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Glioblastoma multiforme, one of the most common and aggressive brain tumors in
adults, is highly resistant to currently available therapies and often recurs. Due to its
poor prognosis and difficult management, there is an urgent need for the development
and translation of new anti-glioma therapeutic approaches into the clinic. In this context,
oncolytic virotherapy arises as an exciting treatment option for glioma patients. These
natural or genetically engineered viruses are able to effectively infect cancer cells, inducing
a specific anti-tumor cytotoxic effect. In addition, some viruses have been redesigned to
modulate glioma microenvironment, to express cytokines to boost a systemic anti-glioma
immune response and to incorporate angiostatic genes to decrease glioma vasculature.
Although recent clinical trials have confirmed the safety of oncolytic virotherapies in the
brain, their moderate clinical efficacy has not yet matched the encouraging preclinical
laboratory results. In this review, we will discuss the leading anti-glioma virotherapy
approaches that are presently under preclinical and clinical evaluation. We will also
review different delivery methods, in vivo virus behavior, fate, replication, intratumoral
spread, activation of anti-tumor immune response, and targeting of glioma stem cells.
We will focus on the advantages and limitations of each therapeutic approach and how to
overcome these hurdles to effectively translate exciting laboratory results into promising
clinical trials.
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INTRODUCTION
Malignant glioma is a highly invasive brain tumor character-
ized by short survival and poor response to chemotherapeutic
agents (Grossman et al., 2010). Biological barriers and physio-
logical aspects responsible for hampering a broad intratumoral
drug distribution and efficient tumor destruction can explain
this poor therapeutic efficacy. Important examples are the pres-
ence of an ultra-selective blood-brain barrier, glioma hetero-
geneity, existence of drug-resistant glioma stem cells, and low
anti-tumor immunogenicity (Wen and Kesari, 2008; Stupp and
Roila, 2009). In this scenario, oncolytic virotherapy arises as a
promising approach to restrain glioma-related deaths. This new
treatment option is based on the rationale of using condition-
ally replicative viruses to either selectively infect and kill glioma
cells, sparing non-neoplastic tissues (Parker et al., 2009), as well
as transfer genetic materials with anti-cancer activity to can-
cer cells through viral vectors (Fueyo et al., 1999; Bansal and
Engelhard, 2000). Oncolytic viruses induce an anti-tumor ther-
apeutic effect through a subtle equilibrium between anti-viral
and anti-tumor immune responses (Fulci et al., 2006). In order
to achieve efficient oncolytic activity a viral vector must obey
three main principles: (1) selectively target the neoplastic tissue
while presenting minimal local and systemic toxicity, (2) remain
active despite inducing host anti-viral immune response, and
(3) reach all tumor foci beyond the tumor resection border. In
addition to this, it must be safe for human administration, and
should demonstrate potent anti-tumor activity either alone or

combined with conventional therapies, such as surgical resection,
chemotherapy, and radiotherapy (Dey et al., 2011). However, sev-
eral limitations are still present for an adequate translation of
oncolytic virotherapy into the clinics. One of the major obsta-
cles is the absence of an acceptable vector system that could be
administered to the patient in a minimally invasive fashion and
would transduce and lyse most of the tumor with low toxicity
to normal tissues (Hunt and Vorburger, 2002). Other thera-
peutic hurdles comprise anti-vector immune response, which
limits a repeated viral administration; lack of long lasting anti-
tumor immune response, which allows glioma recurrence; and
unreliability of current animal models, where therapeutic effec-
tiveness usually does not translate to success in human trials
(Donsante et al., 2007). In this review, we will discuss the new
anti-glioma virotherapies that might be used alone or in con-
junction with conventional therapeutic approaches and have
the potential to offer an advantage over currently employed
therapeutic regimens. We will also outline the advantages and
pitfalls of such therapeutic approach, as well as discuss fea-
sible alternatives to overcome these limitations and effectively
translate anti-glioma oncolytic virotherapies from bench to bed-
side.

TARGETED ANTI-GLIOMA VIROTHERAPY
Two classes of viruses are currently employed in anti-glioma
targeted virotherapy: replication- defective and replication-
competent ones. Replication-defective viruses are mainly used

www.frontiersin.org February 2013 | Volume 3 | Article 32 | 1

http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Cancer_Genetics/10.3389/fonc.2013.00032/abstract
http://community.frontiersin.org/people/BrendaAuffinger/64444
http://www.frontiersin.org/Community/WhosWhoActivity.aspx?sname=MaciejLesniak&UID=72226
mailto:mlesniak@surgery.bsd.uchicago.edu
mailto:mlesniak@surgery.bsd.uchicago.edu
http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Genetics/archive


Auffinger et al. Virotherapy of glioma

as vectors for suicide gene delivery, while replication-competent
viruses exert their therapeutic effect through either direct lysis
of tumor cells or modulation of glioma-related apoptotic path-
ways (Biederer et al., 2002). Replication-competent viruses can
be genetically engineered into conditionally replicative viral vec-
tors. In this case, viral replication is restricted to neoplastic cells
and therapeutic genes carried by these vectors can be amplified at
the tumor site. Another important difference is that replication-
competent viruses show higher tumor transduction efficiency,
characteristic that makes them important tools in both oncolytic
viral therapy and gene therapy (Heise et al., 2000; Jiang et al.,
2003; Lin and Nemunaitis, 2004). Here, we describe three widely
used oncolytic virus systems that present an established anti-
glioma activity and are presently under clinical trials: condition-
ally replicative adenoviruses (CRAd), oncolytic herpes simplex
virus (oHSV) and reovirus.

CONDITIONALLY REPLICATIVE ADENOVIRUSES (CRAd)
Human adenovirus serotype 5 (Ad5) is a well-characterized plat-
form for a wide variety of genetically modified oncolytic virus
agents. It comprises a 36 kb DNA genome that allows for relatively
easy manipulation. This fact opened new paths for designing
vectors that present high specificity for tumor cells, limiting tox-
icity to non-neoplastic tissues. Three main modifications in the
viral replication pathway allowed such tumor-specific tropism:
(1) deletion of viral E1A or E1B genomic regions, which lim-
ited viral replication to cancer cells with specific dysfunctions in
cell cycle checkpoint pathways (Khuri et al., 2000; Suzuki et al.,
2001); (2) incorporation of tumor-specific promoters into the
viral genome, which limited infection only to malignant cells
expressing such particular promoter (Vandier et al., 2000; Kohno
et al., 2004); and (3) improvement of transduction efficiency in
tumor cells, which redirected the process of virion entry into tar-
get cells (van Beusechem et al., 2002; Fueyo et al., 2003; Dey et al.,
2011). In addition, adenoviruses can also be useful tools in anti-
glioma gene therapy, mainly through bearing a suicide cassette
that induces the conversion of prodrugs into active drugs (HSV-tk
system).

