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Single cell genomics is a rapidly growing field with many new techniques emerging in the
past few years. However, few bioinformatics tools specific for single cell genomics analy-
sis are available. Single cell DNA/RNA sequencing data usually have low genome coverage
and high amplification bias, which makes bioinformatics analysis challenging. Many current
bioinformatics tools developed for bulk cell sequencing do not work well with single cell
sequencing data. Here, we summarize current challenges in the bioinformatics analysis
of single cell genomic DNA sequencing and single cell transcriptomes. These challenges
include calling copy number variations, identifying mutated genes in tumor samples, recon-
structing cell lineages, recovering low abundant transcripts, and improving the accuracy
of quantitative analysis of transcripts. Development in single cell genomics bioinformat-
ics analysis will promote the application of this technology to basic biology and medical
research.
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INTRODUCTION
Biologists have been interested in the heterogeneity between indi-
vidual single cells at the molecular level in tissues and organs for
a long time. For example, what is the difference between adja-
cent cells at the genetic and gene expression level in a tumor?
What is different between cells at different developmental stages
of human embryogenesis? These questions, and many similar
questions, remain largely unanswered.

Novel sequencing technologies have rapidly advanced
genomics studies in the past few years. Now, there are several excit-
ing new techniques that enable us to sequence entire genomes at
the single cell level. For example, multiple displacement ampli-
fication (MDA) has widely been used to amplify entire genomes
from a few cells or even a single cell (1–3). Zong et al. recently
described a multiple annealing, looping-based amplification cycle
(MALBAC) method, which combines features of linear amplifi-
cation methods with PCR (4). MALBAC has been shown to be
capable of amplifying 93% of the genome of a single cell. Single
cell sequencing technology has potentially broad applications in
biology and medicine (5–7); for example, in the characterization
of the earliest differentiation events in human embryogenesis (8);
in the study of microorganisms that cannot be cultured (9–12); in
transcriptome analysis of rare, circulating tumor cells (13–15); and
in the study of tumor heterogeneity and microevolution (16–19).

The difference between single cell sequencing and bulk
sequencing is that single cell sequencing needs an extra step
that amplifies the genome from a single cell. It is this amplifi-
cation process that makes the bioinformatics analysis of single cell
sequencing data so challenging. The amplification process has two
major technical problems. First, single cell amplification usually
has a much lower genome coverage. Genomic regions that are not
amplified will not be sequenced. Second, the amplification process

will introduce artificial biases, with some genomic regions being
amplified more than others. Because of these two reasons, many
bioinformatics tools developed for bulk cell sequencing do not
work well for single cell sequencing data. Nevertheless, as a revo-
lutionary technology, single cell sequencing will quickly be applied
in many biological and medical fields, and the bioinformatics com-
munity needs to act quickly to keep pace with the expected flood
of single cell sequencing data.

In this review, we will describe the challenges in analyzing single
cell DNA and RNA sequencing data. In addition, we will discuss
the comparative analysis of multiple single cells.

SECTION I: BIOINFORMATICS IN SINGLE CELL DNA
SEQUENCING
Single-nucleotide polymorphisms (SNPs) contribute most of the
genetic variation to the human genome (20). SNPs associate with
many monogenic and complex diseases, such as cancer, autoim-
mune disorders, diabetes, and Alzheimer’s (21–24). Copy number
variation (CNV) is another major type of genetic polymorphism
(25) that has important roles in human health (26). CNV has
been reported to be associated with various human diseases, such
as tumors, autism, autoimmunity, systematic lupus erythematous,
and other complex diseases (27–30). Analyzing DNA mutation
and structural variation at the single cell level has been reported
in a few recent studies (4, 31, 32). However, accurately calling
SNP/CNV from single cell sequencing data remains challenging.

