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Despite increasing cure rates for pediatric leukemia, relapsed disease still carries a poor
prognosis with significant morbidity and mortality. Novel targeted therapies are currently
being investigated in an attempt to reduce adverse events and improve survival outcomes.
Antibody therapies represent a form of targeted therapy that offers a new treatment para-
digm. Monoclonal antibodies are active in pediatric acute lymphoblastic leukemia (ALL) and
are currently in Phase III trials. Antibody-drug conjugates (ADCs) are the next generation of
antibodies where a highly potent cytotoxic agent is bound to an antibody by a linker, result-
ing in selective targeting of leukemia cells. ADCs are currently being tested in clinical trials
for pediatric acute myeloid leukemia and ALL. Bispecific T cell engager (BiTE) antibodies
are a construct whereby each antibody contains two binding sites, with one designed to
engage the patient’s own immune system and the other to target malignant cells. BiTE
antibodies show great promise as a novel and effective therapy for childhood leukemia.This
review will outline recent developments in targeted agents for pediatric leukemia including
monoclonal antibodies, ADCs, and BiTE antibodies.
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INTRODUCTION
Leukemia is the most common pediatric malignancy and is still the
most frequent cause of death of all childhood malignancies (1).
Despite significant progress in cure rates since the 1970s, relapsed
and refractory acute lymphoblastic leukemia (ALL) still results in
a high burden of disease (2) with a 5-year survival of ~30%. More-
over, acute and long-term adverse effects of systemic conventional
chemotherapy and radiotherapy limit quality of life for survivors
(3). Acute myeloid leukemia (AML) is less common than ALL
in the pediatric population and carries a poorer prognosis. While
80% of children with newly diagnosed AML will achieve remission,
the overall cure rate remains unchanged at 50–60% (4).

Over the past decade, leukemia outcomes have improved as a
result of optimizing chemotherapy; tailoring treatment to indi-
vidual patients, for example, by monitoring for minimal residual
disease (MRD); and utilizing more sophisticated hematopoietic
stem cell transplantation (HSCT) techniques. However, current
conventional cytotoxic drugs have limitations including their nar-
row therapeutic window. This leads to systemic cytotoxicity, due
to non-selective mechanisms of action that affect both normal
and neoplastic cells (5, 6). Thus, novel therapeutic approaches
are needed to overcome these limitations, reduce adverse effects,
and improve disease-free and overall survival (OS), especially
in patients with relapsed or refractory disease. Targeted thera-
pies that deliver drugs specifically to malignant cells while min-
imizing exposure to normal tissues represent one therapeutic
approach.

Since the role of the immune system in the recognition and
elimination of malignant cells has been better understood (7),
monoclonal antibodies and antibody-drug conjugates (ADCs)
have been explored and developed as potential novel therapies

for both hematological and solid tumors. Malignant cells, such as
leukemic blasts, express antigens on their surface that can be selec-
tively targeted by monoclonal antibodies. This minimizes gener-
alized side effects and allows directed delivery of highly potent
drugs. They have longer circulating half-lives, greater accumula-
tion in tumor cells, and fewer systemic side effects than traditional
chemotherapeutic agents (8).

Leukemic cells are particularly well suited to these novel anti-
body based treatment strategies since their surface antigen markers
are well characterized, readily accessible in the circulation and
shared almost exclusively with precursor cells in the hematopoietic
system, the depletion of which can be transiently tolerated (9).

One of the factors that contribute to the efficacy of antibody
based therapies includes the level of expression of the target anti-
gen. Antigen targets are ideally expressed in high concentrations
on malignant cell surfaces but not on normal cells, thus enhanc-
ing the selectivity and minimizing the systemic side effects of the
drug. Rituximab is a naked monoclonal antibody against CD20
that is effective in non-Hodgkin lymphoma (NHL) where 100,000
antigens are present on the surface of each cell (10). However,
high level antigen expression is not a prerequisite for clinical ben-
efit, especially when treated with ADCs. For example, AML cells
express ~5000–10,000 copies of CD33 on each cell’s surface, which
is sufficient to produce sensitivity to gemtuzumab ozogamicin
(GO) (11). Antigen expression on non-vital organ or cell pop-
ulations may be acceptable, such as CD19, CD20, and CD33,
which are markers for B cells and myeloid cells. Most patients
can temporarily tolerate the elimination of these cells.

The selection of “functional antigens” that are essential for cell
survival is advantageous to prevent the malignant cells becoming
resistant by down-regulating the specific target antigen. The target
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antigen should be expressed in all or most patients with the disease,
or at least be measurable through flow cytometry to allow selec-
tion of patients likely to benefit. It is ideally expressed throughout
the disease course (12).