Retinoblastoma protein (Rb) and protein 53 (p53) tumor sup-
pressors are master cell cycle regulators. They hold cell cycle
at G1/S regulation checkpoints for DNA damage recognition.
As G1 to S transition are essential for adenovirus replication,
E1A and E1B early viral genes control cell cycle by inhibit-
ing Rb and p53, ensuring efficient DNA replication (Gomez-
Manzano et al., 2004). Nevertheless, malignant gliomas present
a defective p53 and Rb pathways, contributing to uncontrolled
cell division and genome instability (Bischoff et al., 1996).
Thus genetically engineered adenoviruses with either E1A or
E1B deletion replicate preferentially in malignant cells with
disrupted p53 and Rb proteins, but not in non-neoplastic
cells (Figure 1). ONYX-015, an adenovirus made conditionally
replicative by E1B-55k deletion, has shown in vivo therapeu-
tic effects in glioblastoma xenografts (Figure 2) (Geoerger et al.,
2002). Likewise, Ad5-Delta24 bears a partial E1A deletion, which
has proven to be more effective than ONYX-015 in suppress-
ing tumor growth in both intracranial and subcutaneous glioma
xenografts (Fueyo et al., 2000). In addition to rendering E1A

unable to bind Rb, Ad5-Delta24 induces topoisomerase I expres-
sion in malignant cells. As a consequence, it has its antitumor
effect synergistically improved by irinotecan, a topoisomerase I
inhibitor, in experimental murine models (Jiang et al., 2005).
Based on promising preclinical results, ONYX-015 has reached
clinical trials and, in 2004, Chiocca et al. (2004) reported a
phase I trial conducted with intratumorally injected ONYX-015.
In this study, 24 patients suffering from recurrent malignant
glioma received ∼1010 pfu (plaque-forming units) at 10 differ-
ent sites around the tumor resection border. Results showed
that the virus was well tolerated and no toxicity has been noted
(Table 1).

Tumor-specific promoters can be incorporated into the ade-
noviral genome in order to produce conditionally replicative
viral vectors. Following this rationale, Komata et al. (2001) engi-
neered a viral vector expressing a constitutively active caspase-6
under hTERT promoter. HTERT is a well-known regulator of
the telomerase enzyme, which is responsible for chromosomal
stabilization and avoidance of senescence, rendering cells the
capacity of unlimited divisions. This enzyme is present in neo-
plastic tissues, but is absent in normal brain. Based on this,
such hTERT/rev-caspase-6 viral construction is able to specifi-
cally target and lyse hTERT-positive tumor cells. Promising in
vivo results have shown tumor regression in subcutaneous nude
mice xenografts. Another example of promoter incorporation
in viral vectors is the construction of a hypoxia/HIF-dependent
replicative adenovirus (HYPR-Ad), which is able to target hypoxic
malignant glioma cells (Post and Van Meir, 2003). Such tar-
geted mechanism happens through a hypoxia-dependent E1A
promoter expression, resulting in conditional cytolysis of hypoxic
cells, sparing the normal tissue. Similarly, CRAd-survivin con-
structs comprise oncolytic adenoviruses in which replication is
controlled by survivin promoter, an apoptosis inhibitor (Van
Houdt et al., 2006). Adenoviral fiber gene modifications that
enhance glioma-specific viral targeting have been incorporated
in these survivin-controlled CRAds and have shown promising
results both in vitro and in vivo (Ulasov et al., 2007b,c; Nandi
et al., 2008; Sonabend et al., 2009). Examples involve the addition
of an RGD-modified fiber (Zhu et al., 2005), a poly-lysine motif
(CRAd-S-pk7) (Ulasov et al., 2007c) and a chimeric fiber Ad3
knob (Ulasov et al., 2007b). Despite their promising pre-clinical
results, no clinical trials using these constructs are currently
available.

New viral constructions that facilitate interactions between
viral proteins and particular cell surface receptors lead to an
increased viral transduction in malignant cells. This has been
mainly achieved by deletion of specific portions of the viral
genome (Gomez-Manzano et al., 2004; Ulasov et al., 2008)
or by addition of exogenous promoters (Ulasov et al., 2007a).
For instance, Ad5-Delta24RGD is an engineered adenoviral vec-
tor that, by receiving an arginyl-glycyl-aspartic acid (RGD)
motif, is able to interact with αvβ3 and αvβ5 integrins, which
present ample expression in neoplastic cells (Suzuki et al., 2001).
This coxsackievirus and adenovirus receptor (CAR) independent
transduction showed a strong oncolytic effect in a broad panel
of primary gliomas, together with complete tumor regression
and long-term survival in an in vivo glioma xenograft model
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FIGURE 1 | Overview of the events that follow upon conditionally

replicative adenovirus infection of malignant glioma cells—oncolytic

virotherapy. Neoplastic cells through a receptor-mediated endocytosis
selectively internalize genetically engineered conditionally replicative
adenoviruses (CRAds). These CRAds are tumor-selective because their E1A
gene is under control of a cellular promoter that is active only in tumor cells.
Following internalization, CRAds are engulfed by endosomes, where vectors

are disassembled and viral DNA is released. Viral DNA is directly transported
to the nucleus of the neoplastic host cell. There, it highjacks the host DNA
machinery, which is redirected for viral DNA production. Vector assembly
takes place in the cytosol, where viral capsid proteins are produced. Upon
assembly, a great number of newly formed conditionally replicative
adenoviruses cause tumor cell cytolysis and then migrate to other glioma
cells, where the whole process is repeated.

(Lamfers et al., 2002). In addition, Wang et al. demonstrated that
bFGF2 (basic fibroblast growth factor 2) could be used as a tar-
geting ligand in order to maintain adenoviral infection specific
to glioma cells. They showed that such viral construct was espe-
cially effective in gliomas that expressed low CAR (Wang et al.,
2005). Presently, a phase I clinical trial using Delta-24-RGD is
recruiting recurrent malignant glioma patients (NCT00805376).
This study intends to measure the maximum tolerated dose of this
double modified (DNATrix) conditionally replication-competent
adenovirus by injecting ∼1010 pfu at the tumor site.

