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Delivery of anti-cancer drugs to tumor tissues, including their interstitial transport and cellu-
lar uptake, is a complex process involving various biochemical, mechanical, and biophysical
factors. Mathematical modeling provides a means through which to understand this com-
plexity better, as well as to examine interactions between contributing components in a
systematic way via computational simulations and quantitative analyses. In this review, we
present the current state of mathematical modeling approaches that address phenomena
related to drug delivery. We describe how various types of models were used to predict
spatio-temporal distributions of drugs within the tumor tissue, to simulate different ways to
overcome barriers to drug transport, or to optimize treatment schedules. Finally, we discuss
how integration of mathematical modeling with experimental or clinical data can provide
better tools to understand the drug delivery process, in particular to examine the specific
tissue- or compound-related factors that limit drug penetration through tumors. Such tools
will be important in designing new chemotherapy targets and optimal treatment strategies,
as well as in developing non-invasive diagnosis to monitor treatment response and detect
tumor recurrence.

Keywords: drug penetration, drug distribution, drug pharmacodynamics, tumor microenvironment, solid tumor,
mathematical modeling

INTRODUCTION
Systemic chemotherapy is one of the most widely used treatments
in all kinds of cancers and at every stage of tumor progression.
However, success of the systemic treatment depends not only on
the efficacy of chemical compounds, but also on whether these
compounds can reach all tumor cells in concentrations sufficient
to exert therapeutic effect. Most clinically used anti-cancer drugs,
however, lead to the emergence of anti-drug resistance,and to over-
come this therapeutic limitation, the chemotherapeutic agents are
often used in combination with other drugs of different phar-
macokinetic properties or in combination with other anti-cancer
treatments.

The process of drug delivery is complex and embraces dif-
ferent temporal and spatial scales, including the organism level
(where drug absorption, distribution, metabolism, excretion, and
toxicity are studied in various organs and are known together
under the acronym ADME-T), tissue and cell scales (where the
main processes include drug extravasation into the tumor tis-
sue, its penetration via interstitial transport, and cellular uptake),
and intracellular level (where drug internalization, intracellular
pharmacokinetics, accumulation, and efflux are investigated). In
this review, we will focus on these mathematical models that act
on the tissue scale. We refer the reader to the following research
papers and review articles that address the other modeling scales
(1–11).

Transport of drug particles at the tissue level encounters several
physiological and physical barriers. The architecture of tumor vas-
culature is leaky and tortuous when compared to the vasculature
of normal tissues. As a result, the blood flow is chaotic and the
supply of nutrients and drugs irregular. This, in turn, leads to the
emergence of regions of transient or permanent hypoxia. The cel-
lular and stromal architecture of tumor tissue is far from being
as well organized as that of normal tissues, and it is characterized
by increased cell packing density, high variability in tumor cell
sizes, and their locations. Together, these result in a non-uniform
exposure of tumor cells to metabolites and drugs. Elevated inter-
stitial fluid pressure (IFP), which is a consequence of the lack
of functional lymphatic vessels, and vascular hyperpermeability,
reduce extravasation of both fluid, and drug molecules from the
vascular system, hindering advective transport through the tumor
tissue. A dense extracellular matrix (ECM) with irregular align-
ment of ECM fibers and with increased fiber cross-linking, also
hinders the diffusion process. In general, it is difficult to pre-
dict the extent of drug penetration into the tumor tissue and to
determine the influence of various microenvironmental factors on
drug interstitial transport. The former issue can be addressed by
developing imaging techniques to visualize either the drug uptake
or its lethal effects. The latter can be tested using systematical
computational simulations of properly formulated mathematical
models.
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Several imaging approaches have been used to visualize the
effects of drug penetration into the tumor tissue, including nat-
urally fluorescent drugs showing their spatial distribution (12–
14), specific imaging biomarkers showing the effects of anti-
cancer drugs, such as cell DNA damage (15, 16), intravital
microscopic imaging for real-time in vivo drug distribution (17),
or molecular photoacoustic tomography (18). Numerous imag-
ing techniques and their use in oncology have been reviewed
in Weissleder and Pittet (19), Gillies et al. (20), and Morse and
Gillies (21).

Mathematical modeling provides tools for examining which of
the various biophysical features of the tumor tissue and/or stroma
and biochemical properties of drug compounds contribute sig-
nificantly to limited drug penetration. In silico simulations are
well-suited for testing combinations of multiple parameters that
can be varied simultaneously in a controlled manner and over
a wide range of values. Such a broad screening of drug or tis-
sue conditions is rarely possible in laboratory experiments, but
it is relatively easy and cheap in computer simulations. These
theoretical screenings can help to determine the properties of ther-
apeutic compounds optimal for their efficient interstitial transport
(designing in silico drugs) or make decisions regarding the most
effective drug combinations and scheduling protocols (design-
ing in silico trials). Moreover, mathematical modeling allows for
bridging laboratory experiments with clinical applications by pro-
viding the means to extrapolate the in vivo results from mouse
models to humans. Recently, several review papers discussing
the power of mathematical and biophysical modeling have been
published (22–29).

