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Solid tumor pathophysiology is characterized by an abnormal microenvironment that 
guides tumor progression and poses barriers to the efficacy of cancer therapies. Most 
common among tumor types are abnormalities in the structure of the tumor vasculature 
and stroma. Remodeling the tumor microenvironment with the aim to normalize any 
aberrant properties has the potential to improve therapy. In this review, we discuss 
structural abnormalities of the tumor microenvironment and summarize the therapeutic 
strategies that have been developed to normalize tumors as well as their potential to 
enhance therapy. Finally, we present different in vitro models that have been developed 
to analyze and better understand the effects of the tumor microenvironment on cancer 
cell behavior.

Keywords: tumor vessel permeability, vessel compression, vascular normalization, stress alleviation, in  vitro 
models

introduction

Tumors have long been considered as complex tissues in which mutant cancer cells have summoned 
normal cell types that serve as active collaborators toward a neoplastic phenotype. Thus, malignant 
cancer cells, despite all accumulated mutations, do not act alone in cancer progression. Hence, the 
interactions and crosstalk between malignant cells and the supporting cell types that form the tumor 
microenvironment are critical for better understanding of cancer pathogenesis as well as for the 
development of novel and more effective therapies (1).

Structural components of the tumor microenvironment are the tumor blood and lymphatic ves-
sels, the extracellular matrix (ECM) with most common constituents being collagen and hyaluronic 
acid, and the stromal cell constituents of the tumor. According to a recent review by Hanahan and 
Coussens (2), the latter can be divided into three categories: (a) angiogenic vascular cells, which 
include endothelial cells, and pericytes, (b) infiltrating immune cells, which include platelets, mast 

Abbreviations: 2D, two-dimensional; 3D, three dimensional; ACEs, angiotensin receptor enzymes; AFM, atomic force micros-
copy; Ang1/2, angiopoietin-1/2; ARBs, angiotensin receptor blockers; a-SMA, a-smooth muscle actin; CAFs, cancer-associated 
fibroblasts; CTGF, connective tissue growth factor; ECM, extracellular matrix; EMT, epithelial-to-mesenchymal transition; 
FG, fibroblast growth factor; GAG, glycosaminoglycan; HIF, hypoxia-inducible factor; LOX, lysyl oxidase; MMPs, matrix 
metalloproteases; MP, multiphoton; MSCs, mesenchymal stem cells; PBS, phosphate buffered saline; PDACs, pancreatic ductal 
adenocarcinomas; PDGF, platelet-derived growth factor; PGs, proteoglycans; POSTN, periostin; PHD1–3, prolyl hydroxylase 
domain proteins 1–3; RGS5, regulator of G-protein signaling 5; SDF-1, stromal cell-derived factor 1; SLRPs, small leucine-rich 
proteoglycans; TGFβ, transforming growth factor beta; VEGF, vascular endothelial growth factor.
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cells, neutrophils, inflammatory monocytes, myeloid-derived 
suppressor cells (MDSCs) (3), macrophages (4), CD8 T-cells, NK 
T-cells, CD4 T-cells (5), and B cells, and (c) cancer-associated 
fibroblastic cells (CAFs), which include activated tissue fibroblasts, 
activated adipocytes, a-smooth muscle actin (a-SMA) + myofi-
broblasts and mesenchymal stem cells (MSCs). Importantly, the 
above-mentioned components of tumor microenvironment may 
vary depending on the type of the tumor and its location, making 
each tumor unique.

The effects of tumor microenvironment on cancer cell proper-
ties, including proliferation, apoptosis, migration, and invasion, 
are pleiotropic and determined by both direct and indirect interac-
tions of cancer cells with components of their microenvironment.

Apart from regulating the behavior of cancer cells, abnor-
malities of the tumor vasculature and stroma pose barriers to 
the effective delivery of therapeutic agents, which can result in 
compromised treatment outcomes. Indeed, in many tumor types, 
such as pancreatic ductal adenocarcinomas (PDACs) and subsets 
of breast tumors and sarcomas, these barriers can become insur-
mountable, often leading to therapy failure (6).

Abnormalities of Tumor vasculature and effects 
on Tumor Progression
A well-studied abnormality of the tumor microenvironment 
is the hyperpermeability of the tumor blood vessels (7, 8). 
Pro-angiogenic factors that induce angiogenesis [e.g., vascular 
endothelial growth factor (VEGF), platelet-derived growth fac-
tor (PDGF)] are upregulated in most tumors and can drive the 
formation of immature vessels with structural abnormalities. In 
these vessels, the endothelial lining that forms the vessel wall can 
have wide junctions, large numbers of fenestrae and intercel-
lular openings, and be accompanied by a disorganized or loose 
basement membrane and incomplete pericyte coverage (9). As a 
result, whereas in normal vessels the pore cut off size of the vessel 
wall is usually less than 12 nm in diameter (10), in tumor vessels 
it can be up to two orders of magnitude larger (11, 12).

Despite the fact that not all tumor vessels are hyperpermeable 
and they might be heterogeneously distributed inside the tumor, 
vessel hyperpermeability is a hallmark of tumor pathophysiology 
and one of its consequences is a reduction in tumor perfusion 
(i.e., blood supply) owing to excessive fluid loss from the vascular 
to the extravascular space of the tumor (6, 13). Hypo-perfusion, 
in turn, can result in hypoxia and formation of a harsh, acidic 
microenvironment that fuels tumor progression. Indeed, reduced 
perfusion prevents cells of the immune system to reach the tumor 
site through the vascular network. Immune cells patrol the human 
body to eliminate pathogens, foreign antigens, and abnormal cells 
and, thus, they need an effective vascular system to be efficient 
(14). Furthermore, hypoxia and low pH attenuate the killing 
potential of immune cells, such as T lymphocytes and dendritic 
cells, reduce their proliferation rate and reprogram macrophages 
into an immunosuppresive, pro-tumorigenic phenotype (2, 
15–19). Hypoxia and acidosis can also promote a more malignant 
phenotype, since only cells that are resistant to these extreme 
conditions will be able to survive. Furthermore, such environ-
ment can enhance the proliferation rate of cancer stem cells and 
induce a more invasive and metastatic phenotype (20). Finally, 

reduced blood supply can drastically decrease the accumulation 
of chemotherapeutic and nanotherapeutic agents into the tumor 
interior while hypoxia itself is known to compromise the efficacy 
of radiation therapy (6, 14).