In addition to oncolytic viruses, replication incompetent
viruses also present important anti-tumor responses. Herpes
simplex type 1 thymidine kinase (HSV-tk) is a suicide cassette
responsible for the conversion of the inactive prodrug ganciclovir
(GCV) into an active toxic metabolite named GCV-triphosphate
(Gomez-Manzano et al., 2012). It can be incorporated into the
adenoviral genome in order to enhance killing of adenovirus-
infected tumor cells as well as non-infected neighboring neo-
plastic cells through a “bystander effect” (Chen et al., 1995).

Due to its impressive in vitro and in vivo results, such therapeu-
tic approach reached clinical trials (Chen et al., 1995; Sandmair
et al., 2000). Recently, Chiocca et al. (2011) reported a phase IB
trial in which newly diagnosed glioblastoma patients received a
single injection of adenovirus-tk (AdV-tk) at the tumor resec-
tion site followed by 14 days of the oral drug vancyclovir. This
study showed that the AdV-mediated HSV-tk system was well
tolerated by patients with no significant added toxicity. Another
randomized, controlled clinical trial developed in Finland stud-
ied 36 patients with primary or recurrent malignant glioma
(Immonen et al., 2004). All 17 patients from the randomized
group were treated with AdV-HSV-tk gene therapy (3 × 1010 pfu)
at the tumor resection bed, followed by intravenously adminis-
tered GCV, twice a day for 14 days. The control group formed
by 19 patients was treated with standard care radical surgical
resection followed by radiotherapy. All patients treated with AdV-
HSV-tk presented a significantly increased median survival when
compared to the control group (62.4 vs. 37.7 weeks). The treat-
ment was well tolerated, with no adverse effects. Six patients

www.frontiersin.org February 2013 | Volume 3 | Article 32 | 3

http://www.frontiersin.org
http://www.frontiersin.org/Cancer_Genetics/archive


Auffinger et al. Virotherapy of glioma

FIGURE 2 | Simplified scheme comparing the mechanism of

replication of conditionally replicative ONYX in normal cells and

neoplastic cells. (A) In normal cells, wild type adenoviruses replicate
by blocking the normal activity of p53, a gene that, by inducing cell
apoptosis, defends the host cell from viral infection. In order to exploit
such function for targeted cancer therapy, researchers developed
ONYX-015. ONYX-015 is a genetically engineered oncolytic adenovirus

that preferentially replicates in neoplastic cells. It contains an 827-bp
DNA deletion in the E1B region of the viral genome, which is
responsible for the production of a mutant E1B-p55 protein. In normal
cells, ONYX-015 induces a p53 response, leading to cell arrest and
apoptosis, therefore preventing vector replication and contamination of
non-cancer cells. (B) Cancer cells present a disrupted p53 pathway.
Therefore, they are unable to suppress viral replication.

presented increased anti-adenovirus antibody titer. In parallel
to this, Sandmair et al. (2000) reported on a phase I clini-
cal trial where malignant glioma patients were treated either
with replication-defective AdV bearing HSV-tk/GCV or reovirus-
mediated HSV-tk/GCV at the tumor resection margin. The results
of this trial showed that patients that received AdV-HSV-tk pre-
sented a significantly higher median survival (∼15 months) when
compared to the other group (∼7.4 months). These results sug-
gest that replication-defective adenoviruses may be a better choice
over reoviruses for suicide gene therapy. However, recent reports
suggest that enhanced anti-tumor responses would be achieved
upon the combination of replication-defective and oncolytic
virotherapies. Therefore, it would be interesting to invest in addi-
tional studies combining both targeted approaches in preclinical
and clinical models.

ONCOLYTIC HERPES SIMPLEX VIRUS (oHSV)
Herpes simplex virus-1 (HSV-1) is a DNA virus containing a large
(>150 kb), fully sequenced and well-characterized genome (Chou
et al., 1990). This neurotropic virus presents a number of features

that makes it an attractive option for brain cancer therapy. It
is able to infect a large panel of malignant cells, requiring rela-
tively few replication copies for appropriate cell destruction. Its
ability to remain as an episome prevents insertional mutagenesis
into the host genome and allows the easy activity of antivi-
ral drugs, effectively controlling viral replication. Infected hosts
present an enhanced anti-tumor immune response and circu-
lating anti-HSV1 antibodies do not affect viral spread to other
tumor cells (Todo, 2012). Moreover, the currently available anti-
glioma oncolytic HSV-1 patents mostly rely on three types of viral
genome modifications: (1) removal of genes that are not essential
for viral replication, followed by insertion of therapeutic trans-
genes in the viral backbone, (2) induction of specific anti-tumor
immunity by the insertion of costimulatory molecules, and (3)
construction of oHSV-1 viruses armed with immunostimulatory
agents.

Due to its large genome, HSV-1 backbone tolerates the
removal of genes that are not crucial for viral replication and
the insertion of either large or multiple therapeutic genes, open-
ing innumerous opportunities for anti-glioma gene therapy.
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Table 1 | Completed and ongoing clinical trials using oncolytic virotherapy as a therapeutic strategy against malignant glioma.