SNP CALLING IN SINGLE CELL DNA SEQUENCING
Calling SNPs in single cell data is a challenge that stems from
the whole genome amplification (WGA) process itself. Typically,
there are only about 6 pg of DNA in a single cell, and therefore,
accurately measuring all of DNA information content from within

www.frontiersin.org January 2014 | Volume 4 | Article 7 | 1

http://www.frontiersin.org/Oncology
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/about
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00007/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2014.00007/abstract
http://www.frontiersin.org/people/u/120030
http://www.frontiersin.org/people/u/129120
http://www.frontiersin.org/people/JiankuiHe/108163
mailto:he.jk@sustc.edu.cn
http://www.frontiersin.org
http://www.frontiersin.org/Molecular_and_Cellular_Oncology/archive


Ning et al. Current challenges in bioinformatics of single-cell genomics

such a small amount is very difficult. WGA from single cells is an
essential step during the library preparation for high throughput
sequencing. Although the first WGA techniques appeared more
than 10 years ago (33), current WGA methods still suffer from
low coverage performance and errors during amplification, which
present a hurdle in obtaining complete SNP information from a
single cell.

LOW GENOME COVERAGE CAUSES SNP DROPOUT
Genome coverage is a measurement of the percentage of a genome
covered by at least, one sequencing read. Current WGA techniques
often have a lower genome coverage than bulk cell sequencing.
For example, the MDA method can typically obtain an average
genome coverage of 73% at a 25× sequencing depth (4). The
recently developed MALBAC method enables significant improve-
ments over traditional MDA methods, and can reach a genome
coverage of 93% at a 30× sequencing depth (with an average
genome coverage of 34% at a 25× sequencing depth) (4). The
genome coverage of single cell amplification methods is still much
lower than that of bulk cell sequencing, which can achieve more
than 90% coverage at a 4× sequencing depth. SNPs in genomic
regions that are not covered by sequencing reads will drop out of
the analysis owing to these reasons. Furthermore, MDA meth-
ods suffer from a high ratio of allele dropout (ADO, alleles
present in heterozygous samples not called out in the analysis).
The ADO rate of MDA methods can be as high as 65%, as esti-
mated by Zong et al. (4) Therefore, we should be very careful
using single cell SNP calling results to perform further analy-
ses such as those for gene ontology and pathway enrichment
studies.

ERRORS IN AMPLIFICATION LEAD TO FALSE-POSITIVE SNP CALLING
Although WGA methods usually use a high fidelity polymerase
enzyme, single cell sequencing still introduces a certain amount
of false-positive error in calling SNPs. The MDA methods use
Φ29 bacteriophage DNA polymerase, which has been shown to
have a low error rate, approximately 10−5 per base (35). Zong
et al. sequenced DNA from single cells amplified with both MAL-
BAC and MDA methods, and found that the false-positive rate for
genotyping single-nucleotide variants with MALBAC was about
40-fold higher than it was for MDA (36). They identified 2.2× 106

SNPs in a single cell using GATK software (37), but the data con-
tained 1.1× 105 false positives, which means that one in 20 SNPs
is artificial.

STRATEGIES FOR DEVELOPING SINGLE CELL SNP CALLING
ALGORITHMS
Single-nucleotide polymorphisms calling algorithms for bulk cell
samples have been studied extensively; among them, GATK (37),
SNPdetector (38), SOAPsnp (39), and VarScan (40) are widely
used. However, there is no SNP calling algorithm originally
designed for single cell sequencing data. Researchers have used
established software to call SNPs in a few recently published single
cell studies. For example, Zong et al. (4) used GATK, while Xu et al.
(19) used SOAPsnp to call SNPs in single cell sequencing samples.
None of these methods, however, take the intrinsic properties of
single cell amplification into consideration. To develop a SNP call-
ing algorithm specifically designed for single cell sequencing, and

to overcome the low genome coverage and high false-positive rate
shortcomings, we have the following two suggestions: (1) the algo-
rithm should be able to distinguish true SNPs from amplification
errors; and (2) the algorithm should be able to call SNPs from low
coverage sequencing.

CNV CALLING IN SINGLE CELL SEQUENCING
Copy number variation in genomes results in cells having an
abnormal number of copies of one or more sections of DNA.
Currently many software packages are available for calling CNVs
in bulk DNA sequencing, such as CNV-seq (41), PenCNV (42),
CNAseg (43), Readdepth (44), and cn.MOPS (45). However, few
software packages and algorithms have been designed for single
cell CNV calling, and the impact of amplification bias on CNV
calling has not been systematically investigated.

