebrate organisms to primates. The ratio distribution of
specific neural cliques and sub-general or general cliques within
each FCM is likely to vary among individual brains. But as
a species, its overall specification and abstraction is ultimately
selected by specific environments in which different animal
species have lived and evolved. This species conservancy can
be tested and verified in classical animal model organisms from
worms to mice to primates (Roth and Dicke, 2012).

Cognitive Universality
It is also predicted that this computational logic should be
universal across distinct cognitive tasks, ranging from appetitive
behavior to social interaction and fearful episodes. At the
functional level, the specific input-responsive neurons should
represent specific features or details about incoming stimuli
or events, whereas sub-general and general (most convergent)
input-processing neurons are situated to extract categorical
or combinational relationship features and knowledge. In the
primary or secondary sensory processing circuits, specific and
sub-general cells may converge to produce a variety of complex-
feature cells within its sensory modality. However, in high
association cortices, combinations of different features are geared
toward generating novel combinational relationships across
modalities for describing abstract knowledge for categorical
events, people, and/or actions. For a ‘‘cognitive’’ example, when
a person encounters or witnesses an earthquake, landslide,
flood or tornado, either separately, combinatorially, or together
(i = 4), existence of all fifteen types of principal neural cliques
in an emotional memory circuit can readily capture various
specific and/or combinational relationships, ranging from neural
representation for ‘‘earthquake, ’’ or ‘‘earthquake and landslide,’’

to ‘‘tornado with flood and landslide’’ or the general concept
of ‘‘natural disasters’’ (Figure 1C). This specific-to-general bar-
code logic (Figure 1B), implemented at the cell-assembly level,
intrinsically enables the microcircuits to discover potentially all
sorts of cognitively important patterns; consequently, giving rise
to categorical knowledge at the macro-scale network level.

MATHEMATICAL AND BIOLOGICAL
BOUNDARY OF THE BIOLOGICAL BRAINS

This proposed specific-to-general brain logic conforms to a
mathematical principle in the equation N = 2i−1. However,
due to exponential growth in input numbers i, the cost (in
terms of cell resources) can quickly become prohibitive. For
instance, in order to cover all possible patterns for processing
2, 3, 4, 10, 20, 30, 40 distinct perceptual inputs, an FCM would
require 3, 7, 15, 1023, 1 048 675, 1 073 741 823, 1 099 511
627 775 neurons, respectively. Even the human brain, which is
estimated to have 8.6 × 1010 neurons, can quickly run out of
cells to be able to afford this exponential coverage. The best and
necessary solution is to employ modular approaches, or a divide-
and-conquer strategy, to segregate or stream information inputs
through distinct sensory domains or submodular pathways.

For example, if a central node in a small neural circuit
(e.g., C. elegans) needs to cover all possible connectivity wiring
patterns to represent eight distinct types of inputs or information,
a total of 255 principal projection neurons would be required
(N = 28−1 = 255) for this node. However, when a sub-
modular approach is employed (e.g., dividing into a set of four
inputs per subnode), the same 255 principal neuron sets can
increase its processing capacity by a factor of 17 times (255
total cells/15 cells per sub-node = 17). Similarly, if a subnode or
FCM was structured to process only three distinct information
(N = 23−1 = 7), 255 neurons can be used for 36 assemblies.
Through evolution, i number should have been selected and
confined by the complexity of given environmental demands in
which organisms have lived for generations. This means that
evolution has been forced by this mathematical cost-and-benefit
analysis to use neuron resources efficiently and wisely, as evident
from the evolutionarily conserved specific sensory pathways and
cortical modalities. With more neurons available to the more
complex animals, bigger i numbers (that their microcircuits can
handle) would become, thereby leading to greater intelligence.

THE CORTEX AS THE EVOLUTIONARY
SCALE-UP SOLUTION FOR LARGE-SCALE
COMPUTING

In order to extract an increasing amount of relational patterns
across distinct sensory modalities, scaling up this power-of-
two based microarchitecture is necessary, but can be a major
challenge from an engineering perspective. I propose that the
classic three- or six-layered cortex is the evolutionary solution
to execute the FCM logic in a replicable large-scale fashion,
as the brain evolves from small-scale circuits to larger circuits.
In other words, input cortical layers should consist of most of
the specific cliques and simple sub-general cliques (e.g., 2-event

Frontiers in Systems Neuroscience | www.frontiersin.org 4 February 2016 | Volume 9 | Article 186

http://www.frontiersin.org/Systems_Neuroscience
http://www.frontiersin.org/
http://www.frontiersin.org/Systems_Neuroscience/archive


Tsien Wiring Logic for Intelligence

combinatorial cliques); whereas output layers would host most
of the more complex sub-general cliques and general cliques
(e.g., 3-event or 4 event-combinatorial cells). In fact, this is in
general agreement that layer 4 neurons are simple cells and
predominantly project to layers 2 and 3 from which neurons
then descend to layers 5 and 6 (Benshalom and White, 1986;
Peters and Payne, 1993; Bruno and Sakmann, 2006; Kaneko,
2013). Although a majority of these output cell cliques should
be sub-general and general cliques, one should also expect a
certain percentage of cells in these layers to be specific due to
direct input from layer 4 (Constantinople and Bruno, 2013). It
should be noted that layers 2/3 are also the output layers to other
cortical regions (Ueta et al., 2013; Barbas, 2015). As a whole,
this arrangement can enable the discovery and broadcasting of
general and combinatorial patterns in the output layers while still
being capable of retaining the ability for pattern discrimination.