Rapid internalization of the bound antigen-ADC complex is
desirable, a process that usually occurs through receptor medi-
ated endocytosis. The catabolic environment within lysosomes
then provides ideal conditions for effective drug release (13). In
contrast, slow internalization is preferred for naked monoclonal
antibodies to allow them to trigger antibody-dependent cellu-
lar cytotoxicity (ADCC) or complement-dependent cytotoxicity
(CDC) upon binding to the target antigen (14).

Unconjugated monoclonal antibodies are the archetype on
which targeted therapies are modeled and rituximab has demon-
strated high levels of therapeutic utility within this class of drugs
(15). Murine antibodies (derived entirely from mice) or chimeric
antibodies (constructed from variable regions derived from a
murine source and constant regions from a human source) result
in an immune response and the generation of human anti-murine
antibodies that can limit their efficacy and lead to resistance.
Humanized and entirely human antibodies circumvent this lim-
itation as their constant and variable regions are human-derived
and hence less likely to generate antibodies. They have half-lives
of days to weeks in the human circulation (15).

Antibody-drug conjugates combine the specificity of mono-
clonal antibodies with the potency of highly effective cytotoxic
drugs that cannot be delivered systemically. After binding to the
target antigen, the ADC-antigen complex is internalized and trans-
ported to intracellular organelles, where the cytotoxic drug is
released and causes cell death.

Bispecific antibodies have been recently developed and use a
similar approach, but rather than enhancing the selectivity of a
chemotherapeutic compound, they seek to engage the patient’s
own immune system to target the tumor cell. They typically con-
tain two binding sites – one that targets an antigen on the cancer
cell and one that targets immune cells, such as T cells, and thus
engages them to attack the malignant cell.

Other conjugated immunotherapies currently under investiga-
tion for the treatment of leukemia include pretargeted radioim-
munotherapy, which combines antibodies with α, β, or γ-emitting
radionuclides (16). These immunoconjugates are beyond the
scope of this review.

The current state of clinical development of antibodies for
treatment of pediatric leukemia are summarized in Table 1 and
discussed in detail below.

UNCONJUGATED MONOCLONAL ANTIBODIES
Unconjugated monoclonal antibodies selectively target antigens
expressed on malignant cells and cause cell killing by three
main mechanisms: ADCC through the engagement of NK
cells, macrophages, and neutrophils; antibody-dependent cellular
phagocytosis (ADCP); and CDC (12). They have generally shorter
circulating half-lives than ADCs and the risk of antibody devel-
opment against murine proteins can limit their utility (14). The
majority of naked monoclonal antibodies are used in combina-
tion with chemotherapy as they have insufficient cytotoxic activity
when delivered as monotherapy.

ANTI-CD20 ANTIBODIES
Rituximab, a chimeric anti-CD20 monoclonal antibody, is one
of the earliest examples of this class and is now used as stan-
dard front-line therapy in adult NHL and second line treatment
in other hematologic malignancies (17, 18). CD20 expression is
found in >95% of B cell lymphomas, particularly in mature cell
malignancies such as Burkitt lymphoma, making this an ideal tar-
get. Anti-CD20 antibodies have an effect on cell signaling and
induce apoptosis through ADCC and CDC mechanisms. Sec-
ondary to CD20+ B cell depletion from the blood, marrow, and
lymph nodes, rituximab is associated with hypogammaglobu-
linemia and increased risk of infections, particularly some viral
infections including cytomegalovirus and hepatitis B (16).

Rituximab has been investigated in children primarily as a ther-
apy for Burkitt (mature B cell) leukemia/lymphoma. Its activity
has been demonstrated as a single agent (19) and the Children’s
Oncology Group (COG) recently completed a single arm Phase II
trial of rituximab in combination with standard chemotherapy in
pediatric patients with newly diagnosed mature B cell leukemia
and/or lymphoma, with results pending (NCT00057811). An
international Phase III randomized trial is currently evaluating
the benefit of the addition of rituximab to standard therapy in
children with newly diagnosed mature B cell leukemia/lymphoma
(NCT01516580).

CD20 is expressed in ~50% of pre-B ALL with increased expres-
sion in childhood ALL observed after induction chemotherapy.
The role of anti-CD20 monoclonal antibody therapy in this con-
dition is yet to be defined. Rituximab resistance is emerging as
a clinical issue in adult leukemia and lymphoma, leading to the
development of newer generation anti-CD20 antibodies including
ofatumumab, ocrelizumab, and veltuzumab (20).

Ofatumumab, a fully humanized anti-CD20 monoclonal anti-
body, is currently undergoing a Phase II study in combination
with the hyper-CVAD regimen (cyclophosphamide, vincristine,
adriamycin, and dexamethasone) as first line treatment for adult
patients with CD20 positive ALL. A Phase II trial of ofatumumab
in combination with conventional chemotherapy (cyclophos-
phamide, doxorubicin, vincristine, and prednisone; O-CHOP) in
patients with follicular lymphoma resulted in a 90–100% overall
response rate (21).