In this review, we will focus on the most recent research articles
that use mathematical and computational models of anti-cancer
drugs acting on the cell and tissue scales. In the most general
description, changes in the amount of drug present in the tis-
sue depend on three values: the amount of drug entering the
tissue (drug production), how the drug moves within the tissue
(drug transport), and the amount leaving the tissue (drug elimi-
nation). However, various phenomena can contribute to each of
these three processes. For example, a drug can be supplied from
the preexisting vascular system or can be released within the tis-
sue from a moving drug carrier (such as a nanoparticle), or it
can be activated due to specific environmental conditions (for
example, low oxygen level or high acidity). Drugs can be carried
through the tissue with the interstitial fluid flow (advective trans-
port) or move randomly due to the Brownian motion of drug
molecules (diffusive transport). Drug elimination from the tis-
sue can take place due to its natural half-life (decay), binding to
the ECM (degradation or deactivation), or cellular uptake. Math-
ematically the simplest equation describing the kinetics of drug
concentration c(x,t ) at location x and at time t may be written as
follows:

FIGURE 1 | A schematic representation of multiple physical processes
involved in drug penetration into the tumor tissue. Drug molecules are
supplied from the vasculature and move through the interstitial space via
diffusive and advective transports, can be activated and are subject to
natural decay before they are taken up by the cells.

Here, κ is a constant rate of drug supply, release, or activa-
tion that takes place in a part of the domain (region), which may
be a blood vessel (supply), nanoparticle (release), or low oxygen
area (activation); D is a constant diffusion coefficient; u(x,t ) is
the velocity of the interstitial fluid; α is a decay or deactivation
rate constant; and β is a rate constant of drug uptake by the cell.
Schematically, all processes involved in the drug kinetics are shown
in Figure 1. Notably, each of these factors may take a more complex
form. A more detailed discussion regarding these processes follows
below, and we give examples of how they have been addressed in
the mathematical modeling literature and applied to anti-cancer
drug kinetics.

MODELS ADDRESSING DRUG VASCULAR SUPPLY
After intravenous infusion, drug molecules circulate in the vas-
cular system before they extravasate into the surrounding tissue.
The drug influx rate κ is assumed constant in the equation listed
above; however, more complex cases can be modeled wherein
the vascular supply process depends not only on the molecule’s
size, but also on the physical properties of the vasculature and
the target tissue. In general, small drug or metabolite molecules
can cross the vascular wall more easily than larger molecules
can, and they can extravasate into both healthy and tumorous
tissues. Larger molecules, such as nanoparticles, require vascu-
lar fenestration with larger pores to be able to leave the blood
circulation system. Additional factors, such as electrostatic inter-
actions between the particles and the negatively charged pores of

∂c(x , t )

∂t︸ ︷︷ ︸
change in drug concentration

= κ|at region︸ ︷︷ ︸
supply, release, activation︸ ︷︷ ︸
DRUG PRODUCTION

+D∆c(x , t )︸ ︷︷ ︸
diffusion

− u(x , t ) · ∇c(x , t )︸ ︷︷ ︸
advection︸ ︷︷ ︸

DRUG TRANSPORT

− αc(x , t )︸ ︷︷ ︸
decay, deactivation

− βc(x , t )|at cell︸ ︷︷ ︸
cellular uptake︸ ︷︷ ︸

DRUG ELIMINATION
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FIGURE 2 | Examples of typical outcomes from various
mathematical models of drug penetration through the tumor
tissue. (A) A hybrid model of tumor mass and discrete vasculature (left,
red-tumor tissue, brown-vasculature) was used to investigate fluid and
drug extravasation from the vasculature (right, color corresponds to
drug concentration) [from Wu et al. (37), Figure 18]; (B) Patterns of
diffusion-(top) and advection-(bottom) dominated transport of drug
molecules (red dots) through the interstitial space between the cells
(white circles) [from Rejniak et al. (58), Figure 6]; (C) A gradient of the
interstitial fluid pressure (top) and transvascular pressure differences

(bottom) in the growing tumor mass [from Stylianopoulos et al. (30),
Figure 2]; (D) A drug concentration gradient from the vessel (white)
outward with colors representing high (yellow) and low (brown) levels
of diffusive drug [from Thurber et al. (17), Figure 8]; (E) Spatial
distributions of hypoxic (yellow), necrotic (black), and apoptotic (green)
tumor cells within the tumor mass treated with angiogenesis inhibitors
for 37 weeks; the treatment is supplied from vasculature (red) [from
Gevertz (34), Fig.3]; (F) Structural adaptation of vessel diameters
(colors represent the volume of blood flow) inside the tumors [from
Pries et al. (31), Figure 6]. All figures reprinted with permissions.

the vessel wall, have been studied by Stylianopoulos et al. (30).
The mathematical model predictions suggested that electrostatic
repulsion has a minor effect on the transvascular transport of
nanoparticles, but electrostatic attraction, caused even by small
cationic charges, can lead to a significant increase in the trans-
vascular flux of nanoparticles into the tumor interstitial space
(Figure 2C).