Virus type Genetic alteration Target Study type Delivery method Status of

clinical trial

Reference

Ad: ONYX-015 E1B-55k deletion Deficient p53
pathway

Phase I Tumor bed
post-resection

Completed Chiocca et al.,
2004

Ad: Ad5-Delta24RGD Partial E1A deletion
and received RGD
motif

Disrupted Rb pathway Phase I Intratumoral Recruiting
patients

NCT00805376

Ad: Ad5-Delta24RGD Partial E1A deletion
and received RGD
motif

Disrupted Rb pathway Phase I/II Intratumoral/CED Recruiting
patients

NCT01582516

Ad: AdV-tk Thymidine kinase (tk)
incorporation

Intracellular activation
of prodrugs

Phase IB Tumor bed
post-resection

Completed Chiocca et al.,
2011

Ad: AdV-tk/GCV Thymidine kinase (tk)
incorporation

Intracellular activation
of prodrugs

Phase I Tumor bed
post-resection

Completed Sandmair et al.,
2000

RV: RV-tk/GCV Thymidine kinase (tk)
incorporation

Intracellular activation
of prodrugs

Phase I Tumor bed
post-resection

Completed Sandmair et al.,
2000

HSV-1: G207 γ134.5 gene deletion
and lacZ insertion in
UL39

Protein phosphatase
1a and disrupted IFN
pathway

Phase I Intratumoral Completed Markert et al.,
2000

HSV-1: G207 γ134.5 gene deletion
and lacZ insertion in
UL39

Protein phosphatase
1a and disrupted IFN
pathway

Phase IB Intratumoral and
tumor bed
post-resection

Completed Markert et al.,
2009

RV: Reovirus Wild type None Activated Ras
pathway

Phase I Intratumoral Completed NCT00528684
(Forsyth et al.,
2008)

Abbreviations: Ad, adenovirus; E1B, adenovirus E1B protein; p53, protein 53; Ad5, human adenovirus serotype 5; RGD, arginyl-glycyl-aspartic acid motif; E1A,

adenovirus early region 1A; Rb, retinoblastoma protein; CED, convection enhanced delivery; AdV, adenovirus; tk, thymidine kinase; GCV, ganciclovir; RV, reovirus;

IFN, interferon; Ras, Ras pathway.

As such, G207, the first oHSV-1 used in anti-glioma therapy,
presents a deletion of the γ134.5 gene in its both alleles, together
with a lacZ insertion into the UL39 locus, blocking its function
(Mineta et al., 1995). These two mutations are responsible for
restraining G207 replication to neoplastic cells and rendering it
vulnerable to standard anti-viral therapies. After extensive in vivo
safety evaluations, a phase I clinical trial evaluated the therapeutic
efficacy of G207 in recurrent malignant glioma patients (Markert
et al., 2000). Participants were treated with intratumoral injec-
tions of ∼109 pfu. As a result, no adverse effects were noticed
and tumor regression was detected by serial MRI evaluations.
Two patients survived more than 5 years. These exciting out-
comes encouraged a phase IB trial (Markert et al., 2009), in which
recurrent glioma patients received G207 conditionally replicative
viruses either intratumorally or at the resection site. RT-PCR of
biopsied samples indicated in situ viral replication. Although no
HSV-1 related encephalitis was observed, progression free sur-
vival by MRI was only 3 months, with a median survival of 6.6
months.

Preclinical studies using immunocompetent animals showed
that G207 was capable of inducing a systemic anti-tumor immu-
nity in experimental brain tumor models (Todo et al., 1999). This

result has proven that a successful oHSV-1 therapy depends not
only on the extent of viral replication, but also on induction
of host-related anti-tumor response. Based on this, generation
of specific anti-tumor immunity by the insertion of costimula-
tory molecules in the viral genome showed itself as an attrac-
tive approach. The in vivo efficacy of a genetically engineered
replication-defective HSV-1 (dvB7Ig) expressing a potent costim-
ulatory molecule, B7-1, has been tested in conjunction with G207
(Galea-Lauri et al., 1996; Todo et al., 2001a). This dvB7Ig/G207
system was capable of inhibiting tumor growth in subcutaneous
models and prolonging mouse survival in intracranial models,
conferring tumor-specific protective immunity on cured mice. In
addition, further studies showed that such anti-tumor effect was
dependent on CD8+ T cells, but not CD4+ T cells.

Oncolytic HSV-1 viruses armed with immunostimulatory
agents are considered the “next generation” of HSV-related anti-
neoplastic therapies. The viruses that have such constructs incor-
porated in their genomes present many attractive advantages over
the so-called “non-armed” ones, such as in vivo amplified gene
delivery with high levels of transgene expression and contin-
uous generation of high-titer vectors. For instance, M002 and
NV1042 engineered HSV-1 viruses expressing IL-12 displayed
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improved in vivo therapeutic effectiveness in glioma preclinical
models (Parker et al., 2000; Hellums et al., 2005). Likewise, the
use of a γ134.5 replication-deficient HSV-1 holding an IL-4 gene
insertion, exhibited noteworthy tumor regression in intracranial
models with prolonged mouse survival. Cured mice that were
treated with NV1042 presented a high rate of rejection of rechal-
lenged tumors (Andreansky et al., 1998). Moreover, it was recently
reported that a combination of three armed viruses displayed
stronger anti-tumor activity than any armed virus alone or the
combination of two viruses (Todo, 2012). This finding opens a
new research avenue, where different oncolytic viruses can be
combined in order to achieve potent anti-tumor efficacy.

REOVIRUS
Reovirus is a double-stranded RNA virus that can easily transduce
most mammalian cells (Kim et al., 2007). Literature reports have
indicated that reovirus permissiveness correlates with the acti-
vation status of Ras signaling pathways in the host cell (Strong
et al., 1998). In humans, reovirus commonly causes only a mild
disease due to limited viral gene translation and ineffective infec-
tion of normal cells. This mainly happens because non-neoplastic
cells present an inactivated Ras pathway, which leads to activa-
tion of protein kinase R (PKR) and phosphorylation of eukaryotic
initiation factor 2, limiting reovirus infectivity (Strong et al.,
1998). However, in tumor cells the oncogenic Ras activated path-
way prevents PKR activation, allowing an effective viral gene
translation, which results in satisfactory reovirus infection and
cytolysis (Quinlan et al., 2008). Thus, reovirus’s natural prefer-
ence for cells with unrestricted Ras pathway activity together with
its non-pathogenic profile in humans has made it an interesting
candidate for brain tumor oncolytic virotherapy. Experimental
glioma models have proven in vitro and in vivo reovirus ther-
apeutic effectiveness as well as its natural limitation to tumor
cells (Coffey et al., 1998; Kottke et al., 2010). Although serious
adverse reactions have been reported upon reovirus inoculation
in severe combined immunodeficiency mice (SCID), such toxi-
city has not been observed in other models (Coffey et al., 1998;
Yang et al., 2003). After extensive assurance of reovirus safety in
primates and non-SCID models, such virus was finally approved
for clinical trials (Yang et al., 2004). Two phase I clinical stud-
ies wherein escalating doses of therapeutic reovirus (Reolysin®)
were intratumorally injected in recurrent glioma patients have
been concluded (NCT00528684) (Forsyth et al., 2008). In the
first study, 12 patients received ∼109 pfu of reoviruses in three
intratumoral injection sites. As a result, no virus-related adverse
events were reported and no dose-limiting toxicity was observed.
One out of twelve patients remained disease-free for more than
6 years. In the second study, 18 patients were intratumorally
treated with ∼109 pfu of reoviruses by convection enhanced
delivery (CED). One partial therapeutic response was observed
and three patients remained stable. No dose-limiting toxicity was
reported. These studies demonstrated that replication compe-
tent reoviruses could be effectively used as a therapeutic strategy
against malignant glioma. Such outcomes open doors for other
clinical investigations, in which the efficacy of reovirus com-
bined with conventional therapies, could be further evaluated in
humans.

