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Meningiomas are frequent central nervous system neoplasms, which despite their pre-
dominant benignity, show sporadically malignant behavior. Type 2 neurofibromatosis and
polymorphisms in several genes have been associated with meningioma risk and are
probably involved in its pathogenesis. Although GWAS studies have found loci related to
meningioma risk, little is known about the factors determining malignant transformation.
Thus, this study is aimed to identify the genomic and transcriptomic factors influencing
evolution from benignity toward aggressive phenotypes. By applying an integrative bioinfor-
matics pipeline combining public information on a wealth of biological layers of complexity
(from genetic polymorphisms to protein interactions), this study identified a module of
co-expressed genes highly correlated with tumor stage and statistically linked to several
genomic regions (module Quantitative Trait Loci, mQTLs). Ontology analysis of the tran-
scription hub genes identified microtubule-associated cell-cycle processes as key drivers of
such network. mQTLs and single nucleotide polymorphisms associated with meningioma
stage were replicated in an alternative meningioma cohort, and integration of these results
with up-to-date scientific literature and several databases retrieved a list of genes and path-
ways with a potentially important role in meningioma malignancy. As a result, cytoskeleton
and cell–cell adhesion pathways, calcium-channels and glutamate receptors, as well as
oxidoreductase and endoplasmic reticulum-associated degradation pathways were found
to be the most important and redundant findings associated to meningioma progression.
This study presents an integrated view of the pathways involved in meningioma malignant
conversion and paves the way for the development of new research lines that will improve
our understanding of meningioma biology.

Keywords: meningioma, cancer, whole-genome, integrative analysis, transcriptomics, malignant conversion, video
presentation, no funding research

INTRODUCTION
Meningiomas represent approximately a quarter of the total cen-
tral nervous system (CNS) neoplasms. These tumors are derived
from normal arachnoidal cells of the leptomeninges, appear tightly
joined to the Dura Mater, and tend to be located along the parasag-
ital sinus, over the cerebral convexity, in the sphenoid wing,
around the pontocerebellar angle or along the dorsal region of
the spinal cord. Although as a group they are considered to be
benign, variability in recurrence frequency, life expectancy prog-
nosis, symptoms, and histological appearance exists. In this regard,
histological analysis reveals that 80–90% of the meningiomas are
benign [World Health Organization (WHO) Grade I], which are
not associated with an excess of mortality when totally resected.
However, about 5–15% of them are atypical (WHO Grade II) and
associated with a marked increase in recurrence frequency and a
small risk of death. Only 1–3% of the cases become anaplasic or
malignant (WHO Grade III), developing a high tendency to invade
brain structures, metastasize, and to recur (1–3). Overall, Grade II
tumors have an average life expectancy of 11.9 years and an average

recurrence-free survival of 142.5 months vs. 3.3 years of average
life expectancy and 39.8 months of recurrence-free survival for
Grade III meningiomas (4).

Ionizing radiation exposure is the principal modifiable risk
factor. Age and female gender (especially during the reproduc-
tive period) are known non-modifiable risk factors. Nevertheless,
genetic factors have also been found to play a role in meningioma
development and predisposition. Type 2 neurofibromatosis (NF2)
is an autosomal dominant condition related to a mutation on chro-
mosome 22q12 and is a common condition related to elevated risk
for developing meningiomas, among other neoplasms (4). In fact,
loss of heterozygosity at several points in the 22q locus has been
shown to be an early event in the development of benign menin-
giomas. Curiously, a study by Black et al. (5) revealed that menin-
gioma gene expression is correlated with progesterone receptor
levels, and this is particularly true for those genes encoded near
22q12. Single nucleotide polymorphisms (SNPs) in the Ki-RAS
and ERCC2 genes were associated with increased risk for devel-
oping meningiomas. Genes involved in detoxification, reactive
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FIGURE 1 | Pipeline scheme representing all the steps followed in this research.

oxygen species mitigation, metabolism, and DNA-repair also seem
to be involved. In this regard, SNPs in the C variant of SOD3
(superoxide dismutase 3), GSTT1 (glutathione S-transferase theta
1), and MUTYH (Muty homolog) have been found to be associ-
ated with meningioma risk. Moreover, association of SNPs located
in genes related to apoptosis (CASP8) and cell-cycle pathways
(GLTSCR1, ERCC4, and PCNA) are also known (1).

Since the discovery of the scale-free property back on 1999,
living phenomena have been shown to be organized in networks
regulated by this property (6–14). Hovarth et al. (15) have shown
that gene expression can be analyzed as partially discrete co-
expression networks where connectivity among genes follows the
scale-free property. The main aim of this study was to assess the
relationship between genomic markers and gene-expression data
of meningioma tumors at the network level. The results of this
analysis were integrated with protein–protein interaction (PPI)
networks, transcription factor binding sites (TFBS), miRNA target
sites, and pathways data. Two previous gene-expression analyses
and a genotypic study were used for replication purposes. Over-
all, redundant findings for the implication of several pathways
in meningioma progression are described, and a list of potential
markers is provided for future experimental validation.