The blood microcirculation within solid tumors is dysfunc-
tional due to highly irregular vasculature (Figure 2F) that hinders
delivery of both nutrients and drugs (31, 32). To investigate the
distribution processes of small molecule drugs to cancer cells, a
computational model based on fluorescent images of tumor func-
tional vasculature was designed by Thurber et al. (17). The model
was calibrated with experimental data and used to predict tem-
poral changes in drug distribution profile around vessels with
intermittent blood flow for a typical drug administration sched-
ule (Figure 2D). Vascular images were also used by Baish et al.
(33) to design a mathematical model that analyses drug diffu-
sion in irregularly shaped domains based on two simple measures
of vascular geometry. These include the maximum distance in
the tissue from the nearest blood vessel and a measure of the
shape of the spaces between vessels. This model can also pre-
dict how new therapeutic agents that inhibit or stimulate vascular

growth alter the functional efficiency of the vasculature within the
tumor tissue. Computational simulations of vasculature-targeting
agents and their influence on tumor growth have been also per-
formed by Gevertz (34, 35). These biophysical models (Figure 2E)
were used to explore the therapeutic effectiveness of two drugs
that target the tumor vasculature, angiogenesis inhibitors (such
as avastin) and vascular disrupting agents (such as combretas-
tatin). The simulation results suggested that vasculature-targeting
agents, as currently administered, cannot lead to cancer eradica-
tion, although a highly efficacious agent may lead to long-term
cancer control. The models, however, identified a treatment regi-
men that can successfully halt simulated tumor growth, even after
the cessation of therapy.

Another computational study has been performed to test the
effects that different drugs exert on the same mass of tumor tis-
sue. Sinek et al. (36) compared the effectiveness of doxorubicin
and cisplatin in vascularized tumors taking into account vascular
and morphological heterogeneity. The simulation results showed
that lesion-scale drug and nutrient distribution may significantly
impact therapeutic efficacy. It has been also shown how the ther-
apeutic effectiveness of doxorubicin penetration depends upon
other determinants affecting drug distribution, such as cellular
efflux and density, offering some insight into the conditions under
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which otherwise promising therapies may fail and, more impor-
tantly, when they will succeed. These simulations indicated that
macroscopic environmental conditions, notably drug and nutrient
distributions, give rise to considerable variation in lesion response,
hence clinical resistance. Moreover, the synergy or antagonism
of combined therapeutic strategies depends heavily upon this
environment.

The elevated IFP and high hydraulic conductivity can act like
microenvironmental barriers for transvascular transport to both
anti-cancer drugs and nutrients, as have been investigated by Wu et
al. (37). It has been shown computationally that small blood vessel
resistance and collapse may contribute to lower transcapillary flux
of oxygen. Moreover, the higher IFP distribution in the simulated
tumors affected oxygen extravasation negatively, which, in turn,
hindered tumor growth by decreasing the oxygen transfer to the
tissue (Figure 2A). In another study Pozrikidis (38) has investi-
gated the overall hydrodynamics of the leakage problem through
a permeable capillary, taking into account hydraulic conductivity
of arterial, venous, and extravasation flow rates. This showed that
interstitium dilation promoted the rate of extravasation.

MODELS ADDRESSING DRUG RELEASE AND ACTIVATION
To increase efficacy of therapeutic compounds and increase the
time of drug survival inside the tumor tissue beyond its half-life,
various methods of drug release and activation have been pro-
posed. In our simple equation listed above, the release/activation
rate κ is defined as a constant, and the release/activation region is
hypothetical. However, more complex mechanisms can be incor-
porated in the models. The release region can represent a nanopar-
ticle and can be varied in both space and time according to the
changes in carrier locations; the activation rate may depend on
local drug concentration or distribution of metabolites and may
take place in hypoxic/acidic tumor areas, respectively, or may be
stimulated by external factors, such as temperature or magnetic
fields.

Nanoparticles have gained much interest as potential carri-
ers of therapeutic agents due to their size, which enable them
to extravasate in the leaky tumor vasculature preferentially, and
due to their modular functionality, which allows for release of the
drug by controlled diffusion from the core across the polymeric
membrane to the matrix. A mathematical model taking into con-
sideration avascular tumor growth followed by angiogenesis and
nanoparticle-based drug delivery has been applied by van de Ven et
al. (39) to design optimal therapeutic protocols. In particular, the
effects of nanoparticles carrying doxorubicin were simulated for
various parameter values to determine how much drug per particle
and how many particles need to be released within the vasculature
to achieve remission of the tumor. Moreover, it has been shown
that cell death on a population level is non-linear with respect
to the drug concentration. The same team has simulated vascu-
lar accumulation of blood-borne nanoparticles to analyze how
nanoparticle vascular affinity depends on its size and ligand den-
sity, as well as vascular receptor expression (40). It has been shown
that for high vascular affinities, nanoparticles tend to accumu-
late mostly at the inlet tumor vessels, leaving the inner and outer
vasculature depleted of nanoparticles. For low vascular affini-
ties, nanoparticles distribute quite uniformly in the intratumoral