ALEMTUZUMAB
Alemtuzumab (Campath) is a humanized anti-CD52 monoclonal
antibody that is used predominantly for the treatment of refrac-
tory chronic lymphocytic leukemia (CLL) in adult populations
and for graft versus host disease prevention in pediatric HSCT
recipients. CD52 is broadly expressed across all normal T and B
cell lymphocytes, except plasma cells, as well as on some myeloid
cells. Due to this broad expression of CD52 antigen, the major tox-
icity is immunosuppression and opportunistic infections. CD52 is
also highly expressed across a variety of malignant cells including
in childhood precursor B cell ALL. It was therefore evaluated by
the COG as a single agent in a Phase II study for children with
relapsed or refractory childhood ALL. Limited activity was seen
with a response rate of only 8%, suggesting no defined role in this
disease, although poor accrual led to early termination of the trial
and a small sample size of nine fully evaluable patients (22).
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Table 1 | Clinical development of antibody therapy for pediatric leukemia.

Drug Target; indication Antibody Cytotoxic Linker Clinical

phase

Pediatric

trial phase

Response rate

UNCONJUGATED MONOCLONAL ANTIBODIES

Rituximab CD20; NHL, ALL Chimeric – – III III 89% OS in ALL

(18)

Epratuzumab CD22; ALL Humanized – – III III 52% CRR in ALL

(79)

Ofatumumab CD20; ALL, NHL Humanized – – II – 90–100% ORR in

NHL (21)

Alemtuzumab CD52; CLL Humanized – – III II 8% ORR in

ALL (22)

ANTIBODY DRUG CONJUGATES

Gemtuzumab

ozogamicin

CD33; AML Humanized Calicheamicin Disulfide linker III III 25–30% ORR in

AML (35)

Inotuzumab ozogamicin

(CMC-544)

CD22; ALL,

DLBCL

Human Calicheamicin Acid labile linker II/III I 57% ORR in

ALL (53)

SAR3419 CD19; DLBCL,

ALL, HL

Humanized DM4 Disulfide linker II Preclinical N/A

SGN-CD33A CD33; AML Humanized Calicheamicin Protease-cleavable

linker

I – N/A

AVE9633 CD33; AML Humanized Maytansinoid

(DM4)

Disulfide linker I I N/A

SGN-CD19A CD19; B cell ALL Humanized MMAF I I N/A

DCDT2980S CD22; NHL Humanized MMAE Protease-cleavable

linker

0 – N/A

BISPECIFIC ANTIBODIES

Blinatumomab CD19/CD3ε; B

cell ALL, DLBCL

Humanized – – II I/II 41% ORR in ALL

(73)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; NHL, non-Hodgkin’s lymphoma; HL, Hodgkin lymphoma; DLBCL, diffuse large B cell lymphoma;

ALCL, anaplastic large cell lymphoma; CLL, chronic lymphocytic leukemia; MMAE, monomethyl auristatin E; MMAF, monomethyl auristatin F; OS, overall survival;

ORR, overall response rate; CRR, complete remission rate.

EPRATUZUMAB
Epratuzumab, is a humanized anti-CD22 monoclonal antibody
that exerts its anti-cancer efficacy through ADCC activity and bio-
logic activity through B cell receptor modulation. CD22 expression
is restricted to B cells including immature and mature B cells, but
not pro-B or plasma cells, and is expressed on the majority of
pre-B ALL cells, making it an attractive target for immunotherapy.
Epratuzumab was initially studied for the treatment of lupus and
is currently in Phase III stages of development for this indication.
It has shown promising results in adult NHL and diffuse large
B cell lymphoma (DLBCL) in combination with rituximab and
standard chemotherapy (23).

Epratuzumab represents the monoclonal antibody that is most
progressed in the treatment of childhood pre-B ALL. A pilot
COG study showed that it was well tolerated in 15 children
with relapsed ALL with toxicity limited to mild infusion related

reactions. During a single agent treatment window limited activ-
ity was seen. However, of the 12 patients who received antibody in
combination with chemotherapy, 9 achieved a complete remission
(CR), and in 7 their MRD became undetectable (24). In a larger,
follow up, Phase II study, 114 children received epratuzumab in
combination with re-induction chemotherapy for relapsed ALL.
While remission rates did not differ from historical controls, those
who obtained CR had significantly lower MRD levels than patients
in previous reports treated with the same chemotherapy regimen
(25). These results suggest that treatment with epratuzumab may
improve the quality of remission in relapsed patients and hence
overall outcomes. This hypothesis is currently being studied in a
large, randomized, international Phase III relapsed pediatric ALL
study. As such, epratuzumab will be the first monoclonal antibody
to be evaluated in a randomized Phase III setting for childhood
pre-B ALL.
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CONJUGATED MONOCLONAL ANTIBODIES
Antibody-drug conjugates have been shown to be more active than
unconjugated monoclonal antibodies targeting the same surface
antigen in preclinical studies. For example, SAR3419, an ADC
comprised of the anti-CD19 antibody huB4 and the maytansine
derivative DM4, has greater anti-tumor activity compared with
the monoclonal antibody huB4, the drug conjugate DM4 alone
or the unconjugated anti-CD20 rituximab (26). Due to limita-
tions in binding sites on each antibody, only a small amount
of active drug can be expected to be delivered to target cells, a
barrier that can be overcome by utilizing highly potent cytotoxic
agents (27).

