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Cancers of the head and neck are a malignancy causing a considerable health burden. In
head and neck cancer patients, tumor hypoxia has been shown to be an important pre-
dictor of response to therapy and outcome. Several imaging modalities can be used to
determine the amount and localization of tumor hypoxia. Especially PET has been used in
a number of studies analyzing this phenomenon. However, only few studies have reported
the characteristics and development during (chemoradio-) therapy.Yet, the characterization
of tumor hypoxia in the course of treatment is of great clinical importance. Successful delin-
eation of hypoxic subvolumes could make an inclusion into radiation treatment planning
feasible, where dose painting is hypothesized to improve the tumor control probability. So
far, hypoxic subvolumes have been shown to undergo changes during therapy; in most
cases, a reduction in tumor hypoxia can be seen, but there are also differing observations.
In addition, the hypoxic subvolumes have mostly been described as geographically rather
stable. However, studies specifically addressing these issues are needed to provide more
data regarding these initial findings and the hypotheses connected with them.
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INTRODUCTION: RELEVANCE OF TUMOR HYPOXIA
Cancers of the head and neck are a frequent malignancy, causing
a high burden of disease with a median 5 year survival of around
50% (1). Tumor hypoxia has been shown to be a negative prog-
nostic factor for cancers of the head and neck, being associated
with reduced therapeutic effect of radiotherapy and decreased
overall survival (2–7). This is explained by decreased sensitivity
toward radiation and reduced accessibility for chemotherapy (1,
8). Therefore, tumor hypoxia is an important phenomenon in
radiation oncology.

IMAGING MODALITIES
Novel imaging techniques have the potential to improve the ther-
apeutic setting (9). 18-F-MISO-PET is probably the most com-
monly used and best validated tracer for hypoxia imaging so far
(8). Gagel et al. (10) and Zimny et al. (11) found good correlations
with pO2-polarography measurements in cancers of the head and
neck. However, Mortensen et al. (12) were not able to confirm
these results. It can be hypothesized that the different methods
used for defining hypoxia all have their limitations (13).

Other PET tracers have also been proposed or used for hypoxia
imaging in cancers of the head and neck, such as 18-F-FAZA (14,
15), 62-Cu-ATSM (16), 18-F-EF5 (17), or 18-F-HX4 (18). How-
ever, the superiority of certain tracers still remains to be elucidated.
Another option is the use of dynamic PET imaging data, as pro-
posed by several groups (19, 20). Interpreting the dynamic data
can be challenging, given the fact that the models currently in use
differ in the results obtained and conclusions drawn, as shown for
a model comparison in a patient set (21). Further imaging modal-
ities are amongst several others dynamic contrast enhanced MRI
(22) or perfusion CT (23).

Most studies so far correlated one set of pre-treatment imaging
data with the clinical outcome or another parameter of interest.
This review however is dedicated to analyze the characteristics and
development of hypoxic subvolumes during therapy, thus exam-
ining the results of serial imaging with special attention to possible
implications for radiation treatment planning.

CHARACTERISTICS OF HYPOXIC SUBVOLUMES AND
DEVELOPMENT DURING THERAPY
In the classical concept of tumor hypoxia, acute and chronic
hypoxia can be differentiated. The former results from short-term
perfusion changes whereas the latter is a consequence of a limited
diffusion capacity of oxygen from the non-physiological tumor
vessels (8). However, evidence regarding the changes of the hypoxic
subvolumes during (chemoradio-) therapy remains scarce. Given
the prognostic importance and the potential therapeutic conse-
quences (e.g., alteration of radiotherapy, additional drugs), the
analysis of tumor hypoxia has to be regarded as an important field
of research.

Most studies report that during or after therapy residual or
even increasing hypoxia is generally less frequent than decreasing
or resolving hypoxia: Rischin et al. (5) found residual hypoxia in
six out of 28 patients (pre-treatment vs. week 4 or 5), Lee et al. (24)
found residual hypoxia in two out of 18 patients (pre-treatment
vs. week 4) and Zips et al. (25) found residual hypoxia in 10 out
of 24 patients (pre-treatment vs. week 5).

In contrast, higher proportions of residual hypoxia were found
by Dirix et al. (26): four out of eight patients showed residual
hypoxia (pre-treatment vs. week 4). In another study, residual
hypoxia was detected in six out of 13 patients (pre-treatment vs.
week 2–4) with hypoxic subvolumes at the same location, but
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smaller in size (27). Sometimes, however, hypoxic subvolumes can
be so small that detailed reports regarding the behavior during
therapy cannot be given; this was the case for a study including four
patients with head and neck cancers, with hypoxic subvolumes
between 0.0 and 2.7% (28).