vasculature, but they exhibit low accumulation doses. It has been
shown that an optimal vascular affinity can be identified by provid-
ing the proper balance between accumulation dose and uniform
spatial distribution of the nanoparticles. This balance depends
on the stage of tumor development (vascularity and endothelial
receptor expression) and the nanoparticle properties (size, lig-
and density, and ligand-receptor molecular affinity). The timing
and the location of drug release from nanoparticles have been
investigated by Kim et al. (41) in a combination of in vitro exper-
iments and mathematical modeling. It has been shown that gold
nanoparticles carrying either fluorescein or doxorubicin molecules
move and localize differently in an in vitro three-dimensional (3D)
model of tumor tissue, depending on whether the nanoparticles
are positively or negatively charged. Fluorescence microscopy and
mathematical modeling show that uptake, not diffusion, is the
dominant mechanism in particle delivery. These results indicate
that positive particles may be more effective for drug delivery
because they are taken up to a greater extent by proliferating cells.
Negative particles, which diffuse more quickly, may perform better
when delivering drugs deep into tissues.

Another drug carrier, engineered macrophages, that are capa-
ble of delivering pro-drugs to hypoxic areas within the tumor
have been modeled by Webb et al. (42) and Owen et al. (43).
In the former paper, two modes of action in the multicellular
spheroids were investigated: either the macrophages delivered an
enzyme that activated an externally applied pro-drug (bystander
model), or they delivered cytotoxic factors directly (local model).
The bystander model was comparable to traditional chemother-
apy, with poor targeting of tumor cells in the center of the spheroid
that are assumed hypoxic; on the other hand, the local model was
more selective for the hypoxic regions. This work suggested that
effective targeting of hypoxic tumor cells may require the use of
drugs with limited mobility or whose action does not depend on
cell proliferation. The latter article addressed a case where ther-
apeutic macrophages were preloaded with nanomagnets and a
magnetic field was applied to the tumor site. Both the conventional
chemotherapy and chemotherapy with macrophages delivering
hypoxia-inducible drugs were compared, and model simulations
predicted that combining conventional and macrophage-based
therapies would be synergistic,producing greater antitumor effects
than the additive effects of each form of therapy. The model
also revealed that timing is crucial in this combined approach
with efficacy being greatest when the macrophage-based, hypoxia-
targeted therapy is administered shortly before or concurrently
with chemotherapy.

The effects of applying heat to tumors treated with cisplatin
have been investigated by El-Kareh and Secomb (44). A theoreti-
cal model for the intraperitoneal delivery of cisplatin and heat to
tumor metastases in tissues adjacent to the peritoneal cavity has
shown increased cell uptake of drug, increased cell kill at a given
level of intracellular drug, and decreased microvascular density.
The model suggested that the experimental finding of elevated
intracellular platinum levels up to a distance of 5 mm when the
drug is delivered by a heated infusion solution is due to pene-
tration of heat, which causes increased cell uptake of the drug.
The effects of hyperthermia on chemotherapy were also investi-
gated by Gasselhuber et al. (45) by developing a spatio-temporal
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model of the release of doxorubicin from low temperature sen-
sitive liposomes. This model showed that this treatment com-
bined with thermal ablation allowed for localized drug delivery
with higher concentrations in the tumor tissue than conventional
chemotherapy.

MODELS ADDRESSING DRUG DIFFUSIVE TRANSPORT
In the model equation listed above, we used a constant diffusion
rate D that leads to homogeneous diffusive transport. However, the
diffusion may depend on the structure and other physical proper-
ties of the tissue in which this process occurs. One extension of the
above equation has been widely used in modeling the spread of
gliomas in the brain where the diffusion in the white matter and
gray matter was characterized by different diffusion coefficients
(46, 47).

In the context of drug penetration into the tumor tissue,
Venkatasubramanian et al. (48) have created a mathematical model
integrating intracellular metabolism, nutrient and drug diffusion,
cell-cycle progression, and drug pharmacokinetics. Results indi-
cated the existence of an optimum drug diffusion coefficient. A
low diffusivity prevents effective penetration before the drug is
cleared from the blood, and a high diffusivity limits drug reten-
tion. This result suggests that increasing the molecular weight of
the anti-cancer drug by nanoparticle conjugation would improve
its efficacy. The simulations also showed that tumors that grow
fast are less responsive to therapy than are tumors growing more
slowly with greater numbers of quiescent cells, demonstrating the
competing effects of regrowth and cytotoxicity.