TARGETING CANCER STEM CELLS
The cancer stem cell (CSCs) hypothesis proposes that neoplas-
tic clones are exclusively maintained by a small fraction of
tumor-initiating cells that, similarly to normal stem cells, possess
stem-like properties such as relative quiescence, multipotency,
and self-renewal (Stupp et al., 2005). When isolated and serially
implanted in immunodeficient mice, these cells have the ability to
recapitulate the original tumor, reproducing all of its complexities
and primary features (Hamburger and Salmon, 1977). Evidence
indicates that these progenitor-like cells are responsible for tumor
infiltration, progression, and metastasis (Hermann et al., 2007;
Stupp and Hegi, 2007). In addition to this, expression of drug
transporters and enhanced DNA repair mechanisms render these
cells resistant to conventional cytotoxic treatments, which usu-
ally target chemo- and radiosensitive rapid dividing cells of the
tumor bulk and neglect the resistant CSCs (Dean et al., 2005).
Accordingly, it is believed that surviving tumor-initiating cells are
responsible for glioma recurrence post initial therapy (Bao et al.,
2006). Therefore, targeting specific CSC properties with oncolytic
virotherapy is an attractive approach to avoid glioma relapse. Two
specific modifications in the viral backbone enhance targeting
of CSCs: (1) insertion of CSC promoters in the viral genome,
enabling a gene therapy that targets both CSCs and non-CSCs,
and (2) modification of the viral capsid in order to improve viral
transduction and enrich CSC targeting.

Promoters that are present in both malignant cells and
CSCs can be introduced into the genome of conditionally
cytotoxic viruses, enhancing CSC virotherapy. Following this
concept, Zhang et al. engineered a telomerase-specific condi-
tionally replicative adenovirus vector that incorporated a TNF-
related apoptosis inducing ligand (Ad/TRAIL-E1A). Mice bearing
radioresistant stem cell-enriched esophageal cancer xenografts
treated with such vector presented important suppression of
tumor growth and longer survival (Zhang et al., 2008). In addi-
tion to adenoviruses, HSV-1 viruses have also been employed
in oncolytic virotherapy that target CSCs. Wakimoto et al. used
an oHSV with ICP6, γ134.5, and α47 deletions (G47Delta)
for the treatment of intracranially implanted stem cell-enriched
glioma xenografts. Results showed that G47Delta was able to
selectively kill and suppress CSC growth as well as signifi-
cantly prolong survival of nude mice (Wakimoto et al., 2009).
G47Delta has also been tested in combination with chemother-
apeutic agents like etoposide (Alonso et al., 2012) and temo-
zolomide (Cheema et al., 2011). As a result, both preclinical
studies displayed increased apoptosis of glioma cells and extended
survival.

The rate of viral transduction in tumor-initiating cells can
be enhanced through specific modifications on the viral cap-
sid. In order to enrich CSC targeting, Jiang H et al. engineered
an oncolytic adenovirus (Delta-24-RGD) with selective repli-
cation in tumor cells with a defective p16INK4/Rb pathway.
Such construct showed exciting therapeutic outcomes in glioma
intracranial models. Upon in vivo challenging, Delta-24-RGD
viruses displayed efficient replication and induced death of both
glioma stem cells and non-CSCs (Jiang et al., 2007). Based on such
results, two phase I clinical trials using intratumoral injections of
Delta-24-RGD in patients with recurrent malignant glioma were
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recently initiated (NCT00805376) (NCT01582516) (Alonso et al.,
2012).

Although preclinical studies indicate that oncolytic virother-
apy is able to successfully target those CSCs that escaped con-
ventional treatments, some big challenges are still on the way for
the development of an ideal vector. An important hurdle yet to
be overcome is the shortage of promoters that are known to be
exclusively present in CSCs. Due to the marked similarity between
CSCs and normal stem cells, a non-specific promoter that is
responsible for inducing apoptosis in CSCs will also cause death
of their normal counterparts. For these same reasons, optimiz-
ing CSC-specific viral transduction is still a challenge. The lack of
surface receptors that are specific for CSCs hinders current efforts
for an efficient modification of viral fiber knobs that would solely
bind to CSCs. Therefore, the discovery and characterization of
markers that are specific for CSCs and that could enhance their
targeted therapy are still in urgent need.

CHALLENGES IN DEVELOPING EFFICIENT ANTI-GLIOMA
TARGETED VIROTHERAPIES
Since its introduction, remarkable progress was achieved in the
oncolytic virotherapy research field. The development of con-
ditionally replicative oncolytic viruses that are able to function
both as tumor-specific apoptosis inducers and gene delivery
vehicles has revolutionized glioblastoma therapeutics. Many of
these viruses showed significant efficacy in preclinical models
and established good safety profiles in phase I clinical trials.
Despite such promising results, this therapeutic approach still
faces serious limitations. First, the absence of a vector system with
minimally invasive administration and high effectiveness is still a
big challenge for the wide incorporation of this approach into the
clinics. Second, physical barriers within the tumor microenviron-
ment that preclude efficient viral replication and spread through
the tumor interstitium are still responsible for decreased rates of
neoplastic cell infection and inefficient tumor eradication. Third,
a strong host anti-vector immune response post-virus adminis-
tration, which inhibits efficient virus transduction and replication
in tumor cells, together with the lack of a long lasting anti-tumor
immune response are also important barriers to overcome. Last,
inaccurate preclinical animal models that are usually not rep-
resentative of the heterogeneous nature of the human glioma
are known to deliver exciting therapeutic results that are mostly
non-reproducible in clinical trials. In this section, we will dis-
cuss various limitations that hamper an effective translation of
anti-glioma targeted virotherapies from a preclinical setting to the
clinics. We will also survey some possible alternatives to overcome
such obstacles.