In general, a remarkable reduction in tumor hypoxia in
the course of treatment is a finding common to most studies
performed so far.

As stated above, hypoxia remaining at the same location (but
frequently decreasing in size) has been described before. Zips et
al. (25) assessed the development of the hypoxic subvolumes in
the course of chemoradiotherapy in four subsequent 18-F-MISO-
PET-scans and also showed three different types of behavior: stable
hypoxia, decreasing hypoxia, and increasing hypoxia (see Figure 1
for a schematic display of the different findings, also including
other studies’ results).

A study dedicated at assessing the time-course of hypoxia dur-
ing therapy has recently confirmed these types of behavior, at the
same time adding new aspects: five out of 16 patients showed
persistent hypoxia in serial 18-F-MISO-PET imaging and were
subsequently analyzed in detail (29). In addition to the general
types of behavior stated above, a stationary and a dynamic com-
ponent were described. They refer to the degree of overlap of the
hypoxic subvolumes in the course of treatment (pre-treatment
vs. week 2). A stationary component was present in 4 of 5 and a
dynamic component in 3 of 5 patients. These two labels are not
mutually exclusive, since increasing hypoxia can also migrate into

volumes which were not hypoxic before. Overall, a geographically
rather stable conformation was found in the majority of patients
(29).

The dynamic component has also been studied before: accord-
ing to Lin et al. (30) and Nehmeh et al. (31), only 7 out of 13
patients showed a high (R≥ 0.5) correlation between hypoxic sub-
volumes in two 18-F-MISO-PET-scans made 3 days apart, there-
fore excluding the effect of therapy. This has been interpreted as an
indicator of on-going within-voxel changes of oxygenation status.
Contrasting results have been obtained by Okamoto et al. (32),
who found a high reproducibility of two 18-F-MISO-PET-scans
made 2 days apart. However, simulation data indicate that acute
hypoxia does not affect the reproducibility of 18-F-MISO-uptake
in hypoxic subvolumes (33). Toma-Dasu et al. (34) proposed a
mathematical algorithm based on a single 18-F-MISO-PET-scan
prior to treatment to identify presumably more radioresistant
subvolumes. This is clearly a field which needs further research.

Polarographic data also showed that oxygenation sta-
tus/hypoxia can change in several ways in the course of treatment:
Stadler et al. (35) found both increases and decreases of the
hypoxic fraction. Similarly, dynamic imaging data also showed
both decreasing and increasing hypoxia (36). Another way to
analyze dynamic image data is by giving curves, representing accu-
mulation, intermediate and wash-out types of hypoxia (37). In this
study, a majority of patients (11 of 14) showed a decrease in tumor-
muscle ratio. A clear qualitative decrease in tumor hypoxia over
4 weeks of treatment was also reported by another study (38).

FIGURE 1 | Exemplary schematic hypoxia imaging scans. (A)
pre-treatment; (B–E) different developments during treatment; (B) resolved
hypoxia; (C) decreased, geographically stable hypoxia; (D) decreased,

geographically unstable hypoxia; (E) increased hypoxia. Legend: black: tumor
volume; red: hypoxic subvolume pre-treatment; green: hypoxic subvolume
during treatment.
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It has also been reported that acute (changing) and chronic
(stable) hypoxia can be modeled in serial 18-F-MISO-PET imag-
ing using Gaussian and Poisson distributions (39). In this study,
acute hypoxia accounted for an average amount of 34%. Again,
this indicates a higher proportion of stable or chronic as opposed
to changing tumor hypoxia.

Recently, it has been proposed that fluctuating hypoxia is
also important because it may maintain cancer stem cells (40).
This hypothesis clearly needs further confirmatory work, but it
highlights the significance of tumor hypoxia for the outcome.

HYPOXIA IMAGING IN OTHER ENTITIES
So far, most studies on hypoxia imaging have been conducted in
patients with cancers of the head and neck. There are few data
regarding other entities, and to our knowledge there are no data
available for serial hypoxia imaging.

In uterine cervix carcinoma, 18-F-FETNIM-PET uptake was
associated with a worse prognosis (41). However, for pancre-
atic cancer – known to be often hypoxic – results of a recent
imaging study with 18-F-MISO-PET were not promising (42).
Another small study with four heterogeneous gastrointestinal can-
cers, one lung cancer, and one uterine cancer showed no hypoxia
for the lung cancer, a slight decrease in hypoxic subvolume for the
uterine cancer (42.3–36.5%) and a mixed response for the gas-
trointestinal cancers: three relatively strong reductions and one
slight increase (28).