The complex interactions of drug particles and the ECM fibers
that may hinder the drug molecule diffusion process have been
modeled by Stylianopoulos et al. (49, 50). In this 3D model, sto-
chastic fiber networks with varying degrees of alignment were con-
sidered. Quantitative analysis of four different structures, ranging
from nearly isotropic to perfectly aligned, were performed. The
results indicated that the overall diffusion coefficient is not affected
by the orientation of the network. However, structural anisotropy
results in diffusion anisotropy, which becomes more significant
with an increase in the degree of alignment, the size of the diffusing
particles, and the fiber volume fraction. These model predic-
tions were validated experimentally, showing for the first time
in tumors that the structure and orientation of collagen fibers in
the extracellular space leads to diffusion anisotropy. The authors
also investigated the effects of charge on the diffusive transport
of macromolecules and nanoparticles in the ECM, taking into
account steric, hydrodynamic, and electrostatic interactions. The
model showed that electrostatic forces between the fibers and
the particles result in slowed diffusion. However, the repulsive
forces become less important as the fiber diameter increases. These
results suggest that optimal particles for delivery to tumors should
be initially cationic to target the tumor vessels and then change to
neutral charge after exiting the blood vessels.

Since the ECM is composed of multiple cross-linked fibers, the
drug particle diffusion in the interstitial space may rather resemble
random movement through small nanochannels than diffusion
through the open homogeneous space. A computational model
that accounts for interface effects on diffusivity has been devel-
oped and validated by predicting experimental glucose diffusion

through a nanofluidic membrane (51–53). Moreover, the passive
transport of nanoparticles from bulk into a nanochannel has been
modeled, showing that subtle changes in nanochannel dimensions
may alter the energy barrier. This results in different nanoparticle
penetration depths and diffusion mechanisms.

More detailed models of ECM structure, including fiber ori-
entation, cross-link, and remodeling by the embedded cells have
been developed by Bauer et al. (54, 55), Dallon and Sherratt (56)
and Dallon et al. (57) in the context of vessel sprout and wound
healing, respectively. These models have not yet been applied to
model the role of ECM structure on drug molecule penetration.
However, cellular heterogeneity of the stroma and its influence on
both diffusive and advective forms of transport have been mod-
eled by our group using idealized tissue morphologies of various
porosity and cellularity values (58). Our simulations revealed that
irregularities in the cell spatial configurations can solely result in
the formation of interstitial corridors that are followed by drug
or imaging agent molecules, leading to the emergence of tissue
zones with less exposure to the drugs. Moreover, we showed that
the relation between tissue porosity (defined as the extent of void
space in the tissue), cellular density (defined as the number of cells
per tissue area), and permeability (defined as time needed for a
certain number of particles to traverse a predefined distance) is
non-linear; thus it is also non-intuitive.

MODELS ADDRESSING DRUG ADVECTIVE TRANSPORT
During advective transport, drug molecules are carried with the
flow of the interstitial fluid. This flow can arise from pressure dif-
ferences within the tissue or from drainage of the fluid into the
lymphatic circulation system. Wu et al. (37) investigated the role of
the IFP, interstitial fluid flow,and the lymphatic drainage system on
the transport of metabolites in developing tumors. The model sim-
ulations showed that elevated interstitial hydraulic conductivity
combined with poor lymphatic function is the root cause of the
development of plateau profiles of the IFP in the tumor, which
have been observed in experiments.

At the macroscopic scale, where the individual cells are mod-
eled as surrounded by the ECM space that is interpenetrated by the
interstitial fluid, our group investigated the role of both advection
and diffusion of drug molecules movement through the stroma
(58). Simulation results collected from more than 100 different tis-
sue morphologies showed that tissue cellular porosity and density
influence the depth of drug penetration in a non-linear fash-
ion. It has also been shown that for small diffusion coefficients,
drug transport is advection dominated independently of tissue
structure. Similarly, for all tissue structures considered in our sim-
ulations, drug molecule transport was diffusion dominated for
large diffusion coefficients. However, for the intermediate val-
ues of fluid flow velocity and diffusion coefficients, the nature
of interstitial transport depends strongly on the tissue morphol-
ogy (Figure 2B). This indicates that sole knowledge of drug and
tumor biophysical properties without knowledge of tumor tissue
histology may lead to false predictions regarding the extent of drug
penetration into the tumor tissue.

The significant role of the advective fluid flow in brain tumors
has been investigated by Arifin et al. (59, 60). In this work, a com-
putational model was employed to simulate 3D patient-specific
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distribution of carmustine. This model showed that a quasi-steady
transport process is established within 1 day following treatment,
and the drug is eliminated rapidly by transcapillary exchange,
while its penetration into the tumor is mainly by diffusion. Con-
vection appears to be crucial in influencing the drug distribution
in the tumor resulting in non-homogeneous exposure to the drug:
the remnant tumor near the ventricle is, by one to two orders of
magnitude, less exposed to the drug than is the distal remnant
tumor. In addition, local convective flow within the cavity appears
to be a crucial factor in distributing the drug so that the tumor
domain near the ventricle is prone to minimal drug exposure. The
authors also simulated four chemotherapeutic agents (carmustine,
paclitaxel, fluorouracil, and methotrexate) in a realistic 3D tissue
geometry extracted from magnetic resonance images of a brain
tumor. The simulation analysis showed that only paclitaxel exhib-
ited minimal degradation within the cavity, as well as the best
penetration of the remnant tumor.