MATERIALS AND METHODS
The core of the study is based on the integration of genomic marker
information (i.e., SNPs) with gene-expression data on a group of
meningioma tumors, published by Nelson et al. (16), in the search
for genomic loci influencing malignant-like gene expression. In the
first part, Weighted Gene Co-expression Network Analysis, WGCNA
(15,17) was applied to explore gene expression as an undirected co-
expression network and reduce its dimensionality. A co-expression
module deeply correlated with meningioma biological parameters
was discovered, and the top hub genes inside the module were
identified based on network analysis parameters. In a second step,
genetic loci associated to the meningioma-related co-expression
network were identified, in an approach known as module Quan-
titative Trait Loci [mQTLs (18)]. These loci were found to partially
overlap with SNP association with disease stage. In the third step,
the most likely causative genes in the proximity of the mQTLs

were delimited, which formed the input list for their integration
with PPI networks, TFBS data, miRNA signatures, and pathways
databases. Multivariate regression models were created in order
to determine what extent of the variability in WHO meningioma
Grade could be explained by mQTL SNPs and co-expression mod-
ule data. With the help of literature filtering, a list of genes with
a high potential role in meningioma malignant conversion is pro-
vided for future experimental testing. A study pipeline scheme can
be consulted in Figure 1.

INITIAL DATA SOURCE
The initial data input for this study was of a group of 85 menin-
gioma samples [GEO accession GSE16584 (16)]. Meningioma
samples (22 males and 37 females) with both genotypic and gene-
expression data were selected. This resulted in a total number of
59 samples, of which 39 were WHO Grade I meningioma cases,
15 were WHO Grade II, and 5 were WHO Grade III (Table S1 in
Supplementary Material). Tumor genotyping was performed with
the Human Mapping 100K Set platform (Affymetrix) and gene-
expression data were obtained using GeneChip Human Genome
U133 Plus 2.0 Arrays (Affymetrix).

Genotyping Hind and Xba CEL files were downloaded
from GEO [Gene-Expression Omnibus (19, 20)]; accession code
GSE16583 (16) and analyzed the Affymetrix Genotyping Con-
sole software (Affymetrix). Only samples with a quality control
≥90% were included. After pre-processing all the data results, we
selected 111,829 SNPs, which passed three filters: minimum allele
frequency of 5%, minimum call rate of 95%, and evidence of
Hardy–Weinberg equilibrium (P-value ≥0.01).

GENE-EXPRESSION ANALYSIS
Expression CEL files were also downloaded from GEO (GEO
accession code GSE16581) and analyzed in R (21). Samples were
read, background corrected, normalized, probe-specific back-
ground corrected, and summarized into an R eset class object using
functions of the affy package (22). Array quality was determined
with the arrayQualityMetrics package (23). In order to simplify
the analysis, we applied a filter to select only those roughly 12,000
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probes, which showed at least a 1.8-fold expression change accord-
ing to the median in at least 10% of the samples (24). In order
to find expression quantitative trait loci (eQTLs), and since no Y
chromosome SNPs were measured in the chips, we also excluded
gene-expression probes pertaining to such location.

Weighted gene co-expression network analysis functions were
applied to expression data according to several online tuto-
rials (18). The adjacency matrix was calculated using a soft-
thresholding power of 6, which showed an approximate scale-
free topology (R2

= 0.75). Briefly, the connectivity value of each
selected transcript (calculated similarly to kIN in Section “Regres-
sion Models”) was used to create a group of 10 bins with equal
size, and each connectivity value was assigned to each bin. The
connectivity distribution k was defined as the average connec-
tivity value for each bin, whilst the probability distribution of k
p(k) was defined as the ratio of the number of connectivity values
in each bin by the number of connectivity values studied. Under
the approximate scale-free topology assumption, the logarithm of
p(k) (log(p(k))) and the logarithm of k (log(k)) are strongly nega-
tively correlated. In this case, by using a soft-thresholding power of
6 we obtained a R2

= 0.75 (Pearson’s correlation of 0.86, regression
slope of −1.46), whilst using no thresholding at all we obtained
R2
= 0.03 (Pearson’s correlation of 0.17, regression slope of 1.05).

Thus, the soft-thresholding value selected ensures approximated
scale-free topology whilst retaining a higher number of informa-
tive connections in the network. Several co-expression modules
were determined, and correlation between phenotypic data and
their respective first principal components (a.k.a. module eigenge-
nes, ME) was calculated. Mean gene significance with WHO Grade
was calculated as the absolute average correlation of all module
genes with this trait. Due to its marked positive correlation with
several parameters (refer to Figure 5), the pink-module was cho-
sen for further analysis. Module membership (MM, a.k.a kME)
was defined as the Spearman’s correlation between the ME and
the genes corresponding to the pink-module, which is considered a
measure of centrality of each gene in the network. Gene-expression
standard deviation was determined with the function rowSds, part
of the package matrixStats (25).