Leukemic cells are prime targets for ADCs as they express sev-
eral human antigens that are not commonly expressed on normal
cells and are easily accessible in the circulation (11, 27). Addi-
tionally, anti-drug antibody formation, and hence chemotherapy
resistance, is reduced in leukemia due to the commonly asso-
ciated immunosuppression and depletion of B cells and thus
decreased ability to form antibodies. Since they do not require
active immunological responses to exert their clinical activity,
they may also be effective in profoundly immunocompromised
patients. The ADC target antigens in leukemia are well character-
ized, and their expression on normal cells (such as precursor B cells
and myeloid cells) can be tolerated due to the sophisticated sup-
portive care available in clinical practice, and the ability of these
cells to regenerate (9).

The target antigen, potency of the cytotoxic agent and stability
of the linker that joins the two elements of the ADC have inter-
dependent effects on the properties of the drugs. They determine
the clinical activity and tolerability of the ADC (28).

LINKERS
Linker technology is an area in ADC drug development that has
progressed rapidly in recent years. There are four main types of
linkers currently in use (27):

1. Acid labile-hydrazone linkers that are degraded in the acidic
environment of lysosomes (pH ~5) (Unstable, acid-cleavable).

2. Disulfide-based linkers that are selectively cleaved in the
intracellular milieu of the cytosol (Unstable, acid-cleavable).

3. Peptide linkers such as citrulline–valine that are highly stable
in circulation and are degraded by lysosome proteases in the
target cells. They are generally more stable than disulfides or
hydrazones.

4. Non-cleavable thioether linkers that release the active cytotoxic
drug after degradation of the antibody in the lysosomes.

Stable linkers such as peptide linkers have the advantage of
extending the half-lives of cytotoxic drugs from hours to several
days. Unstable linkers can reduce the half-lives of monoclonal
antibodies, resulting in free antibody, which will competitively
bind to the target antigen thereby reducing the efficacy of the
ADC (29). Intermediate linker stability results in the most effective
ADCs, since highly stable linkers result in decreased cytotoxic drug
release following internalization of the ADC-antigen compound.
For example, a serum-stable but intracellularly cleavable linker

used to join epratuzumab to SN-38 used in B cell malignancies
was shown to be 40- to 55-fold less potent than the more labile
CL2A linker in in vitro studies (30).

Antibody-drug conjugates linked by a disulfide linker (but not
thioether bond) are capable of exerting a bystander effect on cells
that express none or low levels of the target antigen. Hence ADCs
can be engineered to exert a bystander effect by being linked by
a disulfide bond or exert more precise killing of cells expressing
the target antigen and sparing nearby normal cells by being linked
by a thioether bond. The bystander effect may be beneficial par-
ticularly in solid tumors whereby damaging supporting structures
including endothelial cells, neovasculature, and stromal cells can
enhance the efficacy of the ADC (31). However, in leukemia pre-
cision of the ADC in targeting circulating malignant cells is more
desirable.

There is still an ongoing effort to further improve linker tech-
nology to improve the efficacy and reduce toxicity of ADCs.
Newer linker technologies include flexible polymer linkers (Mer-
sana Therapeutics), which allow greater drug loading (15–20 drugs
per antibody), as well as the use of antibody fragments. This allows
the use of less potent cytotoxics and hence potentially reduces
generalized toxicity (32).

CYTOTOXIC DRUG
Historically ADCs combined monoclonal antibodies with stan-
dard chemotherapeutic agents including anthracyclines (doxoru-
bicin), methotrexate, and vinca-alkaloids (vinblastine) due to their
availability and known cytotoxic properties. More recently highly
potent cytotoxic drugs have been used that cannot be delivered
systemically without being conjugated to specific antibodies via a
stable linker.

Auristatins and maytansines exert their cytotoxic activity
through inhibition of microtubule assembly by binding to tubu-
lin at the same site as vinca-alkaloids. These agents are 50- to
200-fold more potent then vinca-alkaloids and they cause G2/M
phase cell cycle arrest and apoptotic cell death. Calicheamicin is
an enediyne antibiotic and DNA strand cleaving agent that causes
double-strand breaks, leading to cell apoptosis. Each is 100- to
1000-fold more potent than conventional chemotherapy drugs,
but has little to no cytotoxic activity at the maximum tolerated
dose achievable in the clinic if used alone.