Apart from reducing vascular blood flow, excessive fluid 
loss owing to tumor vessel hyperpermeability causes a uniform 
elevation of the fluid pressure of the tumor, known as inter-
stitial fluid pressure (21, 22). Fluid communication between 
the vascular and extravascular space results in an equilibrium 
when the vascular and interstitial pressures are comparable. 
Equalization of fluid pressures across the tumor vessel wall 
poses a major barrier to the extravasation of therapeutics 
because there is no fluid flow to drive their transport inside the 
tumor. Indeed, the main mechanism of transport is diffusion, 
which is a size-dependent mechanism. Therefore, the larger the 
drug the more difficult it will enter the tumor, which primarily 
affects the delivery of nanomedicines (23, 24). Fluid pressure 
can be uniform not only across the vessel wall but also in the 
interior of the tumor, rendering diffusion a dominant transport 
mechanism for intratumoral transport, thus inhibiting the 
penetration and homogeneous distribution of nanoparticles 
(25). Finally, interstitial fluid pressure drops to normal values 
at the periphery of the tumor where lymphatics are functional 
and hyper-plastic. The steep decrease of the fluid pressure at the 
tumor margin creates a fluid flux outward of the tumor, which 
can drift tumor-generated growth factors, therapeutic agents, 
and metastatic cancer cells to the surrounding normal tissues 
promoting tumor progression (26).

Another, less studied, abnormality of the tumor vasculature 
is the compression of intratumoral blood and lymphatic vessels. 
Vessel compression is a result of mechanical forces accumulated 
within the tumor during progression owing to abnormalities in 
the tumor stroma (27–29). Blood vessel compression contributes 
significantly to tumor hypo-perfusion since an upstream com-
pressed vessel can exclude a large number of downstream vessels 
from blood supply. Therefore, tumor blood vessel compression 
contributes to the processes associated with hypo-perfusion, 
hypoxia, and acidosis discussed previously. Finally, compression 
of lymphatics hinders the capacity of the tumor to drain the 
excessive fluid that enters the tumor through the hyperpermeable 
blood vessels, to further cause elevation of the interstitial fluid 
pressure.

Abnormalities of Tumor eCM and effects on 
Tumor Progression
 Extracellular matrix is a fundamental component of the tumor 
microenvironment that acts bidirectionally, both affecting and 
being affected by tumor cells. Through interactions with the inte-
grins receptors, ECM communicates with the interior of the cell 
accepting and transmitting survival signals (30). Besides provid-
ing cell-adhesion sites, ECM is also critical for tissue homeostasis 
as a reservoir for growth factors. In fact, many growth factors 
have the ability to bind specific sites within the ECM, leading to 
the release of signaling molecules at different kinetics and from 
different locations, allowing a well-orchestrated regulation of cell 
fate within the tumor microenvironment (31). Moreover, remod-
eling the ECM through the secretion of matrix metalloproteinases 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


October 2015 | Volume 5 | Article 2143

Gkretsi et al. Remodeling tumor microenvironment enhances therapy

Frontiers in Oncology | www.frontiersin.org

(MMPs) from CAFs and/or tumor cells facilitates the release of 
bound-to-ECM growth factors, thus promoting tumor growth.

Interestingly, another connection has been reported between 
the ECM and cancer development. More specifically, it has been 
long known that cancer bears many similarities to unhealed 
wounds, leading many researchers to investigate wound healing 
as a means to better understanding cancer and/or discovering 
new therapeutic interventions for the disease (31–33). Indeed, 
malignant tumors often develop at sites of chronic injury, while 
the healing of a wound by itself with the ECM accumulation and 
the formation of the scar greatly resembles the development of a 
tumor apart from the invasive capacity that is not present in cells 
participating in wound healing.

The abnormal structure and function of tumor stroma is 
largely attributed to the upregulation of matrix remodeling 
molecules such as the transforming growth factor β (TGFβ) (34). 
These abnormalities, collectively known as desmoplasia, refer to 
the formation of a dense ECM characterized by increased levels 
of total fibrillar collagen, fibronectin, proteoglycans (PGs), and 
tenascin C. In fact, desmoplastic response has been demonstrated 
to be associated with more aggressive and invasive cancer and 
worse prognosis in several types of cancer such as papillary 
thyroid microcarcinomas (35), breast cancers (36), and rectal 
cancers (37).

Furthermore, a desmoplastic response involves the transfor-
mation of fibroblasts to myofibroblasts or CAFs. CAFs are large, 
spindle-shaped mesenchymal cells that share characteristics with 
smooth muscle cells and fibroblasts (38). They constitute a signifi-
cant stromal component and represent the cells responsible for the 
change of ECM composition toward desmoplasia, characterized 
by increased amounts of collagen deposition. Although CAFs are 
both phenotypically and functionally distinct from their normal 
counterparts and they are identified immunohistochemically by 
different markers, such as α-SMA, vimentin, desmin, fibroblast-
specific protein-1, and fibroblast activation protein, there is hardly 
any true definition of CAFs (39). Researchers agree, though, that 
CAFs can promote tumor progression in a multitude of ways, 
such as secretion of multiple growth factors and MMPs, secretion 
of factors that induce stemness, or epithelial-to-mesenchymal 
transition (EMT) (39).

Desmoplastic response and thus ECM deposition differs 
significantly among various cancer types, indicating different 
mechanisms of cancer development and progression. Moreover, 
in certain cases, ECM components show different localization 
patterns even within the same tumor depending on the dif-
ferentiation and the histological pattern of tumors (40). Thus, 
although, knowing the exact composition of ECM in each cancer 
type would be useful and perhaps clinically and/or diagnosti-
cally relevant, current literature lacks extensive studies of ECM 
deposition in different human cancers. In the present review, we 
summarize existing studies of ECM deposition in human samples 
of breast, colon, lung cancer, pancreatic cancer, hepatocellular 
carcinoma, and glioblastoma (Table 1).