GENE CO-EXPRESSION NETWORK VISUALIZATION AND PATHWAY
ANALYSIS
Cytoscape (26) was used to create a graphic representation of
the pink-module. Using the CentiScape plug-in (27), we analyzed
several network parameters, such as degree and betweenness cen-
trality. Hub genes were chosen as those with a degree higher or
equal to 250 and a betweenness centrality value higher or equal to
2,500. The ClueGO plug-in (28) was utilized to create pathway and
Gene Ontology (29) enrichment networks. Gene ontology data-
bases for Biological Processes, Cellular Components, Immune System
Processes, and Molecular Functions, as well as KEGG (30, 31) and
Reactome (32), were included in the analysis. Enrichment analy-
sis was performed with the hypergeometric test, and a significant
FDR-adjusted P-value threshold of 0.001 was selected. ClueGO
gene ontology and pathway terms were filtered, so that only those
matching to at least 10% of the genes in the pink-module were
considered. Gene ontology analysis for hub genes was performed
with DAVID web tool (33, 34).

mQTL FINDING, ANNOTATION, AND DOWNSTREAM FUNCTIONAL
ANALYSIS
The degree of association between the the pink’s module ME
and the genotypes was performed by fitting a logistic regression
with SNPs as dependent phenotypes with the function spn.lhs.tests
implemented in the package snpStats (35). Since the ME does not
reflect all the variability of the whole module, the sum of the first
and second principal components (PC1+ PC2) was also studied
in a similar way. Finally, we also tested for significant improve-
ments over the base model of the ME by separately adding PC2
and PC1+PC2. SNPs with a P-value in the order of 10−5 or less
were selected as mQTLs, and in case that various SNPs mapped to
the same gene only the most significant was chosen.

mQTL putative genes were obtained from the HaploReg v2 web
browser (36). mQTL enrichment in TFBS was studied using oPPO-
SUM Single Site Analysis tool (37). Briefly, the analysis was run
with the following parameters: (1) Vertebrate JASPAR CORE pro-
files were selected, (2) only the top 10% conserved regions (with
a minimum conservation of 70%) between the mouse and the
human genome were included with (3) a position weight matrix
match threshold of 80% and (4) within a region of 5,000 bp up
and downstream of the transcription start site for each gene.

Gene Ontology and Pathways analysis for mQTL putative genes
was performed with Cytoscape and ClueGo similarly to Section
“Gene Co-Expression Network Visualization and Pathway Analy-
sis.” In this case, a threshold of 3% was set to the proportion
matching genes in the ontology group. Gene set enrichment analy-
sis (GSEA) was used for miRNA target site enrichment (38). The
PPI database STRING (39) was used to test for known interactions
among the proteins encoded by the mQTL genes.

To address the possible influence of genes in the pink co-
expression module over mQTLs, a search for mQTL putative genes
matching to in-module genes was conducted. Finally, the PubMed
database was interrogated for known associations between mQTL
putative genes and cancer or meningioma (search terms: “Gene
Name AND Cancer” and “Gene Name AND Meningioma”, date:
28/4/2014).

GENE EXPRESSION AND GENOTYPIC REPLICATION COHORTS
An expression replication cohort was constructed with data from
GEO [GEO accession codes GSE43290 (40) and GSE4780 (41)].
Matching samples in both datasets were selected, and batches were
removed with the ComBat function implemented in the package
sva (42), getting an overall cohort of 22,283 probes and 103 indi-
viduals. Linear models of the limma package (43) were applied to
determine differential gene expression between tumor stages and
to detect matches with pink-module genes. Wilcoxon Rank Sum
Test was applied to determine possible connectivity differences
among those probes found to be overexpressed in the replication
cohort compared to its background. Background connectivity was
determined as 10,000 times random permutation of kME values
for pink-module probes present in the replication cohort.

At the same time, a genotypic cohort of 50 meningioma sam-
ples was downloaded from GEO [GEO accession code GSE42624
(44)], which was used to find overlapping disease progression-
associated SNPs/genes in both datasets, as well as to detect matches
with mQTLs. Gene overlaps between the two genotypic cohorts
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and mQTLs were computed by including putative gene symbol
matches for SNPs at a linkage disequilibrium value at least of 0.8
in individuals of European Ancestry included in the 1000 Genomes
Project, according to the HaploReg web tool (36). Finally, literature
analysis was performed for duplicate findings (e.g., SNPs related
to the same putative gene in at least two of the three lists: stringent
mQTL list and any of the two SNP association lists) as described
for mQTLs above.

REGRESSION MODELS
Multivariate regression models with genotypic and transcrip-
tomic data were regressed on phenotypic information. A vector
was created containing the Spearman’s correlation of the WHO
Meningioma Grade distribution with each module probe, here-
after called Gene Significance for WHO Meningioma Grade (GS
WHO_Grade). A analogous vector containing the Spearman’s cor-
relation of each module probe with each mQTL, was designated
GSmQTL. Intramodular connectivity (kIN) was defined as the
sum of the absolute value of the Spearman’s correlation of each
probe with all the other probes in the same module. Another mea-
sure of connectivity, known as kME or MM, was calculated as
previously defined in Section “Gene-Expression Analysis.”

Regression analysis was performed with the lm function, imple-
mented in the package stats (21). A stepwise selection of models
based on Akaike information criterion (AIC) was conducted. Sig-
nificant variables were selected for further analysis if their P-value
in the best AIC model was in the order of 10−3 or below, accord-
ing to a T test. Rank transformation into normality function
[rntransform, package GenABEL (45)] was applied to the depen-
dent variables of the models. Normality of the dependent vari-
ables and the residuals was assessed with the function shapiro.test

(package stats). Variance inflation factors (VIFs) for lineal models
were calculated with the VIF function implemented in the package
fmsb (46).

