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Granulocyte colony-stimulating factor is a cytokine able to stimulate both myelopoiesis and
hematopoietic stem cell mobilization, which has seen it used extensively in the clinic to
aid hematopoietic recovery. It acts specifically via the homodimeric granulocyte colony-
stimulating factor receptor (G-CSFR), which is principally expressed on the surface of
myeloid and hematopoietic progenitor cells. A number of pathogenic mutations have now
been identified in CSF3R, the gene encoding G-CSFR.These fall into distinct classes, each
of which is associated with a particular spectrum of myeloid disorders, including malig-
nancy. This review details the various CSF3R mutations, their mechanisms of action, and
contribution to disease, as well as discussing the clinical implications of such mutations.
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G-CSF AND ITS RECEPTOR
Granulocyte colony-stimulating factor (G-CSF, also called CSF3)
augments the production and function of neutrophilic granu-
locytes, which play an essential role combatting infection, espe-
cially those of a bacterial or fungal nature (1–5). G-CSF acts to
mobilize hematopoietic precursor cells and stimulate the pro-
liferation and differentiation of myeloid cells, particularly along
the neutrophilic lineage, as well as activate various functions of
mature neutrophils (6). These properties have seen G-CSF widely
used in the treatment of neutropenic conditions, including severe
congenital neutropenia (SCN) (7–9), and those associated with
chemotherapy (10–12). G-CSF has also been extensively used for
harvesting of HSCs from the peripheral blood, thereby overcom-
ing the requirement for bone marrow transplantations in many
instances (13, 14).

The biological actions of G-CSF are mediated via docking to
a homomeric receptor found on the surface of target cells, gran-
ulocyte colony-stimulating factor receptor (G-CSFR) (also called
CSF3R) (15). The G-CSFR is a member of the hematopoietin
receptor superfamily, which has no intrinsic tyrosine kinase activ-
ity but upon ligand-binding undergoes conformational changes
to stimulate multiple tyrosine kinases associated with its cytoplas-
mic domain. These include Janus kinases (JAKs), especially JAK1
and JAK2 (16–19), members of the SRC kinase family, especially
LYN and HCK (20–22), as well as SYK (20) and TNK (23). Impor-
tant pathways activated downstream include the signal transducer
and activator of transcription (STAT) proteins, particularly STAT3
and STAT5 (17, 18, 24, 25), the phosphatidyl inositol 3-kinase
(PI3-K)–AKT pathway (21, 26, 27), and the RAS–MAPK pathway
(28–30). Signaling via the G-CSFR is tightly regulated, includ-
ing by members of the SOCS family, especially SOCS3 and CISH
(31, 32), as well as the tyrosine phosphatases SHP-1 (26, 33) and
SHP-2 (34, 35).

ROLE OF G-CSFR MUTATIONS IN MYELOID DISORDERS
A large number of mutations in the gene encoding the G-CSFR,
designated CSF3R, have now been described. These mutations
can be placed into a number of distinct classes that relate to the
type of mutation and their biological and clinical consequences
(Figure 1). Mostly these relate to perturbations of the myeloid
lineage, including SCN, Myelodysplastic syndrome (MDS), acute
myeloid leukemia (AML), and chronic neutrophilic leukemia
(CNL). To avoid potential confusion over mutation nomencla-
ture, this review provides residue numbers relative to those of the
mature G-CSFR in the format suggested by the Human Genome
Variation Society, but with the alternate numbering that includes
the cleaved signal sequence given in parenthesis in each case, since
these have also been used in the literature.

“CRIPPLING” EXTRACELLULAR MUTANTS
One class of mutations has been identified affecting the extra-
cellular domain of the G-CSFR in patients with SCN (36–38) or
chronic idiopathic neutropenia (CIN) (39). These mutations have
in common the property of not only being defective themselves,
but also activating in a dominant-negative manner to cripple co-
expressed wild-type receptors (36–38). The first of these mutations
described was a germline p.Pro206His (p.Pro229His) change that
disrupted a conserved di-proline “hinge” motif located between
two halves of the ligand-binding cytokine receptor homology
(CRH) domain. This disrupted the normal architecture of the
ligand/receptor complex, with severe consequences for G-CSF-
mediated signal transduction and cellular responses (36). Two
other mutants represent deletions of the CSF3R gene and con-
comitant alterations in reading frame that yield G-CSFR proteins
consisting of extracellular regions truncated at the WSXWS motif
followed by a novel sequence and a premature stop: the somatic
p.Ser296Gly,fs*29 (p.Ser319Gly,fs*29) mutation (38) and the
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Liongue and Ward G-CSFR mutations in myeloid malignancy