A mixture of computational modeling and laboratory exper-
iments on gels and tumors reported in Ramanujan et al. (61)
showed that the diffusive transport of drug particles might be
obstructed more significantly by collagen fiber alignment than
particle movement due to fluid advection.

MODELS ADDRESSING DRUG DECAY, DEACTIVATION, AND
CELLULAR UPTAKE
In our simple equation above, the rate of drug decay, deactivation,
and cellular uptake were defined as proportional to the local drug
concentration. In the case of drug decay this is a typical way of
incorporating drug half-life. In the case of drug deactivation or
degradation, these processes may also depend on environmental
factors, such as binding to ECM fibers or interacting with other
mocroenvironmental factors. This aspect of drug pharmacody-
namics has usually been neglected in mathematical models due to
insufficient experimental data to inform or validate the models.
However, with the recent advances in visualizing and experimen-
tally quantifying ECM fibril structure, this process should be easier
to incorporate in future mathematical models. Additionally, the
process of cellular uptake can depend on various factors. Cer-
tain drug molecules may bind to specific cell membrane receptors,
and the efficacy of this process will then depend on the number
of available receptors. Others may diffuse through the cell mem-
brane, and this diffusion process will depend on both extracellular
and intracellular drug concentrations.

The complex interplay between molecular size, affinity, and
tumor uptake has been investigated by Schmidt and Wittrup (62)
using a mechanistic model that takes into account drug molecu-
lar radius, interstitial diffusivity, available volume fraction, and
plasma clearance. This model allowed for predicting the mag-
nitude, specificity, time dependence, and affinity dependence of
tumor uptake across a broad size spectrum of therapeutic agents.
The authors concluded that the intermediate-size targeting agents
(∼25 kDa) have the lowest levels of tumor uptake, when compared
to tumor uptake levels achieved by smaller and larger agents. In
Thurber and Wittrup (63), this model was extended to create a
mechanistic description of total antibody uptake in a tumor, tak-
ing into account both free (unbound) antibody in the interstitium
and antibody bound to its target. This allowed for an estimation

of the time course of antibody uptake in solid tumors and its
clearance from the blood plasma.

The cellular pharmacodynamics of various anti-cancer drugs
was investigated by a mathematical model that takes into account
cellular uptake of the drug and both intracellular and extracel-
lular cytotoxicities. In El-Kareh and Secomb (64), the damage
induced by doxorubicin was expressed as the sum of two terms,
representing the peak values over time of intracellular and extra-
cellular drug concentrations. Drug uptake by cells was assumed to
include both saturable and unsaturable components, which pro-
vided better fits to in vitro cytotoxicity data. Model simulations
suggested also a mechanism for the emergence of plateaus in the
dose–response curve at high concentrations and short exposure
time, as observed experimentally in some cases. Similar models
were used to investigate the pharmacodynamics of cisplatin (65)
and paclitaxel (66).

TOWARD CLINICAL APPLICATIONS OF MATHEMATICAL
MODELS
Mathematical models can also provide the means to scale experi-
mental results from animal to human body size and metabolism,
and can be used to test various drug administration procedures
and schedules (bolus injections, dose-dense therapies, continuous
infusions, and adaptive therapies) in virtual human body. El-Kareh
and Secomb (67) used mathematical modeling to determine the
optimal mode of delivery for doxorubicin by comparing three
intravenous administration methods: bolus injection, continuous
infusion, and liposomal delivery. The model took into account the
relatively slow rate and saturability of doxorubicin uptake by cells
and predicted peak concentrations of drug attained in tumor cells,
as well as peak concentration of free doxorubicin in blood plasma.
The model simulations suggested that continuous infusion for
optimal durations is superior to the other delivery methods. A
similar model, but using the tumor cord geometry, was used by
Eikenberry (68) to test doxorubicin dose optimization. Model sim-
ulations showed that extending drug infusion time up to 2 h and
fractionating large doses are two strategies that may preserve or
increase anti-tumor activity, as well as reduce cardiotoxicity, by
decreasing peak plasma concentration. Traina et al. (69) used the
Norton-Simon tumor volume growth kinetic model (70) to pre-
dict a tolerable dose of capecitabine (7 days treatment followed by a
7-day rest) for advanced-stage breast cancer patients and this pre-
diction was confirmed in phase I study. Traina et al. (71) continued
to use the Norton-Simon model to optimize chemotherapeutic
dosages and schedules in mouse xenograft models. Similar math-
ematical models have been used to study dose-dense chemothera-
pies (72) and to evaluate both the limitations of current schedules
in breast cancer treatment and therapeutic advantages of novel
dose-dense chemotherapies (73). Gatenby et al. (74) examined
a novel approach in which cancer therapy was adapted to the
evolving temporal and spatial variability of the tumor microenvi-
ronment, cellular phenotypes, and therapy-induced perturbations
instead of using a typical linear protocol of drug administration.
The developed mathematical model suggested that if resistant pop-
ulations are present before administration of therapy, the total
elimination of the drug-sensitive subpopulation will lead to the
faster growth of a drug-resistant population. As an alternative,
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the simulated treatment was continuously modulated to control
the size of tumor cell population that resulted in prolonged sur-
vival. The authors went a step further and, actually, tested their
predictions experimentally. In subsequent work, Silva et al. (3)
parameterized the adaptive therapy model using in vitro exper-
iments and showed that this treatment strategy delays tumor
burden and increases time to progression in tumor models.