Tumor types known to be highly desmoplastic include 
subsets of pancreatic and breast cancers as well as sarcomas. 
Desmoplasia may contribute to an increase in tumor density 
which, as a tumor grows in the confined space of the host tissue, 

results in the generation and accumulation of mechanical forces 
among the components of the tumor microenvironment as well 
as between the tumor and the host tissue (50). Indeed, stromal 
cells and extracellular components, predominantly collagen 
and hyaluronic acid, exert forces on tumor blood and lymphatic 
vessels causing their compression and eventually their collapse. 
Stromal cells and ECM exert forces not only on tumor vessels but 
also on cancer cells. Compression of cancer cells has been found 
to reduce their proliferation rate, induce apoptosis, and promote 
a more invasive and metastatic phenotype (51–55). Therefore, 
mechanical forces affect tumor progression both directly, by 
applied to cancer cells, and indirectly, via intratumoral vessel 
compression.

Finally, desmoplasia limits the available space for transport in 
the tumor interstitial space, which prevents homogeneous pen-
etration of therapeutic agents (9, 56). High collagen and cellular 
densities reduce the size of the pores of the tumor interstitial space 
and as a result the resistance to interstitial fluid flow increases. 
This, in turn, further enhances the uniform elevation of the inter-
stitial fluid pressure and renders diffusion the dominant transport 
mechanism in the tumor interior. Therefore, when therapeutics, 
particularly particles large in size (>60 nm), extravasate from the 
hyperpermeable tumor vessels, might not be able to effectively 
penetrate deep into the tumor either because they are trapped due 
to their size being comparable or larger than the size of the pores 
of the interstitial space or because, by definition, diffusion is a slow 
transport mechanism for large nanoparticles. As a consequence, 
the nanoparticles will be concentrated in the perivascular regions 
resulting in heterogeneous drug distribution which primarily 
causes local effects (57, 58).

Targeting Molecules that Modulate the 
Tumor Microenvironment

The conventional assumption is that multiple mutations in cancer 
cells after prolonged exposure to therapeutic agents can result in 

TABLe 1 | Tumor-specific eCM deposition for common types of cancer.

Type of cancer Tumor-specific eCM deposition Reference

Breast cancer Collagen I, collagen IV, collagen 
V, fibronectin, laminins, entactin, 
proteoglycans, glycosaminoglycans

(41)

Colon cancer Chondroitin sulfate proteoglycan,  
hyaluronic acid
Laminin, collagen IV, heparan sulfate 
proteoglycan

(42, 43)

Glioblastoma Collagen IV, procollagen III, laminin, 
fibronectin, and hyaluronic acid
Fibrillar collagens (i.e., collagens I, III)

(44, 45)

Hepatocellular 
carcinoma

Collagen IV and laminin (46)

Lung cancer Collagen types I and III, non-collagenous 
glycoproteins laminin, and fibronectin

(47)

Pancreatic cancer Collagen I, hyaluronan
Collagens I, III, and IV, laminin, tenascin, 
vitronectin

(48)
(49)
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their drug-resistant clonal expansion leading to disease progres-
sion and eventually patient death (59). However, it is generally 
realized over the last decades that this mechanism represents 
only one of the underlying causes for this phenomenon. It is now 
becoming increasingly clear that the tumor microenvironment 
can also play crucial roles both in promoting tumor progression 
and in determining the efficacy of cancer therapy. To this end, 
research efforts have recently revealed several promising target 
molecules (60).

As it has already been mentioned, abnormal tumor vascu-
lature is a hallmark of most cancers and is often the result of 
the imbalance between pro- and anti-angiogenic signaling in 
cancer or stromal cells (61). Angiogenesis is a process that is 
largely driven by VEGF, which can be derived from various 
sources. Increased levels of the major pro-angiogenic factor 
VEGF and its receptors can be produced by cancer cells and 
have been associated with resistance to chemotherapy in a 
variety of human tumor models, including colorectal, gastric, 
sarcoma, and pancreatic cancers (62–65). VEGF expression is 
transcriptionally induced under hypoxic conditions that stabi-
lize the hypoxia-inducible factors 1 and 2 (HIF-1α and HIF-2α) 
by reducing the activity of the prolyl hydroxylase domain 
proteins 1–3 (PHD1–3) (66). Importantly, CAFs can also 
promote angiogenesis and drug resistance by secreting numer-
ous pro-angiogenic molecules, including VEGF (67), stromal 
cell-derived factor 1 (SDF-1) (68), platelet-derived growth 
factors B and C (PDGF-B,C) (69), fibroblast growth factors 2 
and 7 (FGF-2 and FGF-7) (70). In addition, vessel maturation 
and stabilization is controlled by molecules such as PDGF-B, 
regulator of G-protein signaling 5 (RGS5), angiopoietin-1/2 
(Ang1/2), and TGFβ by recruiting perivascular cells (pericytes 
and vascular smooth muscle cells) (61, 71).

Besides its important functions in the physiological tissue 
growth, differentiation, and homeostasis, the ECM also plays 
crucial roles during cancer progression. ECM is a highly hetero-
geneous and dynamic structure that interacts with different cel-
lular components and the individual cellular microenvironment 
of each tissue and constantly becomes remodeled in response 
to different biomechanical stimuli. It is localized either in the 
basement membrane or in the interstitial space and is unique for 
each tissue. Although it is mainly composed of water, proteins, 
and polysaccharides, there are two classes of macromolecules 
that can be identified: PGs and fibrous proteins. All PGs consist 
of glycosaminoglycan (GAG) chains that are covalently linked to 
a protein core molecule, with the exception of the highly abun-
dant hyaluronic acid. PGs are classified according to their core 
proteins, localization, and GAG composition into three main 
families: small leucine-rich proteoglycans (SLRPs), modular 
PGs, and cell-surface PGs (72, 73) and include members such 
as aggrecan, decorin, glypican, and syndecan (73). The major 
fibrous ECM proteins include different types of collagens, elas-
tins, laminins, tenascin, and fibronectin while PGs occupy the 
majority of the remaining extracellular space (74). Although to 
date 28 different types of collagen have been identified (72, 73), 
collagens I, III, and IV are the most highly represented proteins 
in the ECM and exert important functions in regulating tissue 

development, tensile strength, cell adhesion, and migration 
(75). The majority of collagen is synthesized and secreted by 
fibroblasts and CAFs in response to TGFβ stimulation and local 
application of mechanical forces (34). Its structure is character-
ized by triple-stranded helices that are assembled together with 
the help of different TGFβ-regulated crosslinking enzymes, 
such as lysyl oxidase (LOX), connective tissue growth factor 
(CTGF), and periostin (POSTN) (76–78). Finally, fluctuations 
in the activity of MMPs may also have a great impact on ECM 
remodeling (79).