Pharmacokinetic studies have shown that an average of four
drugs per antibody binding site produces a stable compound
that effectively delivers optimal drug concentrations into malig-
nant cells that express the target antigens (33, 34). More heavily
loaded drug concentrations tend to be rapidly cleared from the
circulation or cause aggregation and impair antigen binding (12).
Less loaded conjugates result in free monoclonal antibody, which
competitively binds to the target antigen, resulting in a shorter
half-life (13).

CD33
CD33 is an antigen expressed in significant levels by 90%
of leukemic blasts in AML and immature normal cells of
the myelomonocytic lineage but that is absent from normal
hematopoietic stem cells (12), making it an optimal target.
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GEMTUZUMAB OZOGAMICIN
Gemtuzumab ozogamicin (Mylotarg) is the first example in the
ADC class of drugs to receive FDA approval. It was approved in
2000 for the treatment of AML after undergoing trials as both
monotherapy and combination therapy with standard treatment
in adult AML patients (35). It is a humanized anti-CD33 mono-
clonal antibody linked to calicheamicin. The antibody is linked
to the cytotoxic drug via an acid labile disulfide linker, which
is hydrolyzed within the acidic environment of lysosomes and
endosomes in target cells to release calicheamicin as an active drug.

Conflicting results have been seen in adult AML patients treated
with GO. As monotherapy in patients >60 years with relapsed
CD33 positive AML, GO resulted in an overall response rate of
25–30%. However,GO was withdrawn from the market by its man-
ufacturer in June 2010 due to the results of a Phase III randomized
controlled trial that showed no additional benefit of GO in combi-
nation with standard therapy (daunorubicin and cytarabine) over
standard therapy alone for adult AML (36). Additionally, fatal tox-
icity secondary to veno-occlusive disease (VOD) was reported in
the GO arm, with an incidence of ~2% and increased risk post
HSCT (37). GO’s efficacy was thought to be limited by heteroge-
neous drug conjugation, linker instability, and a high incidence of
multi-drug resistance (38).

Gemtuzumab ozogamicin has been studied extensively in pedi-
atric AML. In a Phase I pediatric study it induced remission as a
single agent in 28% of patients with relapsed or refractory CD33
positive AML. The main adverse events reported were marrow
suppression and VOD. The latter occurred in 40% of patients who
underwent HSCT after GO, and one patient prior to HSCT. This
patient subsequently underwent HSCT without developing VOD
(4). In a randomized Phase III study of GO as post-consolidation
therapy for children with AML, the drug was well tolerated, how-
ever no survival benefit was seen (39). GO was recently evaluated
in a randomized Phase III COG trial in pediatric patients newly
diagnosed with AML. The addition of GO to standard chemother-
apy did show improved overall event-free survival and relapse-free
survival but with no significant difference in OS (40, 41).

A low fractionated dose regimen of GO as first line ther-
apy in adults with previously untreated AML showed significant
improvement in event-free, relapse-free, and OS compared with
standard chemotherapy, and was generally well tolerated apart
from hematological toxicity (thrombocytopenia) in a Phase III
randomized open-label trial (ALFA-0701) (42). This suggests that
this regimen may allow for the delivery of higher cumulative doses
and improve outcomes.

Several case reports have identified the potential of GO
monotherapy in inducing remission in relapsed CD33 positive
ALL, which represents 15% of pediatric and adult ALL (43–47).

SGN-CD33A
SGN-CD33A is a humanized anti-CD33 antibody conjugated
to a highly potent, synthetic DNA cross-linking pyrrolobenzo-
diazepine dimer via a protease-cleavable linker. It causes DNA
damage with cell cycle arrest and apoptotic cell death to exert
its efficacy in CD33 positive AML (38). A Phase I dose finding
study is currently recruiting adult patients with CD33 positive
AML (NCT01902329).

AVE9633
This humanized antibody (huMy9-6) that targets CD33 is linked
to the maytansinoid (DM4) via a disulfide linker. It is currently
undergoing a Phase I trial in relapsed or refractory CD33 posi-
tive AML in adults (NCT00543972). Results are pending, but one
complete response and one partial response was observed from
the first 17 patients enrolled in the study (12).

CD22
As discussed above, CD22 has been identified as an ideal target
for ADCs due to high expression on the surface of malignant
B-lineage leukemia (>90% of B cell ALL) and lymphoma cells
and rapid internalization after binding (48, 49). Since the CD22
antigen undergoes constitutive endocytosis, it is well suited for
intracellular drug delivery.

A number of CD22 targeted ADCs and recombinant immuno-
toxins are currently in development for pediatric B-lineage ALL
and NHL, as well as adult hairy cell leukemia (49–52).