MISCELLANEOUS
Boxplots present in Figure 3C, Figures S1A and S2E in Supple-
mentary Material were created with the “boxplot ” function imple-
mented in the graphics package (21), and they represent the upper
and lower quartiles (upper and lower of the boxes), the median
(horizontal line inside the boxes), as well as the most extreme val-
ues in the dataset (the whiskers and the points outside it). Note
that the whiskers include dispersed data that fall within 1.5 times
the height of the box, and points represent values lying outside this
range. Expression missing values were imputed with functions of
the package impute (47).

RESULTS
CO-EXPRESSION ANALYSIS
Weighted gene co-expression network analysis identified 16 co-
expression modules. Module–trait relationships revealed that the
pink ME was highly and significantly correlated with WHO
Meningioma Grade, recurrence frequency, observed recurrence
after sample, Ki-67 staining, and with the total sum of chromo-
some arm losses (Figure 2). Boxplots of mean gene significance
with WHO_Grade revealed that the Pink-module contains the
most correlated genes (Figure S1A in Supplementary Material).
MM (a.k.a kME) to the sixth power was determined to be in
a marked 0.88 Spearman’s correlation (P-value <10−16) with
intramodular connectivity (kIN ), which is indicative of its useful-
ness to study high-level modular network properties. MM vs. GS
WHO_Grade (Figure S1B in Supplementary Material) revealed

FIGURE 2 | Module–trait relationships plot. Spearman’s correlation
between module principal components (a.k.a module eigengenes, MEs) and
Age by decade (first column), Gender (second column), WHO Meningioma
classification (third column), recurrence frequency (fourth column), recurrence

code (recurrent vs. newly diagnosed, fifth column), recurrence after sample
(sixth column), maximum Ki-67 step function (absent=0, low=1,
medium=2, high=3; seventh column), sum of chromosome arm losses
(eighth column), and Chromosome 22p deletion (ninth column) is shown.
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FIGURE 3 | (A) CentiScape Plot of Pink-module network degree and
betweenness values shows a tendency for highly connected genes to be
also major avenues of communication among all the network
components. (B) High degree (value >250) and betweenness genes
(value >2,500) were selected as hub genes. The circular plot shows genes
ordered according to their degree value, so that darker red nodes have

higher values that lighter red ones. (C) Boxplots representing gene
expression for the top six hub genes in each of the three WHO Grade
meningioma groups. Represented genes are PTTG1 (upper left, red),
PRC1 (upper right, blue), CENPF (probe 207828_s_at; middle left, green
color), DTL (middle right, pink), FANCI (lower left, turquoise), and CENPF
(probe 209172_s_at, lower right, orange).

a 0.72 Spearman’s correlation value (P-value ≤10−16), showing
that genes importantly associated with disease stage are also the
more relevant in the module. Pink-module gene-expression stan-
dard deviation was found to be inversely correlated with kIN
(Spearman’s rho=−0.06, one-sided P-value= 0.09), but curi-
ously higher levels of expression variability co-exist with low
levels of connectivity (Figure S1C in Supplementary Material).
For example, genes with a kIN below 2 are significantly more
variable than those whose kIN value is above 2 (Wilcoxon Rank
Sum Test P-value= 0.002, 95% C.I.= 7.74–36.96). This is con-
sistent with the role of hub genes as central players in complex
biological phenotypes (48). Moreover, almost 76% of the pink-
module genes found in the replication cohort were significantly
differentially expressed between tumor stages (FDR-adjusted P-
value <0.05), and differentially expressed genes had a significantly
greater connectivity (MM or kME) than the overall group of pink-
module genes (Wilcoxon Rank Sum Test P-value= 0.043, 95%
C.I.= 6.54× 10−5–3.70× 10−2).

Cytoscape analysis of the network was used to choose the
hub genes based on their degree and betweenness values in the
network (Figure 3A). All hub genes were positively correlated

with WHO_Stage (Figure 3B and in Table S4 in Supplementary
Material), and graphical information about the top six can be
consulted in Figure 3C. Furthermore, a stringent search for Gene
Ontology and Pathway terms enrichment using ClueGO revealed
a marked predominance in cell-cycle pathways. Isoprenoid meta-
bolic processes, intermediate filament bundle assembly, proteoglycan
binding, and oxidoreductase activity terms also passed the cutoff
(Figures 4A,B). DAVID ontology analysis for hub genes revealed a
marked enrichment in processes related to microtubule cytoskele-
ton. This is remarkably true for spindle and chromosome-related
microtubular processes (Table S5 in Supplementary Material).

DETERMINATION OF mQTLs
Genomic markers and gene-expression data were merged into a
single study to analyze quantitative relationships between them
(QTLs). Due to the established relationships between several
meningioma characteristics and the genes in the Pink-Module, we
sought to determine genetic loci particularly affecting its expres-
sion (mQTLs, Figure 5). By fitting logistic regression models, we
found 48 SNPs associated with the ME at P-values in the range of
10−5 or less. Four of these had P-values in the range of 10−6 and
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FIGURE 4 | (A) ClueGO results network for Pink-module analysis. This
network is created with Cohen’s kappa statistics, reflecting similarity
between biological terms based on the similarity of their associated genes.