FIGURE 1 | Granulocyte colony-stimulating factor receptor
perturbations in disease. Schematic representation of the mature
G-CSFR (RefSeq NP_000751.3), showing important subdomains and
residues conserved among members of the hematopoietin receptor
superfamily, including the N-terminal Ig domain, four conserved cysteines
(thin line), and WSXWS motif (thick line) within the CRH domain,
fibronectin, and transmembrane domains as well as Box 1–3 (gray

rectangles) and important tyrosine residues within the cytoplasmic region.
The relative positions of various classes of mutation are indicated on the
right along with the respective clinical manifestations of these and other
G-CSFR perturbations. Abbreviations: Ig, immunoglobulin-like; CRH,
cytokine receptor homology; SCN, severe congenital neutropenia; CNL,
chronic neutrophilic leukemia; MDS, myelodysplastic syndrome; AML,
acute myeloid leukemia.

germline p.Ser299Gly,fs*29 (p.Ser322Gly,fs*29) (37). Finally, the
CIN-associated p.Ser601Arg,fs*177 (p.Ser624Arg,fs*177) muta-
tion involved a frameshift that truncates the receptor after the
fibronectin domains (39). While not directly promoting malig-
nancy, the neutropenic conditions that this class of mutation pro-
duces are likely to create susceptibility to other changes that can.
Indeed, one SCN patient with this type of mutation subsequently
acquired additional truncating mutations in the G-CSFR (40),
while the CIN patient went on to develop acute myeloid/natural
killer cell leukemia, although whether the CSF3R mutation played
a role in the latter was not determined (39).

“ACTIVATING” TRANSMEMBRANE MUTANTS
Another class of CSF3R mutations affects the transmembrane
domain and adjacent residues of the encoded receptor. This class
of mutations appears to act by stabilizing transmembrane helix–
helix interactions in the absence of ligand, creating an active
dimeric configuration that leads to constitutive (and enhanced)
activation (41). These are analogous to the activating mutations
found in the thrombopoietin receptor, c-MPL, which are associ-
ated with hereditary or acquired thrombocythemia (42, 43), or
those in the βc chain of the heterodimeric IL-3R family identified
in vitro (44, 45).

The p.Thr595Ile (p.Thr618Ile) mutation was initially described
as a late somatic mutation in the development of AML in an
SCN patient already bearing an alternate G-CSFR mutation (46).
However, p.Thr595Ile has subsequently been identified as a com-
mon mutation in CNL (23, 47), with the adjacent p.Thr592Ala
(p.Thr615Ala) mutation alternatively found in other cases of CNL
(23). The p.Thr595Ile mutation is also less commonly observed
in atypical chronic myelogenous leukemia (aCML) (23), chronic
myelomonocytic leukemia (CMML) (48), de novo AML (23, 48,
49), as well as in cases of early T-cell precursor acute lymphoblas-
tic leukemia (ETP-ALL) (23). G-CSFR forms containing either
the p.Thr595Ile or p.Thr592Ala mutation supported G-CSF-
independent growth of Ba/F3 cells, although growth was similar
to wild-type receptor at high G-CSF concentrations (48). Bone
marrow transduced with the p.Thr595Ile mutant also resulted
in G-CSF-independent growth (46), which could be replicated
by a p.Thr595Val mutant, suggesting the change to a hydropho-
bic amino acid was sufficient (49). Ba/F3 cells expressing the
p.Thr595Ile mutant showed constitutive activation of JAK2, SRC,
TNK, STAT3, and STAT5 (23, 48), but not AKT and ERK, as well
as enhanced ROS production (48). Signaling from the mutant was
found to be sensitive to various JAK kinase inhibitors, including
ruxolinitib and tofacitinib (23, 48), with some evidence of clinical
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efficacy (23), but not to dasatinib that targets a number of tyrosine
kinases, including SRC and TNK (23, 48).

The p.Thr617Asn (p.Thr640Asn) mutation was first identified
in a single case of AML (50). Further studies identified this – and
the alternate p.Thr617Ile (p.Thr640Ile) – as rare, somatic muta-
tions in de novo AML (49, 51). However, a germline p.Thr617Asn
mutation was also identified as the cause of autosomal dominant
hereditary neutrophilia, where it showed complete penetrance
(52). Interestingly, one of the affected individuals progressed to
a myelodysplastic syndrome type disease (52), further implicat-
ing this mutation as predisposing toward myeloid malignancy.
In addition to neutrophilia, patients harboring p.Thr617Asn pos-
sessed increased numbers of CD34+ cells, which were able to
proliferate and terminally differentiate in the absence of G-CSF,
and induce a myeloproliferative (MPD)-like disorder in mice.
Patient CD34+ cells showed constitutive phosphorylation of
JAK2, STAT3, STAT5, and ERK, which were hyperactivated by
G-CSF compared to wild-type cells (52). Lineage-negative bone
marrow cells retrovirally transduced with the p.Thr617Asn mutant
G-CSFR caused neutrophilia when transplanted into irradiated
mice (52). The p.Thr617Asn mutation also supported factor-
independent growth and survival in Ba/F3 cells, with weak con-
stitutive phosphorylation of the receptor, JAK2, STAT3, and ERK,
and also enabled transduced CD34+ cells to undergo myeloid
differentiation in the absence of G-CSF (51).