In this regard, it will be interesting to see the results of an
on-going exploratory study assessing serial 18-F-MISO-PET and
serial functional MRI for non-small cell lung cancer (43).

CLINICAL IMPLICATIONS
Given the findings discussed so far, it is important to consider
possible implications not only for research, but also for the clin-
ical setting. One way to address hypoxic subvolumes is through
dose painting. This approach aims at delivering higher doses to
potentially more radioresistant parts of a tumor. The possibility
and feasibility of using hypoxia imaging in a clinical setting in head
and neck cancer patients – e.g., as a template for dose painting – has
already been shown (14, 44–47).

To-date, there are no clinical studies comparing the effects on
response and outcome of an altered radiation regimen aiming at
hypoxic subvolumes with a standard course of treatment.

Therefore, possible effects on the outcome can only be hypoth-
esized; plan comparisons predict higher tumor control probabil-
ities when delivering a 10-Gy simultaneous integrated boost to
hypoxic subvolumes identified with a 18-F-MISO-PET-scan prior
to treatment in an IMRT plan (48). An increased tumor control
probability has also been calculated by Chang et al. (49), who
compared a hypoxic subvolume-directed boost (total dose 84 Gy)
with a standard plan (70 Gy) and a uniform dose escalation plan
(84 Gy). In this study, the dose escalation to the hypoxic subvol-
ume was found to be superior to the other plans. However, the
clinical significance of these findings needs further investigation,
ideally in a randomized controlled clinical trial. But there are also
other aspects which have to be considered for radiation treatment
planning, for example the number of fractions and fraction size

(e.g., hypofractionation as one option with increased effective-
ness) (50). Still, the radiobiology of radiation-induced changes in
hypoxic subvolumes is not fully understood, with the effects of
hypoxia on the outcome also depending on the tumor type and
other characteristics (8).

On the other hand, based on the dynamic components of
hypoxia, it has been questioned whether or not dose painting on
potentially geographically unstable structures makes sense (51).
There is no definite answer to this question yet, but a rather sta-
ble geographical location may advocate a possible inclusion into
radiation treatment planning.

If hypoxia imaging is to be used in a clinical setting, the iden-
tification of the best time frame for image acquisition has also to
be considered: on the one hand, most studies showed a substan-
tial decrease of the amount of hypoxia in the course of treatment,
with little or no residual hypoxia at the end of treatment (imply-
ing advantages of early imaging). On the other hand, at the
beginning of treatment, a high proportion of patients seem to
be partly hypoxic (implying advantages of later imaging). Taking
into account these two possibly conflicting aspects, it has been sug-
gested to use image data acquired after the first or second week of
treatment [e.g., (25, 29)]. So far, this seems to be the most reliable
timing for image acquisition.

Another possible intervention is the use of additional drugs
or other modifiers specifically aiming at tumor hypoxia. Several
studies have been performed, and a number of agents are currently
under consideration. Especially nitroimidazoles, now known for
their use as hypoxia-specific tracers, have been studied exten-
sively due to their known hypoxia sensitizing effect (50). Other
modifications include the inspiration of normobaric or hyper-
baric oxygen, attempting to increase oxygen level and supply. In
a recent meta-analysis, the positive effects of these interventions
on locoregional control and overall survival – without thereby
increasing the rate of complication – have been shown (50). Other
targets include tumor vessels, e.g., by using VEGF, HIF-1alpha,
or PI3K/Akt/mTOR inhibitors (52). Evidence for the use of these
agents mostly comes from in vitro and (early) in vivo studies, and
clinical evidence is rare. However, some drugs which have been in
use for a long time for other indications revealed positive effects
on tumor hypoxia and have recently been further studied in this
regard. Prominent examples include HIV protease inhibitors such
as Nelfinavir, currently studied in clinical trials (53).

CONCLUSION
Hypoxic subvolumes in cancers of the head and neck are signif-
icantly associated with response to therapy and outcome. In the
time-course of treatment, the characteristics of these subvolumes
change. Few studies have addressed these changes so far. Major
findings point toward a remarkable reduction in tumor hypoxia
during treatment and a geographically rather stable conformation.
However, more intense research is needed to further characterize
the development of tumor hypoxia during treatment.
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