The computational models are also well-suited to simulate
treatments based on patient-specific parameters and tissue charac-
teristics leading to personalized medicine. Our group investigates
interstitial transport of drug and imaging agents using digitized
samples of patients’ tumor histology (58). Frieboes et al. (75)
implemented a mathematical model of tumor drug-response that
integrates simulations with biological data and includes the exper-
imentally observed resistant phenotypes of individual cells. This
integrative method could be used to predict resistance based on
specific tumor properties, potentially improving treatment out-
come. Kim et al. (76) uses a combination of micro- and macro-
scopic imaging data and computational modeling to investigate
blood flow in the heterogeneous tumor tissues. Venkatasubraman-
ian et al. (77) uses breast cancer patients’ DCE-MRI (dynamic
contrast-enhanced magnetic resonance imaging) data to predict
their responsiveness to therapeutic treatment. Their model sim-
ulations showed that transvascular transport was correlated with
tumor aggressiveness because of the formation of new vessels,
and that increased transport heterogeneity led to increased tumor
growth and poor drug-response.

Clinically used imaging techniques will be crucial in integrating
mathematical models with clinical data in order to make patient-
specific predictions. For example, DCE-MRI technique allows for
collecting time-activity curves with high spatial and temporal res-
olution following a bolus injection of a Gadolinium-containing
contrast agent, CA. The resulting data can be analyzed to generate
spatially explicit (2D and 3D) maps of flow, perfusion, extra-
cellular/extravascular volume fraction and, in some cases, water
permeability (78, 79). In general, the delivery and extravasation
of CA is modeled with standard 2- or 3-compartment PK models
(80) and, as mentioned above, these maps can be used to infer drug
distribution in human tumors (77, 81). While many investigators
use ROI (region of interest) analyses to derive a single perfusion
value to describe a tumor, it is becoming increasingly appreciated
that enhancement is heterogeneous and that quantitative descrip-
tors of this heterogeneity improve the precision for diagnosis and
monitoring of therapy response (82–86). We contend that per-
fusion heterogeneity is a key factor in the response of tumors to
therapy, both in terms of drug delivery and in the establishment of
specific habitats that select for cells with specific phenotypes and
hence, therapy responses (87).

CONCLUSION AND FUTURE DIRECTIONS
In this review, we discussed various mathematical models that
were used to address different aspects of drug penetration through
tumor tissue. All major stages of the penetration process have been
investigated computationally: flow to different regions of tumors
via blood vessels, crossing the vessel wall by drug molecules,
their penetration through the interstitial tumor space, and cel-
lular uptake. Mathematical models are well-suited to address such

complex phenomena since by their nature they are able to handle
multiple variables with numerous parameters. It is relatively easy
and inexpensive to simulate tumor growth and treatment in sil-
ico and to compare differences in simulation outcomes when such
parameters are changed simultaneously and over a wide range of
values. In fact, this area of mathematical research is dynamically
expanding. Especially novel are models that account for spatial
aspects of drug transport. Half of the papers described in this
review and all of the images collected in Figure 2 come from man-
uscripts that were published in the last 3 years, showing that this
field is highly active and productive.

Typically in mathematical models, the drugs are defined as con-
centrations, as we did in the equation above. This is motivated
by the fact that the number of drug molecules considered in the
model might be a couple of orders of magnitude larger than the
number of cells that form the tissue. However, in this description,
only average behavior of drug molecules is captured. When more
detailed drug kinetics need to be considered, such as molecule
binding to cell receptors, intracellular trafficking, or mechanisms
of drug extravasation from a vessel, drugs may be modeled as col-
lections of individual molecules and can be traced individually in
the model. Several novel models of this kind have been recently
developed. Among models discussed in this review, the work of
Ziemys et al. (51, 52), Mahadevan et al. (53), Frieboes et al. (40),
and Rejniak et al. (58) traces the behavior of individual drug mol-
ecules and their interactions with the cells and/or vessels. In the
first two papers the authors also discuss how to scale between the
description of the kinetics of individual drug molecules and more
general description of drug concentration.