DELIVERY LIMITATIONS
Malignant gliomas pose a unique therapeutic challenge. As com-
plete surgical removal of the tumor is not feasible due to the infil-
trative nature of glioma and dissemination away from the primary
tumor site, chemotherapy and radiotherapy are usually combined
in an attempt to kill remaining neoplastic cells. However, con-
ventional cancer treatments do not succeed in killing chemo- and
radio-resistant CSCs, which often lead to tumor recurrence. In
addition, off-target effects of conventional therapies frequently

result in high cytotoxicity to normal tissues and adverse side
effects. The therapeutic efficacy of systemic chemotherapeutic
agents is also significantly limited due to the presence of a
highly selective BBB (Neuwelt, 1980). In this scenario, oncolytic
virotherapy emerges as an important tool for targeted anti-glioma
therapy. The systemic delivery of oncolytic viruses into tumors
has been long studied. However, it has proven to be ineffi-
cient because of liver sequestration of intravenously administered
viruses and poor central nervous system penetration (Streck et al.,
2006). As a consequence, most oncolytic viruses that reached
clinical trials are locally delivered during craniotomy, either intra-
tumorally or on the tumor margins post-resection. However, the
poor penetration of locally injected oncolytic vectors in the brain
tissue poses an important limitation for this approach (Lang
et al., 2003). To overcome this issue, researchers have developed
a new delivery method named convention enhanced delivery
(CED) (Bobo et al., 1994). Such approach relies on intracra-
nial delivery of viral vectors through continuous infusion via
catheters. Its advantage over local injections is that it enables
effective distribution of bigger volumes over large tumor areas
(Mardor et al., 2005). CED has recently reached phase I/II clin-
ical trials. Its main goal is to enhance transduction efficiency of
viral vectors, such as reoviruses (NCT00528684) (Forsyth et al.,
2008) and replication-incompetent semliki forest viruses (Ren
et al., 2003), in recurrent glioma patients. So far they have proven
moderate anti-glioma efficacy, but further safety studies are still
necessary.

Although intracranial virus delivery through CED demon-
strated a relative therapeutic effect, its full clinical success is
still threatened by a strong host-mediated anti-viral immune
response. To tackle this issue, stem cell-based delivery of oncolytic
virotherapy has emerged as an alternative to shield therapeutic
viruses from the innate immune system and, at the same time,
to efficiently increase viral distribution to distant tumor areas. In
order to fulfill such goals, carrier stem cells should (1) maintain
their inherent tumor-tropic properties post-viral transduction,
(2) be permissive to viral infection as well as support viral
replication, and (3) effectively hide viruses from host immuno-
surveillance (Raykov et al., 2004). Recent in vivo studies demon-
strated that well-characterized lacZ and CD-positive neural stem
cells (NSCs), when systemically injected in nude mice bearing
intracranial or subcutaneous flank tumors, localized to multiple
tumor sites with almost no accumulation in non-neoplastic tis-
sues (Brown et al., 2003). Moreover, delivery of CRAd by both
MSCs (mesenchymal stem cells) (Sonabend et al., 2008) and
NSCs (Tyler et al., 2009) to distant gliomas was significantly more
efficient than virus injection alone, with enhanced intratumoral
distribution. Similarly, our lab successfully demonstrated the abil-
ity of CRAd-loaded NSCs to migrate to distant tumor sites and
prolong mice survival in orthotopic models of human-derived
glioblastoma (Ahmed et al., 2011a,b). Furthermore, Yong RL et al.
have shown that MSCs loaded with Ad.�24-RGD administered
by carotid artery injection in nude mice bearing human-derived
glioma xenografts were able to cross the BBB and effectively
reach the targeted tumor site (Yong et al., 2009). The researchers
observed that loaded MSCs could also deliver their viral pay-
load to the neoplastic area, leading to tumor eradication and
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improved animal survival. The above results highly suggest the
potent tropism of stem cell carriers toward glioma. In addition to
NSCs and MSCs, other cells have been used in pre-clinical stud-
ies as potential viral carriers. Some examples include endothelial
cells (Iankov et al., 2007), cytokine-induced killer (CIK) cells
(Thorne et al., 2006), dendritic cells (Ilett et al., 2009), mono-
cytes (Iankov et al., 2007) and T-cells (Qiao et al., 2008; Ilett et al.,
2009). Indeed, Qiao et al. have recently demonstrated that naïve
T cells were able to efficiently deliver oncolytic viruses to lym-
phoid organs sheltering metastatic cells (Qiao et al., 2008). They
further showed that the reduction of metastatic burden by viral
oncolysis led to a posterior anti-tumor immune response with
tumor eradication. Although mostly effective in the pre-clinical
setting, each delivery vehicle has its own advantages and limita-
tions. Stem cell carriers, however, are the only ones that are able
to combine immunosuppressive and tumor-tropic properties,
together with permissiveness for viral replication. Taken together,
these characteristics make stem cell carriers excellent anti-tumor
delivery vehicles, opening up new paths for targeted anti-cancer
therapy.

LIMITED TISSUE PENETRATION AND INTRATUMORAL DISTRIBUTION
Upon reaching the target site, oncolytic viruses need to accom-
plish several steps in order to achieve clinically relevant ther-
apeutic efficacy. They must replicate, spread efficiently across
the tumor interstitium and eradicate as many neoplastic cells as
possible without disturbing the adjacent non-neoplastic tissue.
However, the inability of the virus to spread beyond physical
barriers inside the complex tumor microenvironment is responsi-
ble for prematurely compromising viral spread within the tumor
bulk, limiting the success of the treatment. Surrounding con-
nective tissue, extracellular matrix (ECM) and necrotic pockets
of destroyed tumor tissue enclosed by ECM are considered the
main factors accountable for an uneven intratumoral penetra-
tion and distribution of oncolytic viruses (Maillard et al., 1998).
Based on this concept, Kuriyama et al. used proteolytic enzymes
as a pretreatment of human-derived glioma xenografts implanted
in mice. They were able to demonstrate that digestion of ECM
significantly increased intratumor virus mediated-gene transduc-
tion (Kuriyama et al., 2000). Similarly, pretreatment of different
tumor models with collagenases (McKee et al., 2006), human
hyaluronidase enzyme (Ganesh et al., 2008) and matrix met-
alloproteinases (MMPs-1 and 8) (Brinckerhoff and Matrisian,
2002; Mok et al., 2007) was able to efficiently disrupt tumor-
related ECM and increase anti-tumor efficacy of oncolytic viruses.
Furthermore, genetically engineered viruses have also proven to
be a nice tool for tumor ECM modulation. Kim and authors were
able to create an oncolytic adenovirus expressing relaxin, a pep-
tide responsible for inducing expression of MMPs. Their results
showed that, compared to the unmodified virus control, trans-
duction of subcutaneous tumors with Ad-DeltaE1B-RLX revealed
increased intratumoral virus distribution and potent tumor
regression (Kim et al., 2006; Ganesh et al., 2007). Another possible
option to increase poor virus transduction imposed by physical
barriers is the use of virus-loaded carrier cells. Such carriers are
capable of migrating toward the tumor site, extravasating from
blood vessels, and moving across the tumor microenvironment