(B) ClueGO results pie chart of the same data. After the analysis, eight
clusters of biological terms, labeled with different colors, were obtained.
Prevalence of cell-cycle related processes is visually obvious.

one was on the range of 10−7 (Table S2A in Supplementary Mate-
rial). These SNPs correspond to four genomic loci mapping to the
ANKRD50, LOC389705, NRP1, and HOXC13 genes. To test possi-
ble improvements to this model, we performed logistic regression
where the ME was included in the base model and significance for
association with PC2 and PC1+PC2 was tested (Tables S2B,C in

Supplementary Material). The results indicated at an SNP in the
GRIN3A gene with a P-value of roughly 0, and others at the IBTK,
ANGPT1, ASTN2, and LPIN2 genes with P-value in the range of
10−6 or below. Furthermore, logistic regression with PC1+PC2
as regressor discovered 59 SNPs in 52 different genes showed P-
values in the range of 10−5 or less (Table S2D in Supplementary
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FIGURE 5 | mQTL plot. The colored upper part of the plot indicates
the association of each SNP with meningioma stages (0:
meningioma WHO Grade I, 1: meningioma WHO Grade II and III).

The significance value is expressed as −log (P-value). The lower, blue
part of the plot indicates the strength of the association of each SNP
and the module.

Material). Nine of the SNPs had P-values in the range of 10−6

and were located at or near to LOC339535, FMN2, NEK7, IL6R,
C14orf64, KRT72, and SPRY2. Five of them had P-values in the
range of 10−7 and were located at or near to ATF6, LOC100288079,
USH2A, SUCLG2, and PHC1. Finally, eight SNPs were on the range
of 10−8 mapping in or close to DNAJC19, HSP90AA4P, CHD10,
XKR6, CA1, RASSF9, APAF1, and LOC100130792.

We made a search in PubMed for the known implication of all
putative mQTL genes in cancer and meningioma. More than half
of the genes (63 out of 108, 58%) have supporting evidence for
their direct implication in cancer, whilst only 5 out of 108 (5%) are
known to be involved in meningioma pathogenesis. This difference
is not surprising, since meningioma constitutes a less intensive
research field than other cancers. The latter genes are ALCAM,
NRP1, IGF1R, CA1, and ERCC4. Of these, NRP1 and IGF1R do
not have a clearly related role in meningioma yet, but evidence
points toward the implication of the former in meningioma-
associated neoangiogenesis (49) and for the blocking of the latter
as therapeutic option (50).

GENE ONTOLOGY, PATHWAY, PROTEIN–PROTEIN INTERACTION, miRNA
TARGET SITE, AND TFBS ENRICHMENT ANALYSIS OF mQTL GENES
A search for miRNA sets enriched in mQTL proximal genes was
performed using GSEA, which revealed a significant enrichment in
36 of the sets (FDR-adjusted P-value <0.05). The two top findings
were MIR-124A and MIR-34B, both with FDR-adjusted P-values
in the order of 10−5 (Table S2E in Supplementary Material).

Enrichment for gene ontology terms and pathways associated
with mQTL genes using ClueGo revealed enrichment in adherens
junction interactions and cell–cell junction organization, response

to low-density lipoproteins and cholesterol storage, endothelial
cell proliferation, sprouting angiogenesis, negative regulation of
vascular permeability, calcium-channel activity, NMDA glutamate
receptors, actin and myosin-related pathways, meiotic chromo-
some segregation, protein localization to mitochondrion, and
oxidoreductase activity (Table S2F in Supplementary Material).
All terms above showed FDR-adjusted P-values <0.05.

STRING database was used to detect known interactions
between all putative mQTL genes at the PPI level. Using a high
confidence interaction score, 9 interactions were detected between
the 87 proteins present in the database. Only 2.96 interactions
were expected under the null hypothesis, thus concluding that
the mQTL PPI network is significantly enriched in interactions
(P-value <0.0035). Five of the interactions were among a cluster
of four cadherin proteins (namely CDH12, CDH13, CDH8, and
CDH9).

Transcription factor binding site (TFBS) enrichment was per-
formed by including all mQTL putative genes in a search with
oPPOSUM Human Single Site Analysis web tool. A marked sig-
nificant enrichment in the Forkhead group of TFBS (FOXD3,
FOXF2, FOXI1, FOXQ1, FOXA2, FOXD1), and in the Homeo
group (LHX3, NOBOX, PDX1, PRRX2, NKX2-5, NKX3-1, and
PBX1) was observed (Table S2G in Supplementary Material).

SNP ASSOCIATION WITH TUMOR STAGE
Tests for association between SNPs and tumor stage encoded as
a binomial factor [either lowly malignant (stage I) or malignant
(stages II and III)] on 84 subjects resulted in 5 SNPs ranking with
a P-value on the order of 10−05 and 2 on the order of 10−06

(Figure 5; Table S2H in Supplementary Material). These two of
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the SNPs were located in an intergenic region 600 kb 5′ to SEL1L
(rs1652605 and rs1958666). By applying the same method in a
Spanish cohort to find duplicate meningioma stage associated
regions, other six SNPs in the same intergenic region (rs17669975,
rs11159518, rs1198035, rs1210840, rs1953408, and rs1198030) were
also substantially associated with meningioma stage (Table S6 in
Supplementary Material). Curiously, this region encodes a long
non-coding RNA known as RP11-666E17.1-001, whose function
is unknown.

Inflation values (λ) (51) were estimated to be 1.15 for the first
cohort and 1.02 for the second (replication) cohort.