INOTUZUMAB OZOGAMICIN
Inotuzumab ozogamicin (IO, CMC-544) is a human anti-CD22
monoclonal antibody linked to calicheamicin, which was shown
to induce CR in 39% of adults and children with relapsed and
refractory ALL with an overall response rate of 57% in a Phase II
trial (53). A Phase I/II dose escalation trial in adults resulted in
71 and 88% OS in DLBCL and follicular lymphoma, respectively
(54). It is currently undergoing a randomized Phase III trial in
adults with a pediatric ALL Phase I trial planned. Despite lower
CD22 expression on ALL cells compared to lymphoma cells, IO
had similar cytotoxicity against both types of cells in preclinical
in vitro studies (55).

DCDT2980S
DCDT2980S is a humanized anti-CD22 antibody linked to the
potent monomethyl auristatin E (MMAE) cytotoxic agent via
a protease-cleavable linker, and is capable of inducing complete
tumor regression in xenograft models of NHL (56).

CD19
CD19 is a transmembrane glycoprotein and a pan-B cell marker
expressed throughout B cell development with the exception of
mature plasma cells. It has threefold higher expression in mature B
cells compared with immature B cells (57) and is one of the earliest
B cell restricted antigens. It plays an important role in maintaining
balance between immunity and autoimmunity. CD19 is integral to
B cell differentiation through receptor signaling at multiple stages
of B cell development, which allows anti-CD19 antibodies to target
various B cell malignancies including immature precursor B cells
in ALL (58). CD19 is almost universally expressed in all pediatric
ALL blast cells (59), which has led to interest in the development
of CD19 targeted antibodies for the treatment of ALL.

SAR3419
SAR3419 is comprised of a humanized monoclonal IgG antibody
targeting CD19 (huB4) and a maytansine derivative and highly
potent cytotoxic drug (DM4) conjugated via a cleavable disulfide
cross-linking agent (N -succinimidyl-4-2-pyridildithio butanoic
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acid, SPDB). It has a half-life of 4–6 days in vivo. The human-
ized B4 monoclonal antibody alone directed against CD19 was not
found to have any in vivo activity against a variety of lymphomas
in mouse models (26).

A Phase I trial in adults with relapsed or refractory CD19 pos-
itive B cell NHL resulted in a 33% objective response rate with
further results pending (60). Another Phase I first-in-man clin-
ical trial in patients with relapsed lymphoma demonstrated a
reduction in tumor size in 47% of adult patients (61). The main
dose-limiting toxicity in Phase I trials has been reversible corneal
microcystic epithelial changes. There has been a notable lack of
significant hematological toxicities (58).

SAR3419 was identified through the National Cancer Insti-
tute’s Pediatric Preclinical Testing Program as a potentially highly
effective therapy for pediatric ALL. Further preclinical studies
suggest that SAR3419 is highly effective in combination with stan-
dard induction chemotherapy (vincristine, dexamethasone, and
l-asparaginase) for CD19 positive ALL, including chemoresistant
subtypes such as Philadelphia positive ALL and infant MLL-ALL.
SAR3419 induced durable remissions in highly chemoresistant
ALL xenografts and effectively prevented relapse in hematolym-
phoid and peripheral organs (except the CNS) when administered
in combination with standard chemotherapy (62). A Phase I/II
trial in adult ALL patients is currently recruiting, and a pediatric
Phase I trial is currently planned.

SGN-CD19A
This humanized anti-CD19 monoclonal antibody conjugated
to the auristatin derivative monomethyl auristatin F (MMAF)
showed positive results in a first-in-human Phase I trial of patients
with relapsed or refractory B cell ALL and lymphoma, including
pediatric patients. Of a total eight patients with leukemia, one
achieved CR and four experienced clinical improvement. The main
reported adverse effects were headache, fever, nausea, fatigue, and
blurred vision (63).

OTHER ANTIBODY-DRUG CONJUGATES
Antibody fusion proteins combine the cytotoxic portion of a pro-
tein toxin produced by bacteria, fungi, or plants, and a monoclonal
antibody directed at antigens expressed on malignant cell surfaces.
These cytotoxic agents inhibit protein synthesis and induce apop-
tosis. Moxetumomab pasudotox is an example of this class of drugs
that is composed of a humanized anti-CD22 monoclonal antibody
and a 38 kDa fragment of the pseudomonas exotoxin A called PE38
(64). A Phase I trial of moxetumomab pasudotox resulted in 3 CRs
out of 12 pediatric patients with pre-B cell ALL (65) and a Phase
II study of pediatric patients with relapsed or refractory B cell ALL
or NHL is currently planned.