(Ahmed et al., 2011a). Thus, they can effectively deliver their viral
payload to different intratumoral areas and successfully induce
tumor regression. Taken together, the above results highlight the
importance of establishing even virus distribution throughout
the entire tumor tissue in order to obtain maximal therapeutic
benefits.

STRONG HOST-MEDIATED ANTIVIRUS IMMUNITY AND LACK OF
LONG-LASTING ANTI-TUMOR IMMUNE RESPONSE
The anti-tumor therapeutic effect of oncolytic viruses comprises
a subtle equilibrium between anti-viral and anti-tumor immune
responses. Innate and adaptive immune systems are the two com-
ponents responsible for defending the host from viral infections.
While mediators of the innate immune system work as the first
line of defense against pathogens, the adaptive immune system
is the major player in long lasting immunity. In the context
of oncolytic virotherapy, upon vector administration, mononu-
clear cells are rapidly recruited to the injection site (Fulci et al.,
2007). In order to limit viral propagation, these first responders
mobilize additional reinforcements through signaling for matu-
ration of antigen presenting cells and activation of the adaptive
immune response (Wakimoto et al., 2003). Consequently, the
innate immune system is one of the major obstacles for achieving
effective viral delivery and replication at the tumor site, impeding
successful tumor destruction (Balachandran and Barber, 2004;
Abordo-Adesida et al., 2005; Friedman et al., 2006). Otsuki
et al. and Fulci et al. demonstrated that elimination of antivi-
ral cytokines and depletion of mononuclear cells significantly
increased intratumoral viral titers and led to important tumor
regression (Fulci et al., 2007; Otsuki et al., 2008). Moreover,
pretreatment of intracranial tumors with antiangiogenic agents
prior to administration of oncolytic virotherapy has proven to
reduce intratumoral infiltration of antiviral immune cells and
increase viral propagation at the tumor site (Kurozumi et al.,
2007). The combination of oncolytic virotherapy strategies and
single or multiple immune suppressants is currently under inves-
tigation in preclinical studies. The main goal here is to inhibit
both innate and adaptive immune responses, opening a free
way for intratumoral viral transduction, propagation and spread
(Fulci et al., 2006). Another option that has been extensively
studied is the use of immunosuppressive stem-cell carriers to
deliver oncolytic vectors to distant tumor sites, bypassing the anti-
virus host immune response (Power et al., 2007; Ahmed et al.,
2011a,b).

Although antiviral immunity has proven to be prejudicial
for a successful oncolytic virotherapy, stimulation of the adap-
tive immune system holds a positive impact on such therapeutic
approach due to the possibility of generation of a long-lasting
anti-tumor immune response (Todo et al., 2001b). This vacci-
nation effect is believed to happen following the activation of
cytotoxic T lymphocytes (CTLs). CTLs recognize viral antigens
presented on the surface of neoplastic cells and are redirected
to tumor-specific antigens, leading to increased efficacy of the
oncolytic virotherapy and anti-tumor immunity (Todo et al.,
1999; Thomas and Fraser, 2003; Curtin et al., 2009). One impor-
tant concept is that not all malignant cells within a tumor
need to be targeted by oncolytic viruses in order to initiate an
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efficient anti-tumor immune response. Upon extermination of
only few neoplastic cells, the process of tumor-specific antigen
presentation starts. This activity may trigger potent anti-tumor
immunity, which consequently increases the probability of effec-
tive tumor eradication (Qiao et al., 2008). Anti-tumor immune
response can also be enhanced by the use of genetically engi-
neered oncolytic viruses loaded with genes that encode for many
cytokines. Researchers have recently shown that mice treated with
vector constructs that were able to encode for interleukin-2 (IL-2)
(Mizuno et al., 2000), IL-4 (Post et al., 2007), or IL-12 (Stanford
et al., 2007) cytokines presented a rapid and sustained tumor
regression.

However, therapeutic anti-tumor vaccination post oncolytic
virotherapy administration is still a far reality. First, overcom-
ing the strong anti-virus innate immune response for an efficient
virus transduction is still a challenge. Therefore, even though
oncolytic viruses manage to reach the tumor site and transduce
cells, it is not clear that tumor-specific antigens will be presented
to CTLs, which in turn will activate the anti-tumor adaptive
immune system. Second, due to high intratumoral heterogeneity,
CTLs that target just some few tumor antigens are less likely to be
effective. And third, malignant glioma rapid progression may out-
pace the time necessary for adequate adaptive immune response
activation. Thus, by the time that a fair activation is noticeable,
the tumor is already uncontrollable, with marked clinical deteri-
oration (Rosenberg et al., 2004). Only a better understanding of
the mechanisms that dictate host immunity to oncolytic virother-
apy will allow the generation of better alternatives to achieve a fine
tune between host-antiviral and anti-tumoral immune responses,
leading to better therapeutic outcomes. Additionally, since the
CNS immune system presents unique properties, such as immune
tolerance, which differentiates it from all the other organs, further
investigations on tumor/viruses interactions in this field are still
needed.