It should be mentioned, however, that commonly used 
cytotoxic therapies such as radiation and chemotherapy tend to 
remodel the tumor stroma by themselves, by activating several 
of its components and promoting tumor growth (80–82). For 
instance, it has been shown that exposure of CAFs isolated from 
human lung tumors to ablative ionizing radiation mediates a 
transformation on their secretory profile that includes down-
regulation of angiogenic molecules and upregulation of FGF, 
all of which can certainly affect cell behavior within the tumor 
and thus guide therapeutic outcomes (81). Moreover, ionizing 
radiation was shown to induce rapid and global changes in the 
mammary microenvironment characterized by altered ECM 
composition and growth factor activities (80), reinforcing the 
idea that radiation-induced changes in the stromal microenvi-
ronment can contribute to neoplastic progression in vivo. Finally, 
chemotherapy-treated human CAFs were shown to promote 
colorectal cancer initializing cells self-renewal and in vivo tumor 
growth (82), indicating that chemotherapy also induces remod-
eling of the tumor microenvironment.

To counteract this effect that chemotherapy and radiation 
may have on tumors and tumor microenvironment, combination 
therapy is usually undertaken to improve clinical outcome (83). 
Interestingly, a number of preclinical and clinical studies have 
shown that radiation and chemotherapy elicit changes within 
tumors and their microenvironment that make the malignant 
cells more sensitive to an efficient immune cell attack, thus 
suggesting that a combination of immunotherapy with standard 
anticancer therapies will provide synergistic antitumor effects 
(84, 85). Last but not least, a combination of chemotherapy 
and/or radiotherapy with anti-angiogenic agents has also been 
suggested as suitable for better outcomes as these agents target 
tumor vasculature and new tumor vessel formation and can 
modulate the tumor microenvironment to improve tumor blood 
flow and oxygenation, leading to enhanced radio- and chemo-
sensitivity (83).

Therapeutic Strategies to Remodel the 
Tumor Microenvironment and enhance 
Therapy

According to our analysis, therapeutic strategies aiming at 
remodeling the tumor microenvironment to enhance drug deliv-
ery can target either the abnormal tumor vessels or the abnormal 
tumor stroma or both. The basic idea behind these strategies is 
to bring the tumor to a more “normal” state, i.e., to normalize 
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the tumor vasculature and/or the stroma. Vascular normalization 
is achieved with judicious doses of anti-angiogenic treatment, 
targeting mainly the VEGF or its receptors, whereas stroma 
normalization can be achieved by targeting stroma remodeling 
molecules, such as TGFβ. In the first case, vascular normaliza-
tion will restore tumor perfusion by fortifying the vessel wall, 
which will also drop interstitial fluid pressure due to the reduced 
amount of fluid leaking from the vessels. In the second case, 
stroma normalization will improve perfusion by decompressing 
blood and lymphatic tumor vessels via alleviation of intratumoral 
mechanical forces (Figure 1).

vascular Normalization Strategy
Anti-angiogenic treatment to prune the tumor vasculature and 
thus exclude tumors by oxygen and nutrient supply was first 
introduced by the late Dr. Judah Folkman, more than three dec-
ades ago (87). Anti-angiogenic treatment worked well in many 
preclinical models but failed to improve overall survival when 
used as monotherapy in most cases in the clinic (88). One of the 
reasons could be the induction of hypoxia and low pH, which 
drives tumor progression, as it has been already discussed in 
this review. In 2001, Jain suggested the use of judicious doses 
of anti-angiogenic treatment, aiming to normalize the structure 
and function of tumor vessels, along with cytotoxic agents that 
will eradicate cancer cells (89). Since then this combinatorial 
treatment has been employed extensively both in preclinical 
and in clinical studies with varying degrees of success (14, 61). 
More specifically, addition of anti-VEGF antibody therapy 
to standard chemotherapies has improved survival and is an 
accepted standard of care for a number of cancer types such as 
cervical cancer (90), colorectal cancer, prostate cancer (91), and 
advanced non-small cell lung cancer (92). Interestingly though 
evidence in non-small cell lung cancer also point towards the 
idea that excessively decreasing vascular permeability and prun-
ing after anti-VEGF therapy may negatively impact the outcome 

FiGURe 1 | Schematic of strategies to remodel the tumor microenvironment to enhance cancer therapy. Vascular normalization treatment fortifies the 
hyperpermeable tumor blood vessels, whereas stress alleviation reopens compressed tumor blood vessels. Both strategies aim at improving tumor perfusion. 
Adapted with permission from Ref. (86).

of combination therapy in patients and better treatments are 
achieved when anti-VEGF treatment results in improved 
tumor perfusion (92). Moreover, in glioblastoma, which is a 
highly vascularized type of cancer deemed ideal target for anti-
VEGF therapy, it was shown that anti-VEGF therapy improves 
progression-free survival in newly diagnosed and recurrent 
glioblastoma, while it was recently suggested that continuing 
anti-VEGF treatment through multiple lines of therapy might 
prove beneficial to the patients (93). Furthermore, as in non-
small cell lung cancers, vascular normalization improved the 
efficacy of radiotherapy in glioblastoma patients who exhibited 
improved tumor perfusion following anti-VEGF treatment, 
while overall survival was reduced for patients who exhibited 
hypo-perfusion (94, 95).