IN-MODULE GENES AND mQTL PUTATIVE GENES
In the search for possible in-module genes that may play an
important regulatory role at the genomic scale, we searched for
in-module genes that mapped to any of the mQTL genes. BTBD3,
LOC339535, and TBC1D9 genes were present in both lists, and
thus are potentially important in meningioma pathogenesis.

DUPLICATE SNP-RELATED GENE FINDINGS
In addition to the SEL1L-related SNPs that we described above, we
also found coincidences between other mQTL-related genes and
the tumor stage association cohorts. By searching for SNPs related
to the input genes in LD as described in the Section “Materials and
Methods,” we could identify SPRY2 as a gene with SNPs in strong
linkage disequilibrium between the mQTL list and the first geno-
typic cohort, whilst overlaps were found between the mQTL list
and the validation genotypic cohort at the C3orf67, C6, MEOX2,
and SLC39A10 loci.

MULTIVARIATE REGRESSION ANALYSIS
Pink-module co-expression, mQTL, and meningioma pheno-
typic data were used to create multivariate regression models.
In the first, 1 kME was regressed on GS WHO_Grade (GS
WHO_Grade ~ kME), and an adjusted R2 value of 0.51 was
retrieved (P-value <2.2× 10−16,VIF= 2.04, R= 0.71; Figure S2A
in Supplementary Material). Afterward, we regressed GSmQTL
SNPs on GS WHO_Grade (GS WHO_Grade ~ GSmQTLs) step-
wise for a minimum AIC, obtaining an adjusted R2 value
of 0.88 (P-value <2.2× 10−16), but indicative of multi-
collinearity (VIF= 9.56). Stepwise regression by including kME
and GSmQTLs variables (GS WHO_Grade ~ kME +GSmQTLs)
reached an adjusted R2 value of 0.89 was achieved (P-
value <2.2× 10−16), but again multicollinearity was observed
(VIF= 10.49). We collected all significant variables (T test P-
value <0.01) and divided them into two groups according to
their estimates signs. The variables with negative estimates were
summed into a vector known as GSmQTLProtective, whilst the
variables with positive estimates were added to a vector known ad
GSmQTLRisk.

GSmQTLRisk correlated strongly with GS WHO_Grade
(Spearman’s rho= 0.79; P-value≤2.2× 10−16; Figure S2B in Sup-
plementary Material) while GSmQTLProtective mildly correlated
with GS WHO_Grade, but that correlation was significant (Spear-
man’s rho= 0.33; P-value= 4.2× 10−14; Figure S2C in Supple-
mentary Material). Modeling GS WHO_Grade with kME and
these new variables instead of its originals led to a simplified

model with very similar results: adjusted R2 value of 0.82 (P-
value <2.2× 10−16, R= 0.91). All variables ranked significant
(P-value <2.2× 10−16), and multicollinearity was not observed
(VIF= 5.57). Indeed, GS WHO_Grade prediction according to
this model was very accurate to reality (Spearman’s rho= 0.91,
P-value <2× 10−16; Figure S2D in Supplementary Material).

Finally, kME, GSmQTLProtective, and GSmQTL1Risk were split
by their medians to dichotomize the data. After plotting the results
with GS WHO_Grade, two groups of four plots each were eas-
ily differentiable, revealing that genes with higher connectivity
(labeled k+) tended to have higher correlation with WHO Grade
(Figure S2E in Supplementary Material). This is consistent with
the finding that WHO Grade distribution is deeply correlated
with connectivity. It is notorious that genes with higher values
of GSmQTLProtective tended to have more negative correlations
with GS WHO_Grade, while the opposite happened with genes
whose GSmQTLRisk were high. The groups of genes with high
kME and GSmQTLRisk and low or high GSmQTLProtective values
were the most correlated with GS WHO_Stage, whilst the group
of genes with low values of kME and GSmQTLRisk and high val-
ues of GSmQTLProtective was the less correlated group with GS
WHO_Stage. Thus, the highest absolute correlation with menin-
gioma Grade is achieved by genes with high connectivity and high
association to putatively protective mQTLs.

DISCUSSION
Using WGCNA, we demonstrated that meningioma tissue expres-
sion can be summarized to the existence of 16 co-expression
modules. One of them was found to be highly correlated with
disease progression parameters. In this network, gene expression
was less variable for highly connected genes than for mildly con-
nected ones and hub genes had a higher and significant tendency
to be positively correlated with tumor stage. Such characteristics
are suggestive of the implication of this module in core biological
functions related to tumor progression. Moreover, a group of SNPs
were associated to a list of genomic regions both at the “sugges-
tive level” (i.e., P-value at 10−5 level) and at the “significant level”
(P-value ≤10−6).