INACCURACY OF CURRENT PRECLINICAL ANIMAL MODELS
The currently available inaccurate preclinical animal models com-
pose a significant obstacle to translating targeted virotherapy into
effective treatments. Since animals typically do not spontaneously
develop brain tumors, pre-clinical studies mostly depend on arti-
ficial systems to evaluate the efficacy of therapeutic approaches
that will be further translated to humans. As a consequence, such
models are usually not representative of the heterogeneous nature
of human gliomas and do not faithfully recapitulate the complex-
ity of tumor-host immunological interactions. An ideal glioma
model should mimic the genetic and histological alterations seen
in humans, present predictable growth and reproducible progres-
sion patterns, in addition to being non-immunogenic (Candolfi
et al., 2007). As such model do not yet exist, the most appropriate
glioma model should be selected depending on the aims of the
proposed investigation.

Mouse models are the most widely used ones due to animal
availability, easy breeding and well-known genetic profile. Two
major strategies are currently available for generating gliomas in
experimental models: direct implantation of glioma xenografts
or spontaneous tumor formation in genetically engineered mice.
Xenograft models are generated by implantation of cultured

glioma cells of human or rodent origin in immunodeficient
mice. The resulting tumors are known to be easily reproducible,
with rapid formation and high penetrance (Shapiro et al., 1979).
Nevertheless, such tumors have major disadvantages. First, they
lack stepwise genetic changes that are characteristics of human
gliomas. Second, there is an absence of host/tumor immunolog-
ical interactions, which account for some false positives seen in
pre-clinical trials. Last, many of these tumors lack accurate histo-
logical vascularization and hardly recapitulate the characteristics
of the original tumor (Finkelstein et al., 1994). Although these
xenograft models are widely used in therapeutic testing due to
their practicality and reproducibility, they are not yet able to faith-
fully mimic spontaneous human gliomas. As a consequence, the
reproduction of their exciting therapeutic outcomes in clinical
trials is still unclear.

As an attempt to overcome the above issues, researchers
developed a very attractive option: genetically engineered mouse
models. In these animals, spontaneous tumor formation takes
place due to specific mutations in genes that are responsible
for glioma initiation and maintenance in humans. This model
is especially interesting because it is capable of recapitulating
the biological mechanisms present in human gliomas, exhibit-
ing tumor-host interactions, reproducing tumor infiltration and
stepwise genetic alterations, and identifying causative muta-
tions and possible therapeutic targets (Pelengaris et al., 1999).
Although the time-scale is very different from that of human
patients, these slow-growing tumors provide a nice perception
of how the evolving tumor may affect the host, in addition to
delivering important insights onto the effectiveness of therapeutic
agents on the preformed tumor (Fomchenko and Holland, 2006).
However, when used in brain tumor research, genetically engi-
neered mouse models present important drawbacks. First, solely
depending on spontaneous tumor models for glioma investiga-
tion is problematic due to extended latency of tumor formation,
low penetrance, difficult reproducibility and the requirement of
sophisticated in vivo imaging systems. Second, the genetic set-
tings of these spontaneous malignancies are relatively simple
when compared to multiple and complex genetic abnormalities
harbored by human-derived malignant gliomas. Third, particu-
larly in these models, genetic alterations are present in the whole
animal or tissue, while the specific mutations that are account-
able for initiating human gliomas are more likely to arise from
single cells or small transformed populations (Hu and Holland,
2005). Fourth, mouse models that bear spontaneous tumor for-
mation are not able to support conditionally replicative oncolytic
adenovirus replication, which poses an important limitation to
the study of CRAd biodistribution and host anti-viral immune
response. This issue could be tackled with the use of cotton rats
for studies that focus on viral fate and immune interactions.
However, most of the rat glioma models are derived from out-
bred animals, which result in a difficult interpretation of any
given immunotherapeutic strategy. Genetically engineered mod-
els are ideal for investigating host/tumor immunity, proposing
mechanisms for causative mutations and for identifying specific
therapeutic targets, but crucial genetic and molecular differ-
ences from human gliomas still remain. Therefore, even if a
specific therapeutic approach shows relative success in pre-clinical
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trials, there is no warranty that it will work as well in the clinical
setting.

CONCLUSION
Oncolytic virotherapy as a therapeutic approach for malignant
glioma is still in its infancy. Although pre-clinical and phase I clin-
ical trials have demonstrated its safety, more studies still need to
be performed in order to fully characterize viral fate and to secure
minimal neurotoxicity. Moreover, many trials have been made
in small, selected and heterogeneous populations, which may
mask the chances of a reliable prediction of a specific therapeutic
intervention (Stanley, 2007). The absence of a vector system that
allows for minimally invasive administration with high effective-
ness, low intratumoral distribution post-vector administration, a
strong anti-virus host immune response, the lack of a long last-
ing anti-tumor immunity and the inaccuracy of the currently
available preclinical animal models are the major hurdles for
translating this therapeutic approach into the clinical setting.
The immune system plays a major role in dictating the efficacy
of oncolytic viruses. Presently, there are two opposing lines of
thoughts: one that defends the recruitment of the host-related
immune response, and another that wishes its suppression. Both
avenues have their benefits. On the one hand, genetically engi-
neered oncolytic viruses armed with immunostimulatory agents
have demonstrated important therapeutic effects. On the other
hand, single or multiple therapeutic agents that are able to
suppress the innate immune system have been shown to sig-
nificantly increase intratumoral virus distribution and promote

tumor regression. To prove which of these lines is more fruitful,
new preclinical and clinical studies are still necessary. However,
we believe that defining anti-virus and anti-tumor host immune
responses is crucial for achieving maximal therapeutic efficacy.

Some important topics still need to be addressed before new
or modified oncolytic viruses reach the clinical practice. First, all
viruses tested in clinical trials should be closely monitored for
replication or dissemination outside tumor areas. The patient’s
immune system should be carefully observed to allow a better
understanding of how the host immunity reacts on the pres-
ence of these vectors. Second, newly generated oncolytic viruses
must be completely safe and viral delivery needs to be optimized
so physical and physiological barriers can be surpassed. Third,
a combination of oncolytic virotherapy and conventional anti-
glioma therapies should be employed in order to improve ther-
apeutic efficacy. Last, any oncolytic virotherapy that aims to reach
the clinical practice should be able to target CSCs. Since CSCs
are believed to be a permanent reservoir of malignant glioma,
eradicating these cells may prevent tumor recurrence. Although
the translation of targeted virotherapies from preclinical models
to the clinical practice is still full of challenges and limitations,
pursuing this path is justified due to the rapid progress already
achieved and the undeniable potential efficacy of this approach.
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