The most common targeted molecule in anti-angiogenic treat-
ments has been VEGF (e.g., drug bevacizumab against VEGF-A) 
and its receptors [e.g., drug cediranib, an inhibitor of all three 
vascular endothelial growth factor receptors 1–3 (VEGFR-1–3)]. 
As discussed earlier, a number of other molecular targets present 
in both cancer and host cells, which have the ability to induce 
vascular normalization have also been investigated, including 
PDGF-B,C, HIF, PHD2, Ang1/2 [see Ref. (61) for a detailed 
review].

The first response of vascular normalization is considered to 
be an increase in pericyte coverage, which fortifies the vessel 
wall and reduces the size of its pores (96, 97). Reduction of 
vessel wall pore size decreases the fluid flux from the vascular 
to the intratumoral space and, thus, improves perfusion and 
decreases interstitial fluid pressure, which is beneficial for 
drug delivery (62). Furthermore, vessel normalization can 
prune immature, dysfunctional blood vessels forming a vas-
cular network with a more normal structure and improved 
functionality as far as its capacity to carry blood is concerned. 
Structural and functional normalization are prerequisites for 
an anti-angiogenic treatment to become effective in improving 
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delivery of therapeutics (98). Benefits of vascular normaliza-
tion are, however, dose and time dependent. High or multiple 
doses of anti-angiogenic treatment can cause excessive prun-
ing of the vasculature, reducing perfusion and drug delivery. 
Apparently, a balance between the two needs to be reached, 
which leads to the idea of a normalization window – a function 
of dose and time within which the strategy is effective (14). 
Furthermore, vascular normalization improves the delivery of 
drugs in a size-dependent manner. A reduction in the vessel 
wall pore size can exclude particles larger than 60 nm in size 
to effectively cross the tumor vessel wall. Therefore, it has been 
found that only the delivery of particles with sizes less than 
60 nm can be benefited (23).

Clinical studies in humans have verified that anti-angiogenic 
agents can normalize the tumor vasculature and increased tumor 
blood perfusion has been shown to prolong survival of patients. 
Agents that have been successfully used include bevacizumab in 
patients with rectal cancer, cediranib in patients with recurrent 
or newly diagnosed glioblastomas and sunitinib in patients with 
metastatic renal-cell carcinomas (94, 95, 99–102).

Stress Alleviation Strategy
Apart from cancer cells, components of the tumor microenvi-
ronment that contribute to accumulation of mechanical stresses 
(i.e., force per unit area) in tumors include the stromal cells, 
collagen fibers, and hyaluronic acid (50). Selective depletion of 
any of these constituents in preclinical studies has been found 
to alleviate stress levels, decompress blood vessels, improve 
perfusion and drug delivery, and, finally, enhance therapeutic 
outcomes (86).

Pharmacological depletion of stromal cells using an inhibi-
tor of the Hedgehog pathway (Saridegib) managed to improve 
chemotherapy in murine pancreatic cancers and the overall 
survival of the animals (103). A few years later, we found that 
Saridegib acted as a stress alleviating agent resulting in increased 
blood vessel diameter and tumor perfusion in murine pancre-
atic cancers (50). However, more recent studies have shown 
that excessive depletion of stromal cells may accelerate tumor 
progression (104–106). Targeting of collagen and hyaluronic 
acid using angiotensin receptor blockers (ARBs) or angiotensin-
converting enzyme (ACE) inhibitors, which are widely used 
as anti-hypertensive drugs, was found to improve delivery of 
chemotherapeutic agents and nanomedicines in pancreatic 
and breast tumors via stress alleviation by decreasing stromal 
expression of TGFβ as well as other fibrosis-inducing signal-
ing molecules (107, 108). Remodeling of the ECM can be also 
achieved by other agents that inhibit the TGFβ pathway (109). 
Additionally, depletion of hyaluronic acid when combined with 
cytotoxics was found to cause stress alleviation and improved the 
overall survival of mice bearing pancreatic tumors (110–112). 
These findings have led to a clinical trial at Massachusetts General 
Hospital in patients with advanced PDAC  –  a uniformly fatal 
disease with very poor prognosis (see ClinicalTrials.GOV – trial 
identifier number NCT01821729). Retrospective clinical studies 
have also shown that treatment with ARBs and ACE inhibitors 
may improve survival in patients with pancreatic, lung, and renal 
cancers (113–115).

Methods to Observe Changes in the 
Tumor Microenvironment Following 
Pharmacological intervention

Several studies have used in vivo animal models in order to iden-
tify the expression of different ECM components in solid tumors. 
Typical examples include collagen and hyaluronic acid since both 
have been suggested to play major roles in compressing tumor 
blood vessels and thus limiting perfusion. These roles within the 
tumor microenvironment are often examined by establishing 
animal tumor models followed by pharmacological interventions 
to modify distinct ECM constituents (6, 50, 108). Xenograft or 
syngeneic animal tumor models are usually generated by ortho-
topic or ectopic cancer cell implantation or by implantation of a 
small piece of viable tumor in mice. Meanwhile, pharmacological 
treatment of mice is usually administered either orally, using gav-
age needles directly in the digestive tube, or by intraperitoneal 
injection or by intravenous injection or by retro-orbital injection 
(23, 108, 109, 116). Once the pharmacological treatment is com-
pleted and when the tumor reaches the desired size, the animals 
are euthanized followed by tumor excision. Tumors are then 
prepared either for cryo- or formalin-fixed paraffin embedded 
sectioning followed by immunohistochemistry. Typically, tumors 
prepared for paraffin embedding are fixed in paraformaldehyde 
solution, whereas when tumors are preferred to be processed 
by cryosectioning, incubated at sucrose/phosphate buffered 
saline (PBS). Then tumors are embedded in an optimal cutting 
temperature compound. The tissue thickening during sectioning 
varies and largely depends on the tumor type, on the primary 
antibody that will be used and also on the type of preferred 
staining method. There are various commercially available pri-
mary antibodies against collagen and hyaluronic acid that can 
be used for immunofluorescence and immunohistochemistry. 
Subsequently, following proper microscopic observation of 
tumor sections, images taken from each sample can be further 
processed for analysis and quantification using specific software, 
such as ImageJ and MATLAB (108, 109, 111, 117).