Ontology analysis of in-module genes revealed a very signifi-
cant enrichment in terms related to cell-cycle pathways. Curiously,
many cancer-related pathways ranked high among the results,
especially isoprenoid metabolism, intermediate filament bundle
assembly, proteoglycan binding, and oxidoreductase activity path-
ways. There is evidence pointing toward isoprenoid regulation of
cell growth (52). Indeed, isoprenoid compounds are known sup-
pressors of carcinogenic processes such as telomerase activity (53),
as well as activators of cell-cycle arrest and apoptosis signals (54).
Intracranial tumors are known to have an increased activity of
the low-density lipoprotein receptor due to an increased require-
ment of cholesterol (55). In fact, there is a body of evidence
suggesting that statins, which are inhibitors of the HMG-CoA
reductase pathway (blocking isoprenoid synthesis), may benefit
cancer therapeutics (56). Intermediate filaments are widely used
as markers of cancer differentiation and prognosis (57, 58), while
proteoglycans are known mediators of tumor cells interaction with
their microenvironment and regulators of angiogenesis (59, 60).
Oxidoreductase activity plays a role in cancer too, since a recent
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meta-analysis of 21 studies has shown that polymorphisms in the
NAD(P)H quinine oxidoreductase 1 (NQO1) gene are significantly
associated with digestive tract cancer risk among Europeans and
Asians (61). Moreover, a careful analysis of the three network hub
genes (PTTG1, PRC1, and CENPF) reveals that PTTG1 is linked to
tumor malignancy and has been proposed as a possible therapeu-
tic target (62); PRC1 encodes a factor responsible for polarizing
parallel microtubules and concentrating the factors responsible
for contractile ring assembly, and has been involved in the growth
of breast cancer cells (63, 64); and that CENPF encodes a pro-
tein that associates with centromere and kinetochore complexes.
CENPF amplification is a frequent event in hepatocellular carci-
nomas (65). These data are in concordance with previous studies
where co-expression networks were found to be strongly enriched
in specific functions (66–68).

A focused analysis of the top 21 hub genes revealed a marked
enrichment in microtubule-associated processes, including spin-
dle and chromosome-related pathways. Cell-cycle studies have
demonstrated that the metaphase–anaphase transition depends
on a correct attachment of sister chromatids to the kinetochore-
microtubule apparatus, which is by itself a crucial checkpoint
(known as M-phase checkpoint ) that prevents progression until
all chromosomes are correctly joined to the spindle (69). Mad1
and Mad2 are two proteins known to regulate this checkpoint,
and alterations in their ratios are known to lead to chromosome
instability and aneuploidy, thus promoting tumorigenesis (70).
Indeed, during anaphase, the central spindle is formed, which
consists of a bundle of microtubules interpolated between segre-
gating chromosomes and permits normal cytokinesis. Curiously,
PRC1 is essential for central spindle formation, although its inter-
actions with other spindle proteins seem tangled and await further
studies (71). Thus, it is tempting to speculate that M-phase check-
point aberrations may play an important role in meningioma
malignization.

Generally speaking, the pathway and ontology results for in-
module genes are consistent with that of mQTL genes. For
example, the enrichment of mQTL genes in actin and myosin-
related pathways, oxidoreductase activity, chromosome segrega-
tion, and cholesterol metabolism pathways is in accordance with
co-expression module results. Nevertheless, mQTL genes were
also enriched in other cancer-related pathways. For example, five
mQTL putative genes are part of the cadherin family, and at least
two (CHD12 and CHD13) have been broadly studied for their
role in cancer (72–74). Genes related to angiogenesis and vas-
cular permeability pathways had also significant matches, and
at least one of them (NRP1) has been studied before in menin-
gioma (49). NRP1 protein acts as a receptor of VEGF-A (75),
and its blockade is under clinical research for various types to
tumors (76). Indeed, the inhibition of angiogenic pathways with
bevacizumab has been shown to have encouraging anti-tumoral
effects in recurrent and progressing meningiomas (77). Calcium-
channel activity, another significant finding in the list, is known
to be involved in growth factor-mediated meningioma prolifera-
tion and the use of calcium-channel blockers has anti-proliferative
and drug-sensitizing effects (78, 79). Two glutamatergic recep-
tor genes were present in the mQTL list. These are GRIN2A and
GRIN3A. The implication of both ionotropic and metabotropic

glutamate receptors in carcinogenesis and cancer progression is
well-known, especially in gliomas, melanomas, and breast and
prostate cancers [reviewed in Ref. (80)]. Similarly, a region 5′ to
SEL1L was the only duplicated gene significantly associated with
meningioma progression in the two SNP cohorts. SEL1L is a tumor
suppressor gene involved in the endoplasmic reticulum-associated
degradation (ERAD) pathway, and known to be involved in the
complex ER adaptations needed for the progression of multi-
ple neoplasms (81, 82). Moreover, an SNP in the ATF6 gene was
significantly associated (P-value= 2.65× 10−7) with the sum of
the first and second module principal components. The protein
encoded by this gene is a membrane glycoprotein with a key
function in the ERAD pathway and acts as a sensor and trans-
ducer of the unfolded protein response. Interestingly, it has been
recently shown that misfolded ATF6 needs SEL1L for degradation
despite the transmembrane nature of ATF6 (83), which indi-
cates that degradation pathways are much more diversified than
expected in eukaryotes, but with a still unknown role in cancer
biology.

mQTL genes are also enriched in TFBS of the Homeobox and
Forkhead family of transcription factors, and indeed FOXP1 and
HOXC13 are inside the mQTL list. The implication of both fami-
lies of transcription factors in cancer development and progression
is widespread, and they probably play important roles in menin-
gioma malignancy too (84, 85). Similarly, a marked enrichment
in MIR-124A and MIR-34B microRNAs was observed. This is
in accordance to the known role of both genes in cancer-related
pathways. For example, MIR-124A is correlated with breast cancer
growth and aggressiveness (86), whilst MIR-34B, which has tumor-
suppressive effects through the inhibition of BCL-2 (87), is asso-
ciated to renal cell cancer risk (88) and silenced in hepatocellular
carcinoma (89).