BISPECIFIC ANTIBODIES
Since the recognition of tumor immune surveillance and the role
of T cells in this process (66, 67), various T cell based therapeu-
tic approaches have been developed to control cancer growth or
induce tumor regression. These include anti-cancer vaccines, T cell
activating antibodies and adoptive transfer of autologous ex vivo
expanded T cells (68). Most of these strategies are subject to tumor
escape mechanisms through down-regulation of surface antigens

and loss of molecules involved in T cell recognition. Additionally,
conventional antibodies cannot recruit T cells as they lack an Fcγ
receptor.

Bispecific T cell engager (BiTE) antibodies can largely overcome
these limitations by directly engaging and recruiting pre-existing,
antigen-experienced, polyclonal T cells at the invariant CD3 recep-
tor as well as antigens on malignant cell surfaces and bringing
them into close proximity. This then triggers the signaling cas-
cade of the T cell receptor complex and redirects endogenous T
cells against specifically targeted malignant cells. Granules con-
taining granzymes and perforin fuse with the T cell membrane
and discharge their cytotoxic contents. (69). This local T cell acti-
vation has the potential to be used to monitor the efficacy of BiTE
antibody-drugs.

Bispecific T cell engager antibodies are rapidly emerging as an
exciting novel targeted cancer therapy, particularly in hematolog-
ical malignancies. The therapeutic mechanism of BiTE antibodies
is relatively resistant to immune escape mechanisms as they uti-
lize the patient’s own immune system for their efficacy. Since
these drugs rely on functional immune effector cells for activ-
ity, challenges exist around their administration in conjunction
with myelosuppressive chemotherapy. While a precise role is yet
to be defined, their administration after allogeneic HSCT may be
effective.

BLINATUMOMAB
Blinatumomab is an anti-CD19/anti-CD3ε bispecific antibody in
clinical development for the treatment of B-lineage hematologic
malignancies. It is designed to transiently engage primed cytotoxic
effector memory T-lymphocytes for targeted killing of malignant
B cells, which uniformly express CD19 (70).

There have been very promising results emerging from Phase
II trials with blinatumomab, indicating that it is a highly effica-
cious anti-leukemia drug. In a recent long-term analysis of a Phase
II trial with a median follow up of 33 months, blinatumomab
induced an 80% MRD response rate in adults (16 of 20 patients)
with B cell ALL and persistent or relapsed MRD (71). Blinatu-
momab has been reported to induce CR in three cases of pediatric
patients with relapsed and refractory B cell ALL after allogeneic
HSCT (72). A pediatric Phase I/II trial of blinatumomab in chil-
dren with relapsed or refractory B cell ALL resulted in an overall
response rate of 41% with a 32% CR rate (73). The most signifi-
cant reported adverse events are reversible central nervous system
toxicities including encephalopathy, tremor, and aphasia (20).

An adult Phase II trial in patients with refractory or relapsed
DLBCL is also currently recruiting patients (NCT01741792)
and a number of other Phase II trials with blinatumomab are
planned including patients with Philadelphia positive B cell ALL
(NCT02000427) and MRD positive ALL (NCT00560794). A Phase
III trial of blinatumomab for patients with refractory or relapsed
B cell ALL is also planned (NCT02013167).

Blinatumomab does have a relatively short half-life of 2–3 h
due to rapid renal clearance, making continuous infusion over
4–8 weeks via portable mini-pump the optimal mode of deliv-
ery (69), which presents challenges in the pediatric population.
The dependence on circulating immune cells also limits the
ability to combine the treatment with standard cytotoxic and
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myelosuppressive therapies. However the striking efficacy and
has generated great interest with a potential future role in the
management of MRD positive disease.

CHIMERIC ANTIGEN RECEPTORS
Although a detailed discussion is beyond the scope of this review,
chimeric antigen receptors (CARs) are also emerging as effective
therapies for hematological malignancies. CARs are T cells genet-
ically modified and linked to an antibody directed against malig-
nant cell surface antigens. They exert their cytotoxicity through
T cell mediated signaling pathways. CARs directed against CD19
antigens have been effective in hematological malignancies with
an overall CR rate of 88% in adults with refractory or relapsed
B cell leukemia (74). A number of ongoing clinical trials using
CARs directed against CD19 have demonstrated efficacy in pedi-
atric patients with B cell leukemia and lymphoma (75). Grupp
et al. reported CRs in two pediatric patients with relapsed and
refractory B cell ALL with CTL019 CAR T cells. The most signif-
icant dose-limiting toxicities were the cytokine-release syndrome,
requiring cytokine blockade with etanercept and tocilizumab, and
B cell aplasia (76).