Animal models can also be used for vascular analysis of tumors. 
On the last day of treatment, animals are injected with biotinylated 
tomato lectin either via the retro-orbital sinus or intracardiac injec-
tion (108, 118). After tumor removal, the samples are prepared for 
cryosectioning that will be followed by immunohistochemistry. 
In most studies, the endothelial marker CD31 is commonly used 
for staining of all blood vessels followed by counterstaining with 
secondary antibodies against the biotinylated lectin. Perfused 
vessels are identified as the ones that display co-localization of 
biotynilated lectin as well as CD31 staining (108). Further analysis 
and quantification regarding the perfused vessel area fraction, the 
diameter, the size, the length, and the density of blood vessels can 
be performed using various software.

An alternative approach to characterize tumor microenviron-
ment components and observe its changes following pharma-
cological intervention is with in vivo (or commonly referred as 
intravital) microscopy (119, 120). Intravital microscopy includes 
a number of techniques such as single-photon microscopy, mul-
tiphoton (MP) microscopy, and optical frequency domain imag-
ing. According to Fukumura et al., in order to perform intravital 
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microscopy, the components that are required include the prepa-
ration of the tissue so that to permit optical access, the use of 
microscope detectable molecular probes, the use of appropriate 
microscope/detection systems, and the extraction of parameters 
of interest through computer algorithms and mathematical 
models (121). Tissue preparation can be performed through: 
(1) in  situ preparation (e.g., ear and tail models), (2) exterior-
ized tissue preparation, and (3) chronic-transparent windows, 
including dorsal skinfold chambers, mammary fat pad chambers, 
and cranial windows (121). Intravital microscopy can be used in 
living animals so that to monitor and image the expression of 
specific proteins (e.g., second harmonic generation for fibrillar 
collagen), the protein subsellular locations and the dynamics 
of cell populations of interest (122). Intravital MP microscopy 
technique is a powerful tool that has provided unprecedented 
mechanistic insights into the tumor microenvironment (120, 
123). It can be used for observing single tumor cells and their 
microenvironment and the same organ (from the same animal) at 
different time points (122). MP has been used to track individual 
cancer cells in vivo which is useful for the evaluation of cancer cell 
motility in vivo and provides new insights regarding the evolution 
and response to therapies (124, 125). Furthermore, MP micros-
copy offers possibilities for direct comparisons of multiple tumor 
cell populations, such as cancer stem cells and non-stem tumor 
cells (123). On the other hand, optical frequency domain imaging 
circumvents some of the technical limitations of MP microscopy, 
it can be used to monitor the tumor microenvironment, and can 
also be applied for the evaluation of different the treatment strate-
gies (119, 121).

In vitro Models of Tumor 
Microenvironment

Although preclinical in vivo models are desired for most cancer-
related research, reaching that point might require a number 

of promising reproducible experiments involving cancer cells 
in vitro. Establishing appropriate in vitro models that can mimic 
in detail, the tumor microenvironment is a challenge by itself. 
Traditionally, cancer researchers have relied on coating tissue 
culture dishes with purified preparations or mixtures of ECM 
proteins (i.e., collagen, matrigel, fibronectin, gelatin) in order to 
obtain two-dimensional (2D) cell monolayers (126). Although 
2D-culture models cannot fully recapitulate the tumor micro-
environment in vitro, they possess certain unique characteristics 
that enable the investigation of specific cellular, molecular, and 
biochemical properties of cancer and stromal cells.

In vitro Models for the Study of Mechanical 
interactions in the Tumor Microenvironment
Little is known regarding the dynamics of mechanical forces 
developed within a tumor due to elevating stress or due to ECM 
stiffening, the ways by which these forces affect cancer cell phe-
notype as well as the molecular pathways involved. To address 
these issues, several models have been established to study these 
interactions in vitro.

As shown in the diagram of Figure 2, the in vitro models used 
to study the effects of mechanical stress on cancer cell behavior 
can be divided into two major categories; models in which stress 
is applied externally by means of a mechanical device or other 
external force, and models in which stress is applied from within 
the tumor microenvironment by means of culturing the cells 
inside collagen or ECM-containing gels of increasing concentra-
tion and, thus, increased stiffness.

Externally Applied Stress
Using a compression device
In a recent study, novel devices for exerting external compression 
were developed, namely, a well-pressor and a videomicroscopy-
compatible optic-pressor. These devices could exert precise 
compressive strain (0.25–0.05  kPa for 3  h) on cells embedded 
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in three-dimensional (3D) agarose gels in the absence of other 
mechanical stimuli and soluble gradients, in aseptic conditions 
and at physiological temperature and pH conditions. The results 
from live imaging performed in this study showed that cells 
elongate and deflect vertically to the load. Moreover, cells tend 
to differentially regulate the expression of metastasis-associated 
genes that promote cancer cell invasion (54). Another study 
used breast cancer cells and “normal” mammary cell lines and 
subjected them to compressive stress at a level of 5.8 mm Hg using 
a specially designed in  vitro compression device. Cell motility 
was then assessed using the wound healing assay. The authors 
concluded that compressive stress enabled coordinated migration 
of cancer cells by enhancing cell–ECM adhesion, suggesting that 
compressive stress can select for metastatic cell populations and 
trigger cancer cell invasion through surrounding tissues (55).

ECM-Induced Stress and ECM-Related Models
Culturing cells embedded in 3D collagen gels of varying 
concentration or degree of crosslinking
Several studies have used the in vitro model of culturing cells in 
3D collagen gels (127–129). This system has showed that normal 
cell morphogenesis can be “tuned” by the balance between cell-
generated contractility and opposing matrix stiffness (127). In 
addition, it has also been shown to facilitate the development of 
in vitro 3D bioengineered tumors that recapitulate the pre-vascu-
larized stages of in vivo solid tumor progression (128). Modifying 
the collagen concentration, cell–ECM forces can be performed 
with a denser and, thus, stiffer matrix to produce larger forces. 
Using this approach, cancer cells are embedded in the ECM and 
direct cell–ECM interactions are measured.