AMPLIFICATION BIAS IN SINGLE CELL CNV CALLING
Multiple displacement amplification bias has been observed in
several studies (46). For example, MDA has been reported to
introduce hundreds of potentially confounding CNV artifacts that
can obscure the detection of real variants (47). Many artifacts are
reproducible, and may correlate with proximity to chromosome
ends and GC content. The WGA4 (Sigma Genomeplex) method
and MALBAC also have strong read fluctuations mapped to dif-
ferent genome regions. The majority of CNV calling methods
in bulk cells are read count-based approaches. As an example,
Readdepth is reported to be able to detect CNVs with sizes as
small as 500 bp in 37× sequencing depths (44). However, in
single cell sequencing the bin size must be increased to reduce
read mapping bias when using read count-based approaches,
owing to strong amplification biases. Navin et al. adopted a
variable length bins method with a medium length of 54 kb
(18). In MALBAC, the CNVs of single cell samples were ana-
lyzed at a resolution of 200 kb bin size (4). Baslan et al. pro-
posed a protocol to analyze the CNV of single cell sequenc-
ing using a default bin size of 50 kb (48). The reproducibility
of single cell CNV detection is also relatively low. Zong et al.
(4) reported that the read number in 200 kb bins of two single
cells from the same tissue has a correlation coefficient value less
than 0.8.

STRATEGIES FOR ACCURATE SINGLE CELL CNV CALLING
To improve the quality and accuracy of calling CNV from single
cell sequencing,we have the following suggestions: First,we need to
carefully examine the bias generated in the genome amplification
process. For example, in one study of the MDA method, recurrent
MDA-induced copy number biases were reported to associate with
sequence repeats and proximity to chromosome ends, increased
GC content, and annotated CNVs (47). Once we know the pat-
tern of artificial biases, we can develop algorithms to reduce the
noise to call confident CNV assessment. Second, noise reduction
problems also exist in other fields, such as signal processing and
image processing, where noise reduction has been extensively stud-
ied. We can employ algorithms such as wavelet (49) and/or Fourier
transformation (50) to single cell data to reduce noise. Third, pair-
wise comparisons of amplified products should help to reduce the
number of artificial CNVs.
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SECTION II: SINGLE CELL RNA SEQUENCING
The identity and function of a cell is determined by its entire
RNA component. Ideally, transcriptome analysis should capture
the exact quantity of all full-length RNAs of all classes, at single-
base resolution, in an individual cell. Recently, several studies have
reported single cell RNA sequencing analysis (51–55). We will dis-
cuss quantitative expression analysis, the detection of transcripts,
and the identification of their splicing isoforms, using single-cell
RNA sequencing in this section.

Several groups have demonstrated the application of single cell
RNA sequencing in various biological systems (8, 51, 56–70) in
recent years. For example, Tang et al. studied the blastomere cell
using single cell RNA sequencing and found that 8–19% of the
genes with multiple known transcript isoforms expressed at least
two of those isoforms in the same blastomere cell (57). Ram-
sköld et al. applied Smart-Seq to study the gene expression profile
of rare, circulating tumor cells from the blood of a melanoma
patient, and found that the profile is highly correlated with those
of melanoma cell lines, strongly indicating that the circulating cells
originated from a melanoma tumor (15). Shalek et al. studied the
transcriptomics of single immune cells and revealed a bimodality
in expression and splicing (64).