Finally, an in-frame three nucleotide deletion has been iden-
tified in MDS that replaces two amino acids with an alter-
nate residue, p.Asn630Lys,Arg631del (p.Asn653Lys,Arg654del).
This mutation resulted in prolonged signaling following ligand
stimulation (53).

“HYPERRESPONSIVE” INTRACELLULAR TRUNCATIONS
By far the most studied clinical abnormalities of the CSF3R gene
are a series of acquired nonsense mutations identified in a sub-
set of SCN patients with a propensity to progress to leukemia.
These somatic mutations typically affect a single allele to trun-
cate between 82 and 98 amino acids from the carboxyl-terminus
of the receptor, such as p.Gln718* (p.Gln741*) and pGln731*
(p.Gln754*) (54, 55). These truncated receptors show normal
affinity for G-CSF (56), but mediate heightened growth and
diminished maturation in response to ligand, acting dominantly
over wild-type receptors (54). Truncated G-CSFRs are not the pri-
mary cause of SCN, although they may exacerbate it to a modest
extent (57–60). However, it is clear that SCN patients carrying
truncating G-CSFR mutations show a particularly strong predis-
position to both MDS and AML (61, 62). Indeed in SCN patients
progressing to AML, the most common mutations identified are
in CSF3R (82%), followed by RAS (~50%) and monosomy 7 (63),
and when CSF3R mutations are present, 100% of blasts carry the
mutation (54, 63). However, since mutations are not always seen
in AML and can spontaneously disappear (64), progression to
leukemia is not inevitable.

A mouse line carrying a truncated G-CSFR “knock-in” allele
(57) or one transgenically expressing a truncated human G-CSFR
(58) exhibited mild neutropenia, with an increased percentage
of immature myeloid cells that were defective in maturation ex
vivo (58, 65). An alternate mouse line with a targeted receptor

truncation displayed normal neutrophil numbers, although the
truncated form of the receptor was significantly overexpressed rel-
ative to the wild-type (59). However, all three studies revealed a
hyper-responsiveness to G-CSF, with exogenous G-CSF produc-
ing elevated numbers of neutrophils compared to wild-type mice
(57–59), due to increased myeloid progenitor proliferation (58,
65). Another study confirmed that G-CSFR truncations conferred
a strong clonal HSC advantage that was also dependent on exoge-
nous G-CSF (66), providing insight into how these mutants may
contribute to their frequent progression to MDS/AML. Notably,
expression of the truncated receptor in mice was not by itself
leukemogenic, since no spontaneous leukemia has been reported
in mice hetero- or homozygous for the mutation (57,59). However,
the truncated G-CSFR was found to co-operate with PML–RARa
to induce AML in mice, where it decreased latency in a G-CSF-
dependent manner, leading to higher blast counts and increased
myelosuppression (67).

Investigation into the molecular mechanisms of G-CSFR signal
transduction has helped to explain the dominant hyperprolif-
erative function of truncated G-CSFRs. These mutant receptors
exhibit higher and more sustained activation in comparison to
wild-type receptors, with a heavily reduced “off-rate” (65, 68, 69).
This is partly a result of impaired internalization due to the com-
bined loss of a conserved di-leucine containing motif in Box 3 (69,
70), and a less well-defined motif spanning residues 756–769 (34).
However, direct negative regulation is also blunted, due to the loss
of recruitment sites on the truncated receptors, including those for
the receptor-associated tyrosine phosphatases SHP-1 (at an unde-
fined site in the C-terminus) (71) and SHP-2 (at Y724) (34), and
two members of the SOCS family, CISH (at Y729 and Y744) (32)
and SOCS3 (at Y729) (34), the latter exacerbated by decreased
SOCS3 transcription as a result of reduced STAT3 activation by
truncated receptors (34).

Cells expressing truncated G-CSFR receptors are also hyper-
sensitive to ligand (54, 70). This is associated with an altered
dose–response of STAT3:STAT5 activation, the ratio of which is
drastically reduced at low concentrations of G-CSF (24). Since
STAT5 contributes to G-CSF proliferative responses (72), while
STAT3 is inhibitory (73–75), the reduced STAT3:STAT5 ratio
may shift the balance toward proliferation, explaining the G-CSF
hypersensitivity (54, 56).