Another way to modulate the forces around cancer cells 
without external application of mechanical stress is through the 
induction of increased ECM stiffness by LOX-mediated collagen 
crosslinking. In fact, Levental et  al. showed that inducing col-
lagen crosslinking stiffened the ECM, promoted focal adhesions, 
and induced the invasion of an oncogene-initiated epithelium, 
clearly suggesting that collagen crosslinking can regulate tissue 
stiffness to force focal adhesion formation and breast tumor 
malignancy (130).

Culturing cells in a 3D “sandwich” collagen gel set up
Another interesting approach that greatly mimics the tumor 
environment allowing rigorous control of various conditions was 
described by Brekhman and Neufeld in 2009. More specifically, 
they developed a novel asymmetric 3D in vitro culturing system 
and invasion assay by embedding a monolayer of tumor cells 
between two collagen layers. This assay was used to compare the 
invasive properties of several tumor cell types, therefore introduc-
ing a potent way to study the effects of tumor microenvironment 
on tumor cell invasiveness (131).

Culturing cells in 3D hyaluronic acid gels
Apart from collagen-based 3D gel culture systems, the use of 
hyaluronic acid-based 3D gels is increasingly gaining ground 
in cancer research in an attempt to better recapitulated normal 
tumor growth (132–134). Evidently, the practice of combin-
ing the two matrices is also being employed (134) by many 

researchers as a more physiologically relevant model, recapitu-
lating the mixture of matrix components present in the tumor 
microenvironment (135).

Forming spheroids embedded in fibrous gels of increasing 
stiffness
In another method, tumor cells were embedded as spheroids in 
gels of varying agarose concentration, ranging from 0.3 to 2%, 
and the ability to form tumor spheroids was assessed by compar-
ing spheroid formation in free suspension, as control (136). The 
study showed that colon carcinoma cells can form spheroids with 
a maximum diameter of 400  μm in 0.5% (w/v) agarose, while 
the spheroid diameter barely reached 50  μm in 1.0% agarose. 
Moreover, increased agarose concentration decreased cell 
proliferation in spheroids which was completely reversible once 
spheroids were removed from the gel (136). Similar studies have 
been also repeated with glioma, sarcoma, and breast cancer cells 
using either agarose or collagen matrix which further confirmed 
this inverse relationship between matrix stiffness and cancer cell 
proliferation (52, 137).

Interestingly, a combination of using a compression device 
and cell culture in agarose gels has also been used to assess the 
effect of external compression on tumor growth and metastasis 
using the “hanging droplet method” in order to generate cancer 
cell spheroids that later were incorporated into agarose gels (53). 
According to the “hanging droplet method,” cell suspension 
droplets were placed on the reverse of the cover of a culture dish 
and left in the incubator for 3 days (138). Subsequently, formed 
spheroids in hanging droplets were collected and re-suspended 
in 1.0% agarose solution and placed in inserts with porous 
membranes (0.4 mm in size). After solidification, the spheroid-
gel construct was compressed using a piston of desired weight. 
The results of the study indicated that compressive stresses can 
suppress cancer cell proliferation and induce apoptotic cell death 
via the mitochondrial pathway (53).

Co-culture model systems
As described earlier, the tumor microenvironment consists of 
carcinoma cells, stromal cells, and intratumoral stroma, thus con-
taining many cell types that are implicated in cancer development 
and progression. The development of co-culture model systems is 
an in vitro approach to study cell–cell communications or inter-
actions among these cells that are thought to play an important 
role in cancer initiation, promotion, and progression (139, 140). 
This system offers a clear advantage compared to mono-culture 
systems that cannot evaluate interactions between carcinoma and 
intratumoral stromal cells.

Fibrous scaffold systems
Finally, fibrous scafford systems have also been developed 
recently. Of interest is a recent study where they produced a 
fibrous scaffold by electrospinning a mixture of poly(lactic-co-
glycolic acid) and a block co-polymer of polylactic acid and 
mono-methoxypolyethylene glycol (141). The study showed 
that cancer cells cultured on this scaffold formed tight irregular 
aggregates similar to in  vivo tumors that depended on the 
topography and net charge of the scaffold and the scaffolds 

http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org


October 2015 | Volume 5 | Article 2149

Gkretsi et al. Remodeling tumor microenvironment enhances therapy

Frontiers in Oncology | www.frontiersin.org

induced tumor cells to undergo the epithelial-to-mesenchymal 
transition (141, 142).

Each and every one of the above-described approaches offers 
definite advantages and studies tumor growth from a different 
perspective while also presenting certain limitations. The meth-
ods using externally applied compressive stress can provide more 
precise information regarding the exact magnitude of the applied 
force whereas all the other models that generate stress by matrix 
stiffening cannot. On the other hand, modulating matrix stiffen-
ing is more physiologically and clinically relevant compared to 
externally applied mechanical forces. This is due to the fact that 
matrix stiffening methods maintain the structural architecture 
necessary for proper cell–cell and cell–ECM interactions and 
are therefore able to better recapitulating an in vivo phenotype 
and the true tumor microenvironment. In fact, several in vitro 
3D models have been proposed to have the ability to acquire 
phenotypes and respond to different stimuli, thus bearing strong 
similarities to in vivo biological systems (128, 143–145).

However, most in vitro studies performed in the field of cancer 
biology have mostly relied on 2D cell culture studies. In that 
respect, atomic force microscopy (AFM) has been recently used 
as an important tool to visualize and quantify mechanical forces 
in cell culture systems.

Atomic Force Microscopy in Cell Culture
Atomic force microscopy is a microscope that can be used to obtain 
images and other qualitative and quantitative information, such 
as mechanical properties, in a non-destructive manner, from a 
wide range of samples, including biological ones (146–149). AFM 
operates by measuring forces between a probe and the sample and 
offers extremely high resolution at the nanometer level, without 
special treatment, such as dehydration, labeling or coating, or 
vacuum conditions of the specimen (150, 151). Moreover, it 
operates well in samples embedded in water or buffers as well 
as on live cells; even detecting molecules at the single-molecule 
level. State-of-the-art AFM modalities, methods, and techniques 
can combine qualitative and quantitative information, such as 
high-resolution imaging with elasticity, modulus, adhesion, 
and deformation data, converting AFM into a powerful tool for 
researchers (150, 152).