The computational measurement of quantitative gene expres-
sion has been extensively studied in bulk cell sequencing analysis.
Gene expression can be calculated from the number of sequenc-
ing reads mapped to a particular gene region. Current approaches
in the analysis of quantitative gene expression include two steps:
mapping RNA sequencing reads to gene regions, and calculating
expression levels. In the first step, many tools have been developed
for sequencing read mapping, such as TopHat (34), RUM (71),
SpliceMap (72), MapSplice (73), GSNAP (74), BLAT (75), Bowtie
(76), SOAP (77), and BWA (78). In the second step, RPKM (reads
per kilobase per million reads) (79) and FPKM (fragments per
kilobase per million fragments) (80) are commonly used to mea-
sure gene expression levels. Yan et al. used BWA to align reads to
a reference genome (70) in a recent single cell RNA sequencing
project. They selected genes with RPKM≥ 0.1 for further analysis.
Picelly et al. adopted STAR (81) to align sequence reads in another
recent project, and then used RPKM for genes (82) to calculate
RPKM. Shalek et al. used Tophat1 (34) to map reads to a reference
genome, then used RSEM (83) to obtain the expression level of
TPM (transcripts per million), and then used MISO (84) to locate
the alternate splicing events (61).

The challenge of single cell RNA bioinformatics analysis is
mainly due to the bias and distortion in the whole transcript
amplification process. There are three major issues in single, whole
transcript amplification: (1) amplification cannot generate full-
length cDNAs; (2) transcripts are not amplified at the same ratio;
and, (3) low abundant transcripts are difficult to detect.

It is usually difficult to get full-length transcripts in single cell
RNA sequencing, and, therefore, 3′-end biases are often gener-
ated. Tang et al. only obtained RNA transcripts shorter than 3 kb
in single mouse blastomere cells, missing 36% of the expressed
genes (51). The median read coverage across expressed transcripts
is 53.8% in the Quartz-Seq method, compared with 84.4% in con-
ventional RNA sequencing (60). Ramsköld et al. demonstrated

that the Smart-Seq technique can identify 40% of all full-length
transcripts (15). The FPKM/RPKM values, which are commonly
used to measure gene expression levels, do not consider bias
across the transcripts, and therefore, may not suitable for sin-
gle cell RNA sequencing in bioinformatics analysis. Furthermore,
the pronounced 3′-end bias of whole transcript amplification may
hamper the ability to identify alternate splicing differences in single
cells.

GC content and cDNA length distribution may also induce arti-
ficial biases during whole transcript amplification. For example,
Sasagawa et al. showed that unamplified isoforms from Quartz-
Seq have a higher GC content, with value of 52.1%, versus the mean
GC content of the amplified isoforms, with a value of 50.2%, which
indicates that high GC content RNAs are difficult to amplify (60).
They also found that amplified cDNAs have a longer length than
the unamplified isoforms that correspond to the cDNA. Because
of these reasons, we need to validate to what extent single-cell tran-
scriptomes faithfully represent the RNA populations they reflect
before amplification.

Bulk cell samples are usually sequenced at high depth to obtain
low-abundance transcripts. However, in single cell sequencing, the
low-abundance transcripts may not be so easily amplified. For
example, the transcription detection rate is about 80% in Quartz-
Seq and about 55% in Smart-Seq (60). Picelili found the observed
variability between cells was mainly of a technical nature for low-
abundance transcripts, whereas in medium- and high-abundance
transcripts, variability between cells was mainly biological (58).

New methods are needed to generate an unbiased quantita-
tive measure of transcript expression in single-cell transcriptomics
analysis. Recently several new amplification protocols have been
developed, but bias still exists to a certain extent. Based on our
own experience, we suggest the following two potential solutions,
which may help to address the problems of amplification bias and
low coverage:

1. Consider a new standard expression level measurement beyond
RPKM/FPKM in single cell RNA sequencing. Single cell RNA
sequencing data usually has 3′ and/or 5′ biases; therefore, mea-
suring expression levels using full-length transcripts may be
inappropriate. One possible solution is to normalize expres-
sion levels by coverage lengths instead of by using full-length
transcripts.

2. Reduce amplification biases by developing new bioinformat-
ics approaches. We can systematically investigate how bias is
generated during amplification to discover the patterns of bias.
Machine learning (85–92) may be a powerful tool to study the
distribution of bias and to predict amplification bias.