DIFFERENT LOGIC FOR NEURAL
MODULATORY SYSTEMS

While the proposed FCMs are predicted to be prevalent across
regions, I would like to suggest that evolution may use a
rather distinct wiring logic to deal with neural modulatory
circuits consisting of slow neurotransmitter-containing neurons.
These neural modulatory circuits, such as the dopamine (DA)

neuron circuit, are designed to add values, saliency, motivational
and/or emotional features (Carlsson, 1993; Ferguson et al., 2002;
Matsumoto and Hikosaka, 2009; Lammel et al., 2011; Wang and
Tsien, 2011; Everitt and Robbins, 2015) onto the information
patterns discovered by the fast neurotransmitter neurons. By
adding various ‘‘flavors’’ to FCMs, these modulatory systems
modulate the tuning properties, excitability, long-term stability,
and temporal dynamics of neural cliques during learning,
consolidation, retrieval, or imagination (Frey et al., 1990; Tsien
et al., 2013).

HOW CAN THIS THEORY OF
CONNECTIVITY BE TESTED?

This basic logic should be tested vigorously in a variety of
experiments. For starters, large-scale neural recording techniques
can be used to measure response specificity and convergence
of principal neurons in the central circuits, while animals are
subjected to fearful or appetitive stimuli without any prior
training (Lin et al., 2005; Chen et al., 2009; Tsien et al.,
2013; Guven-Ozkan and Davis, 2014). Our previous large-scale
recording experiments examined how CA1 cells would respond
to three distinct fearful events; namely, earthquakes, free-fall
drops, and air-puffs (Lin et al., 2005, 2006). We found that
the CA1 generated seven distinct major neural clique activation

FIGURE 2 | Illustration of experiments to test this neural clique assembly-based computational logic. (A) Specific-to-general neural cliques in the mouse
CA1 region. A total of 757 CA units from five mice (n = 189 ± 29) were pooled together to generate this hierarchical clustering plot. Some cells responded to all
three fearful stimuli (general clique), while some cell cliques (specific or sub-general cells) exhibited specific or sub-combinatorial selectivity to one or two types of
stimulus, respectively. (B) Specific-to-general neural cliques in the mouse anterior cingulate cortex (ACC) region in responding three distinct fearful events. A total of
682 ACC units from six mice (n = 137 ± 43) were pooled together to generate this hierarchical clustering plot. The distinct fearful events are labeled. The CA1 and
ACC figures were adopted from Lin et al. (2005) and Xie et al. (2013), respectively. The color scale bar indicates the Z-score normalized magnitude in firing changes
within 2 s after stimulus onset.
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patterns in response to these three fearful episodes (Figure 2A).
Similarly, we recorded from the mouse anterior cingulate cortex
(ACC) while subjecting the mice to mild bomb blast, air puff,
or acoustic startle (Xie et al., 2013). We again observed seven
combinatorial neural cliques, arranged in a specific-to-general
manner (Figure 2B).

At face value, the results from these large-scale in vivo
recording experiments seem to be consistent with the proposed
logic. However, the major caveat is that the units listed in
these hierarchical cluster plots contained all of the recorded
units, including putative pyramidal cells and local interneurons.
Therefore, a critical test is to demonstrate this specific-to-general
neural clique pattern in pyramidal cells. A convincing evidence
would be to show the existence of seven types of pyramidal-cell
cliques not only from the pooled datasets, but also from a single
mouse dataset. Finally, to further examine the power-of-two
based combinatorial wiring, one need to specifically design new
experiments by increasing the fearful events from the previous
three types to four types, and can still find all 15 distinct types
of cliques in these regions. In addition, simple organisms such
as worms, flies, and zebra fish may also offer unique advantages
to test the proposed logic (Larsch et al., 2013; Guven-Ozkan and
Davis, 2014; Kato et al., 2015; Wolf et al., 2015).

In summary, I propose that the principle of intelligence is
rooted in a mathematical principle for guiding the brain design
by evolution. Through evolution and development, cell-assembly

connectivity in the unlearnt microcircuits should be already
preconfigured and genetically programmed by this logic, which
enables the brain, at its microcircuit level, to discover knowledge
and generate flexible behaviors. This FCM logic also explains
the general purpose and core computational algorithm behind
the layered cortex. This design principle can be examined
by developmental experiments, and modeled by neuromorphic
engineers and computer scientists. However, it is important
to note that artificial general intelligence based on the brain
principles can come with great benefits and potentially even
greater risks.
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