Particularly, the use of AFM techniques in the field of cancer 
research was initially focused on the in  vitro investigation of 
cancer cells. However, recent related techniques have begun to 
emerge as novel methodologies for unraveling “secrets” of the 
tumor microenvironment. The provided information ranges 
from morphometric imaging to force measurements and cover 
essential aspects of tumor microenvironment research. Nanoscale 
characteristics of cancer and stromal cells surface or pericellular 
alterations/activity can be provided, while nano-mechanical 
characteristics, like cells softness, ECM stiffness, and cell to ECM 
forces, can be acquired under almost physiological conditions.

In the literature, AFM has been used for:

 a) Studying the effect of specific matrix remodeling molecules, 
such as TGFβ. AFM can be used to study biomechanical 
properties, such as cell stiffness, surface membrane features, 
elongation of cells, and interaction strengths during the EMT 

process, in response to TGFβ (153). With regard to the latter, 
AFM studies have shown an increase in the tension within 
the membrane after EMT induction (154), while alterations 
of cell topography and the formation of nodular protrusions 
at intercellular junctions were also demonstrated (155–157). 
In addition, increased cancer cell stiffness during EMT was 
also found to be a consequence of stress fiber formation and 
force generation.

 b) Studying cell migration, invasion, and pericellular proteo-
lytic activity as well as visualization/characterization of cell–
ECM adhesions. Few research groups have used AFM to 
study invadopodia, the characteristic protrusions extended 
by tumor cells during invasion of neighboring tissue (158, 
159). Moreover, AFM can contribute to the study of pericel-
lular proteolytic activity of cancer cells since it can detect 
differences in the average height, volume, and molecular 
weight distribution of pericellular matrix proteins within 
the tumor microenvironment (160–162). AFM has also 
been used for the characterization of dual mechanical prop-
erties in prostate and breast cancer cells. In these studies, the 
investigation of both the cell–ECM and cell–cell adhesions 
showed that mechanical compliance alone fails to serve as 
a universal indicator for metastatic progression and, there-
fore, different therapeutic approaches should be considered 
for each tumor type in order to prevent metastasis in cancer 
patients (163). Finally, AFM has been used to determine the 
adhesion strength between an endothelial cell monolayer 
and tumor cells with different metastatic potential (164).

Conclusion

Recent studies in the field of cancer research have shed light upon 
the critical role of tumor microenvironment for cancer progres-
sion, highlighted that understanding the interplay between 
cancer cells and their microenvironment can promote cancer 
pathogenesis and facilitate the development of more effective 
therapeutic approaches. The tumor microenvironment consists 
of tumor blood and lymphatic vessels and the tumor stroma. The 
latter contains non-cancer cells and tumor ECM components and 
its effects on cancer cell properties are considered pleiotropic. 
However, apart from regulating cancer cell behavior, abnormalities 
of the tumor vasculature and stroma pose barriers to the effective 
delivery of therapeutic agents, which can compromise treatment 
outcomes. Thus, understanding the tumor microenvironment 
and its abnormalities during cancer progression is fundamental 
for the development of better treatment strategies.

In this review article, we have summarized the common 
abnormalities observed in the tumor microenvironment, includ-
ing tumor blood vessel hyperpermeability, and compression of 
intratumoral blood vessels due to the development of mechanical 
forces, as a result of stromal aberrations. We have also indicated 
molecules that could be used as targets in order to modulate 
tumor microenvironment, including angiogenic factors, such 
as VEGF, as well as ECM-remodeling growth factors, such as 
TGFβ (6). The ultimate research goal would be to make the 
tumor microenvironment phenotype less “cancerous” and more 
“normal” by targeting these molecules (165). Strategies that have 
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been developed to normalize cancers include vessel normaliza-
tion and stress alleviation techniques that can be used alone or in 
combination depending on tumor type (86).

Furthermore, we summarized the literature on available 
in vitro models used to study the tumor microenvironment that 
also take into account mechanical interactions between cancer 
cells and the tumor microenvironment. In general, in  vitro 
models can be divided in those where stress is applied externally 
to cancer cells using a compression device and models where 
stress is induced by modulating the stiffness of the surrounding 
matrix increasing collagen content and/or degree of crosslink-
ing. Last but not least, this review presents the advantages 
of using AFM as a novel technique to obtain qualitative and 
quantitative information on mechanical properties and nano-
imaging of cells in vitro and in relation to matrix remodeling 
and cell–ECM interactions.

Finally, this review summarizes new considerations for the 
use of treatments that modify the tumor microenvironment. 
Desmoplastic tumors (e.g., pancreatic cancers, subsets of breast 
tumors) must experience high mechanical forces owing to the 
large amount of ECM and thus they should have a large amount 
of compressed vessels. In these tumor types, anti-VEGF drugs 
that fortify the vessel wall most likely would not work because 
the vessels will still remain compressed and dysfunctional and, 
thus, stress alleviation drugs to decompress vessels along with 
cytotoxic agents should be considered. Less desmoplastic tumors 

(e.g., subset of glioblastomas) are expected to have uncompressed 
vessels and in the case that these tumors are hyperpermeable, the 
use of anti-VEGF treatment with cytotoxic agents should be the 
therapeutic strategy of choice. In practice, one needs to identify 
which tumors have hyperpermeable vessels, compressed vessels, 
or both. This is a challenging task because although some broad 
statements can be made (e.g., PDACs are desmoplastic), there are 
many tumors where the degree of desmoplasia is highly variable 
from one tumor to the next, for the same tumor through time and 
potentially from the primary tumor to its metastases. To choose 
an appropriate strategy, the state of that individual tumor has 
to be known. Further development of imaging approaches and 
biomarkers should have the potential to help in this selection. 
Of course many other issues need still to be addressed particu-
larly in order to identify novel therapeutic targets of the tumor 
microenvironment and better-tolerated pharmaceutical agents to 
complement and improve current therapeutic schemes.
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