SECTION III: COMPARATIVE ANALYSIS OF SINGLE CELLS
One important goal of single cell technology is to discover hetero-
geneity among cells (69, 93, 94). Dozens of single cells are usually
sequenced in a single cell genomics project. The heterogeneity
between cells can thus be found by comparative analysis between
the single cells employed. Here we will describe the comparative
analysis of single cells in the development and lineage structure of
tumor and early embryonic development.
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DEVELOPMENT AND LINEAGE STRUCTURE OF TUMORS
Genetic heterogeneity is very common in tumors, and is important
information for reconstructing evolutionary history. This infor-
mation may be averaged out in bulk cell sequencing (95). However,
the comparative analysis of sequencing data from multiple sin-
gle cells is a much more powerful technique for studying tumor
population structure and evolution (18).

Navin et al. applied single-nucleus sequencing to investi-
gate tumor population structure and evolution in two human
breast cancer cases, and found that tumors grow by punctu-
ated clonal expansions with few persistent intermediates (18).
Hou et al. inferred tumor monoclonal origin in an essential
thrombocythemia patient using single cell exome sequencing (96).

Although single cell sequencing can provide robust informa-
tion regarding tumor heterogeneity and evolution, there are still
several technical problems to resolve. The accuracy and sensitivity
of detecting single cell variation can significantly affect single cell
population analysis. In general, only mutations observed in multi-
ple cells can confidently be considered real mutations. As a result,
some rare mutations or cell clones may not be able to be identified
with a reasonable confidence level. Another question is how many
cells should be sequenced in a single cell sequencing project? The
sequencing cost of a single cell is still relatively high, and we need
a statistic model to evaluate the appropriate number of single cells
in a project.

EMBRYONIC DEVELOPMENT
Single cell RNA sequencing can provide insight into the dynamic
expression of key genes to explore the relationship among the dif-
ferent stages of stem cells (57). Tang et al. traced the derivation
of embryonic stem cells from the inner cell mass by single-cell
RNA sequencing analysis (97), providing insight into the dynamic
molecular changes that accompany cell fate changes based on the
expression of both mRNA and microRNA. Xue et al. reported a
comprehensive analysis of transcriptome dynamics from oocyte to
morula in both human and mouse embryos, and identified embry-
onic genome activation events (8). These results provide valuable
resources for dissecting gene regulatory mechanisms, and for
understanding the underlying progressive development of early
mammalian embryos. For example, single cell RNA sequencing
has a great potential for discovering previously unrecognized bio-
logical distinctions between two-cell, four-cell, eight-cell, and later
stages of embryogenesis. However, the high level of noise inher-
ent in single cell genomics is hard to address, because of technical
limitations in both experimental preparations and computational
approaches, due to biological reasons and the limited amount
of input material available. Future studies based on hundreds
or thousands of single cells with new bioinformatics approaches
will enable analyses to reconstruct intracellular genetic circuits,
enumerate and redefine cell developmental states and types, and
understand cellular decision-making on a genomic scale.

CONCLUSION
Single cell genomics analysis not only provides a more precise
measurement, but is also a decisive move toward a fundamental
understanding of the biology of cells. The ever-increasing power

of DNA sequencing technology means that it will soon be possible
to sequence every nucleic acid in many thousands of cells.

At present, single cell sequencing techniques still have two
major shortcomings: low genome coverage, and high amplifica-
tion bias. Despite the limitations, these still-evolving technologies
will eventually revolutionize research in oncology, neuroscience,
cell development, and microbiology. Partly through innovations in
microfluidics (98, 99) and next generation sequencing technolo-
gies, we expect that the primary nucleic acid sequence analysis
of single cell genomic DNAs and RNAs will be solved in a few
years.

However, few existing bioinformatics software packages exist
for the purpose of single cell genomics data analysis. Continued
advances in the application of singe cell sequencing technologies
in biological research will require development of new algorithms
and software able to handle the specific characteristics of these
technologies. In particular, we need tools to evaluate the perfor-
mance of different single cell sequencing technologies. Technical
standards should be built to evaluate the genome coverage and
amplification biases, so that the results from different technolo-
gies can be compared with each other. Meanwhile, new tools are
needed to manage the large amounts of data generated by single
cell sequencing technologies, which is expected to be one order
magnitude larger than regular bulk sequencing projects. An open-
source and shared model will accelerate the progress by allowing
the scientific community to join forces in addressing the challenges
and promises of the new technologies.
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