CONCLUSION
Antibody therapy represents an exciting new treatment approach
for childhood leukemia. ADCs and BiTEs are rapidly emerging
as the next frontier in the treatment of hematological malignan-
cies and their application in pediatric leukemia is in development.
Over the past 50 years, minimal changes have occurred in the drugs
used to induce and maintain remission in pediatric leukemia, with
most trials using established cytotoxic drugs but with variations
in schedules and dosages. Further advancement in the treatment
of pediatric leukemia, with the ultimate aim of improved OS and
reducing the acute and long-term complications of treatment, may
be achieved by the inclusion of novel antibody therapies. Sev-
eral drug conjugates and bispecific antibodies have demonstrated
promising activity in pediatric leukemia and ultimately these com-
pounds may transform the routine management of childhood
leukemia patients in the future.

A major challenge lies in the development of clinical trials
that will ultimately inform the integration of novel antibody
therapies into standard treatment protocols. Experience with rit-
uximab has shown that the improvement in survival in adult
lymphoma patients occurs through combination with standard
chemotherapy, rather than implementation as monotherapy (16).
Trials of antibodies such as alemtuzumab, as single agents in pedi-
atric leukemia, have had difficulty recruiting patients and have
shown low levels of activity. Preclinical data on SAR3419 demon-
strate that it has the greatest levels of activity and synergy when
combined with standard cytotoxic therapies (62). Encouragingly,
epratuzumab is the first monoclonal antibody to be evaluated
in combination with conventional chemotherapy for childhood
pre-B ALL in an international Phase III trial. Integration of anti-
body therapy with chemotherapy will be especially challenging for
BiTE drugs such as blinatumomab that rely on T cell function
for their efficacy, since these immune cells are depleted by myelo-
suppressive chemotherapy. Blinatumomab may eventually have
a role administered between cycles of standard chemotherapy,

as part of maintenance treatment, post transplantation, or to
treat MRD.

The incorporation of antibody therapies into standard
chemotherapy backbones not only produces opportunities to
increase treatment efficacy, but may be an avenue to reduce treat-
ment side effects. ADC therapies could potentially be used to
replace a cytotoxic drug in standard protocols with an ADC with
a similar mechanism of action, e.g., vincristine may be replaced in
re-induction regimens by SAR3419. Optimal treatment regimens
may include a number of ADCs targeting different antigens, e.g.,
anti-CD20 and anti-CD19 for B cell malignancies. As the number
of ADCs developed increase, combination trials will need to be
conducted (32).

As antibody trials in pediatric leukemia progress it will be crit-
ical to investigate and identify biomarkers that can accurately
identify patients most likely to benefit from antibody therapy.
While it is clear that expression of the target antigen on the sur-
face of the leukemia cell is a prerequisite, it is unknown whether
other factors influence treatment response. For example, are there
factors that increase the likelihood of the emergence of a resistant
clone, and does the antigen density (that is, the amount of antigen
expressed on the surface of each cell) predict response?

Another major clinical challenge in relapsed ALL remains the
ability to target sanctuary sites such as the CNS and testicular
leukemia. Antibodies in general do not penetrate the blood–brain
barrier and preclinical data confirm that novel ADCs do not
eliminate CNS disease in mouse models of pediatric ALL (62).
Rituximab has recently been shown to be active when adminis-
tered intrathecally (77, 78). It would be of interest to study the
intrathecal administration of novel antibody therapies in child-
hood leukemia to determine whether this approach may improve
the treatment of CNS disease, and also potentially reduce the
need for radiation therapy with its associated significant long-term
morbidities.

The adverse effects of antibody therapies will need to be closely
monitored in the pediatric setting. Overall they appear to be very
safe, with the majority of trials showing favorable toxicity profiles.
In particular, limited hematological toxicity has been recorded.
However, some unexpected adverse events have been noted includ-
ing neurotoxicity with blinatumomab and an increased risk of
VOD, particularly after HSCT, following treatment with GO (4).

It is notable that in the adult population antibody therapy is
utilized and studied more often in lymphoma patients than in
leukemia patients. This is mostly related to the relative incidence
of the diseases, with lymphoma occurring with much higher fre-
quency than ALL. However, hematological malignancies provide
ideal targets for these novel agents, as target antigens can be read-
ily assessed by flow cytometry on blood or marrow. In pediatric
patients, relapsed ALL is a more common clinical problem with
greater burden of disease than lymphoma and should be the focus
of future antibody trials in this population.

Several challenges remain to ensure these novel agents are made
available to childhood leukemia patients. The cost of development,
production, and manufacturing of these drugs is a major limita-
tion to their generalized applicability (9) and pediatric leukemia
patients remain a small market for pharmaceutical companies.
Despite being the most common malignancy to affect children,
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relapsed childhood leukemia remains a relatively rare disease, and
testing these drugs in clinical trials – from early to advanced
phases – requires multi-institutional trials and international co-
operation. Despite these challenges, these novel agents bring the
promise of great advancements in the treatment of pediatric
leukemia with the potential for improved OS and a reduction in
treatment toxicity.
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