Similarly, the more classical modeling approaches consider
tumors as large populations of cells and represent them as cell den-
sities (25, 36, 37, 40, 59, 64, 67, 68, 71, 73, 74, 81). These models can
handle multiple cell subpopulations, but the number of different
cell types has to be defined a priori, and new subpopulations can-
not be dynamically created during the simulation. However, under
specific conditions cells can be moved from one subpopulation to
another. The predefined cell types may include a specific phase of
the cell-cycle (a population of cells in G1, G0, S, or G2 phase),
a particular cell phenotype (a population of proliferating, quies-
cent, hypoxic, or necrotic cells), or a particular cell response to
the treatment (a population of drug-resistant or drug-sensitive
cells). The advantage of continuous models is that they can han-
dle large populations of cells, but the significant disadvantage is
that all cell properties in these models must be averaged, since no
individual cells are considered. In view of the growing evidence
of heterogeneity of tumor cells on the genetic, phenotypic, and
drug-response levels, the averaged cell properties and the averaged
cell responses to anti-cancer treatments may not be sufficient to
make predictions for individual patients.

In contrast, in the individual-cell-based models (called also the
single-cell-based models, or the agent-based models) each cell
is represented as a separate entity that acts as an independent
agent according to some predefined rules (cell phenotype), but
cell behavior can also be modulated by interactions with other
cells and with the immediate cell microenvironment (selection
forces). In this class of models cells may differ from each other
significantly (cells may have distinct phenotypes, independently
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regulated cell-cycles, different levels of receptors, or different accu-
mulations of mutations). Several models discussed in this review
are single-cell-based (34, 35, 43, 52, 53, 58). The main advantage
of these models is their natural cellular heterogeneity that better
represents tumor multicellular composition than the continuous
models. It is, of course, possible to analyze results of individual-
cell-based models on a cell population level (in terms of average
values and standard deviations, distributions, or correlations),
similarly as this is done with experimental measurements. More-
over, these analyses can be compared to results from continuous
models. The inverse process, that is extracting detailed information
on individual cells from continuous models, is impossible. The
main disadvantage of agent-based models is in their limitations
to handle large number of cells. Typically, this limit is in thou-
sands of cells, but with constantly increasing speed of computers
and with development of novel faster computational techniques
(parallel, GPU, or cloud computing) the number of cells that the
model can handle in a reasonable time may not be a limitation
anymore.

It is worth noting that every mathematical model is by its nature
a simplification of the biological system it is assumed to represent,
so we do not expect that one model will incorporate all processes
involved in drug penetration through the tumor tissue. And we
also do not expect that the unified modeling framework addressing
all aspects of drug transport through tumor tissue will emerge in
the near future. In silico models need to be designed to investigate
a specific research question similarly to how biological experi-
ments focus on the selected aspects of tumor treatment and do
not address in a single experiment all possible combinations of
involved factors. Computational models should not be too com-
plex to allow for quantitative analysis of the relative importance
of all features and parameters included in the model. However, in
contrast to experiments, model parameters (e.g., drug molecular
mass or charge, timing and dosing of drugs, and their activation
or uptake properties) can be varied over a wide range of values
and can be changed simultaneously in a controlled way, giving
investigators insight into a full spectrum of drug properties that
lead to the desired (or undesired) effects. These model outcomes
will then provide guidance for further laboratory experimenta-
tion, and both results, positive and negative, will be informative
for biologists. The positive results will suggest the environmen-
tal conditions or drug concentrations that are worth pursuing
experimentally; the negative results will advise the drug concen-
trations or their properties that do not lead to a desired effect
and can be omitted, reducing experimental costs and time. In
fact, close collaboration between mathematical modelers, biolo-
gists, and clinicians is crucial, in our opinion, for making progress
in improving anti-cancer treatments.

In our opinion the computational models of tumor develop-
ment and treatment that will be successfully applied in personal-
ized medicine need to be single-cell-based to be able to account
for differences between tumors in individual patients (inter-tumor
heterogeneity) and between distinct regions within the same
tumor tissue (intra-tumor heterogeneity). Such models will be able
to address phenotypic, genetic, and drug-response heterogeneity
observable in patient tumors. The future models need to be tempo-
ral to capture the dynamics of tumor growth, cell–cell interactions,

and response to therapy. These models will allow for temporal
analysis of model results in order to identify more effective drug
administration schedules with potentially variable schedules and
dosages that cannot be intuitively inferred from analyzing drug
properties in laboratory experiments. The future models should
also be spatially explicit and three-dimensional, since both cell
growth dynamics and drug transport dynamics are significantly
different between the one-, two-, and three-dimensional spaces.
In vivo tumors have complex geometries, variable cellular densi-
ties, irregular vasculature that cannot be captures by simple non-
spatial, population-based models. And over all the future models
need to be quantitative, based on quantitative experimental data
(to inform and parameterize the model), and producing quantita-
tive results, that can be compared to experimental measurements
or clinical data.

Given the complexity of processes taking place during tumor
development and its treatment, as well as significant inter-patient
and intra-tumor variability, the cross-disciplinary approaches that
integrate data and methods from various scientific disciplines have
a better chance to delineate the mechanisms of tumor resistance
to treatment and the way to overcome drug delivery barriers. The
mathematical models that are properly integrated with experimen-
tal data, such that both in silico models and laboratory experiments
inform each other, can provide tools for interpreting data, evaluat-
ing the most important parameters for designing new experiments,
and developing strategies to improve tumor treatment.
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