The results indicate that the co-expression module as a whole
is associated with a list of more than 100 SNPs genome-wide
(here known as mQTLs), with P-values in the range of 10−5

or less. By integrating gene-expression network connectivity
and the correlation of each module gene with WHO Menin-
gioma Grade (GS WHO_Grade) and with mQTLs (GSmQTLs),
a multivariate regression model was created with only three
regressors that explain almost 82% of the variability. Overall,
these findings indicate that mQTLs not only are associated
with the module expression, but also add a significant amount
of explained variability to the study models, reinforcing their
biological importance.

The main limitation facing this pipeline is related to the short
sample size of the genotypic cohorts. With the aim to overcome
this problem, only disease-associated gene findings present in at
least two of the three SNP lists created were considered. More-
over, the consistency of the findings with gene expression, PPI
networks, miRNAs and TFBS target sites, pathway and ontology
databases, and current scientific literature adds plausibility and
supports the veracity of the final results. However, a word of cau-
tion must be added to the results, and this applies particularly
to all gene-specific findings described above, since many of them
need further experimental validation. It is the aim of our study to
provide a framework of evidence for future research on the field
of meningiomas.
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CONCLUSION
This study has evidenced that meningioma gene expression con-
tains a co-expression module highly correlated with tumor malig-
nancy, whose hub genes are markedly enriched in microtubule-
related pathways. Genetic loci linked to cytoskeleton, cell–cell
adhesion, angiogenesis, calcium-channels, glutamate receptors,
and ERAD pathways were determined as potential regulators
of the whole co-expression network. Integration of these data
with alternative gene-expression data, PPI networks, TFBS and
miRNA target sequence databases, and scientific literature con-
firmed the enrichment of mQTLs in functional cancer-related
networks. Moreover, SNP association with meningioma stage evi-
denced that a gene of the ERAD pathway, SEL1L, is likely associated
with the malignant transformation of meningiomas, consistent
with mQTL, and state-of-the-art knowledge. To sum up, this paper
presents for the first time an integrated view of gene expression
and genomic markers in the field of meningiomas. This resulted
in the discovery of several pathways involved in meningioma
malignant conversion and paves the way for the development of
future research lines that will shed light on meningioma biol-
ogy and its treatment. The reader is encouraged to watch the
video summary in Video S1 in Supplementary Material (https:
//www.youtube.com/watch?v=fSf9QVu_lmE&feature=youtu.be).
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SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found
online at http://www.frontiersin.org/Journal/10.3389/fonc.2014.
00147/abstract

Figure S1 | (A) Boxplots showing average correlation of each module’s genes
and WHO Meningioma classification. (B) Plot of Module Membership for each
gene and Pearson’s correlation for WHO Meningioma classification. (C) Plot of

pink-module gene-expression standard deviation vs. intramodular connectivity
reflects that low connectivity genes are more variable.

Figure S2 | (A) Plotting of connectivity (kME) vs. GS WHO_Grade reveals a
significant (P -value <10−20) Spearman’s correlation of 0.73 between both
variables. (B) Spearman’s correlation of GSmQTLRisk and GS WHO_Grade is
significant (P -value <10−20) and particularly high (R=0.79). (C) Spearman’s
correlation of GSmQTLProtective and GS WHO_Grade is significant
(P -value=4.2×10−14) and has a value of 0.33. (D) Prediction of GS WHO_Grade
based on a multivariate regression linear model (where kME,
GSmQTLProtective, and GSmQTLRisk were regressed on GS WHO_Grade)
reveals strong and significant Spearman’s correlations with observed GS
WHO_Grade values. (E) Dichotomized plots by the medians of kME (K±),
GSmQTLRisk (R±), and GSmQTLProt (P±) evidence of two big groups based
on kME values. Genes with high connectivity were more markedly correlated
with GS WHO_Grade than those with lower connectivity values.

Video S1 | Artistic video summarizing the important aspects of the study.
Link: https://www.youtube.com/watch?v=fSf9QVu_lmE&feature=youtu.be

Table S1 | Summary of the original data downloaded for the study,
including the links to the expression and genotypic files and the
phenotypic information.

Table S2 | (A) mQTL list of association between SNPs and the ME. (B) mQTL
list of association between the second principal component of the
co-expression module and the SNPs. The base model of this regression was
calculated including the ME. (C) Similar to (B) but the regressor was the sum of
the ME and the second principal component. (D) mQTL list of association
between SNPs and the sum of the first and second principal components of the
co-expression module. (E) miRNA target site enrichment results for mQTL
putative genes. (F) Pathway and Gene Ontology enrichment of mQTL putative
genes. (G) Results of TFBS enrichment in mQTL putative genes. (H) SNP
association with meningioma Grade according to the discovery cohort.

Table S3 | Annotation of the pink-module probes according to the array
manufacturer.

Table S4 | Hub genes list and network information for each one (degree and
betweenness values).

Table S5 | Cell compartment gene ontology of the network hub genes,
according to DAVID.

Table S6 |Top significant results of SNP association with tumor Grade in
the replication cohort.
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