Granulocyte colony-stimulating factor receptor truncation
impacts on the length and magnitude of receptor activation, and
particularly of STAT5 (69–71), pathways downstream of PI3-K,
such as AKT (27, 76), as well as SRC (23). Dominant-negative
STAT5 has been shown to inhibit the hyperproliferative func-
tion of truncated G-CSFRs in vitro (77), while the absence of
STAT5 abrogated the clonal HSC advantage conferred by these
receptors in vivo (66). Other pathways also contribute to prolifer-
ation and survival, including PI3-K, MAPK, and STAT3 (76–78).
Interestingly, receptor truncations are sensitive to the multi-kinase
inhibitor dasatinib, but not to JAK inhibitors (23), suggesting
an intrinsic difference in comparison to the activating trans-
membrane mutants. Truncated receptors have also been shown
to increase ROS production (79), potentially creating genotoxic
stress to facilitate addition mutations in cells expressing these
receptors.
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Liongue and Ward G-CSFR mutations in myeloid malignancy

FIGURE 2 | Inhibitors of signaling pathways downstream of
G-CSFR. Schematic representation of the intracellular domain of
G-CSFR, showing the important Box 1–3 sequences (gray rectangles),

as well as the tyrosine residues that serve important docking sites for
the downstream signaling proteins indicated. Known inhibitors of these
are shown.

DEFECTIVE SPLICE VARIANTS
A presumably somatic single base change in CSF3R adjacent to a
cryptic splice-donor site has been identified in blasts of a de novo
AML patient. This resulted in high expression of an alternate splice
variant that generated a G-CSFR protein in which the C-terminal
130 amino acids are replaced with a different 34 amino acids from
an alternate reading frame, p.Val684Ala,fs*34 (p.Val707Ala,fs*34)
(80). The primary AML blast cells of this patient failed to respond
to G-CSF in proliferation assays in vitro, despite responsiveness
to IL-3 or GM-CSF being maintained. This variant was unable to
transduce either proliferation or maturation signals in murine cell
systems. By corollary, AML cells show a tendency for significantly
increased levels of a normally minor CSF3R transcript, class IV
(81), which encodes a similar G-CSFR protein in which the C-
terminal 87 amino acids are replaced with the same alternate 34
amino acids, p.Val727Ala,fs*34 (p.Val750Ala,fs*34). The authors
argue that the altered balance of class IV to normal (class I) recep-
tors might contribute to AML, due to the ability of the class IV
receptor to block maturation.

PATHOGENIC SNP
A CSF3R SNP that is present in ~6% of the population leads
to a p.Glu785Lys (p.Glu808Lys) amino acid substitution in the
intracellular region of the G-CSF, which predisposes individuals
to high-risk MDS (82). Interestingly, blasts from an individual
who developed AML following high-risk MDS were found to be
homozygous for this allele (83), providing further evidence of
the potential pathogenicity of this SNP. Although the mechanism
of action remains unknown, the variant receptor appears func-
tional,but can act in a dominant-negative manner to reduce colony
formation compared to the wild-type receptor (82, 83).

CONCLUSION
Granulocyte colony-stimulating factor has proven to be an effec-
tive therapy in a range of life-threatening conditions or to aid
in the recovery of medical treatments, such as in the treatment
of neutropenia following chemotherapy. However, the evidence
suggests that G-CSFR mutations contribute to several disorders,
including in settings where G-CSF may be used therapeutically. It
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has been suggested that use of G-CSF in SCN may allow the selec-
tive expansion of clones containing truncating CSF3R mutations.
However, the available data are complicated, making conclusions
difficult. One study reported no significant relationship between
age of MDS/AML onset and G-CSF dose or duration of therapy
(63). However, another study suggested that the risk of leukemia
in SCN patients increased with the degree of G-CSF therapy (84).
However, higher doses may also reflect a more severe underlying
disease with a higher propensity to MDS/AML. In addition, SCN
patients developed AML prior to the advent of G-CSF therapy.
In line with this, one SCN patient progressed to CMML in the
absence of G-CSF treatment, but expressed a truncated G-CSFR
(85). Thus it is possible that the mutant receptor form may have
a selective advantage in the absence of treatment, perhaps due to
the elevated G-CSF levels seen in SCN patients as a result of their
neutropenia (63). However, G-CSF therapy is not a factor in other
classes of CSF3R mutation, such as those leading to CNL. A num-
ber of pharmacologic agents are now available that target signaling
pathways downstream of the G-CSFR (Figure 2), providing hope
for effective treatment strategies for patients harboring G-CSFR
mutations. Indeed, recent studies have begun to elucidate how
these might specifically combat the aberrant signaling elicited by
“activating” and “hyperresponsive” G-CSFR mutations (23, 48).
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