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Encoded by the mutated variants of the TP53 tumor suppressor gene, mutant p53 proteins 
are getting an increased experimental support as active oncoproteins promoting tumor 
growth and metastasis. p53 missense mutant proteins are losing their wild-type tumor 
suppressor activity and acquire oncogenic potential, possessing diverse transforming 
abilities in cell and mouse models. Whether various mutant p53s differ in their oncogenic 
potential has been a matter of debate. Recent discoveries are starting to uncover the 
existence of mutant p53 downstream programs that are common to different mutant 
p53 variants. In this review, we discuss a number of studies on mutant p53, underlining 
the advantages and disadvantages of alternative experimental approaches that have 
been used to describe the numerous mutant p53 gain-of-function activities. Therapeutic 
possibilities are also discussed, taking into account targeting either individual or multiple 
mutant p53 proteins in human cancer.

Keywords: p53 mutation, gain-of-function, cancer, drug therapy, combination, oncogenes, tumor suppressor 
proteins

p53 MUTAnTS – ACTive OnCOPROTeinS

Mutations in the TP53 gene occur in almost every type of cancer, with frequencies that vary between 
10% (hematopoietic malignancies) and 96% (high grade ovarian serous carcinoma) (1). Cancer 
genome sequencing studies confirm that TP53 is the most commonly mutated tumor suppressor gene 
in human cancers (2). The majority of studies indicate that the presence of mutated TP53 is associ-
ated with bad prognosis in various cancer types (3). TP53 mutations are known first and foremost 
to inactivate the oncosuppressive properties of the wild-type p53 protein as a transcription factor 
(loss-of-function – LOF). However, since p53 acts as a tetramer, expressed TP53 mutant variants can 
also exert a dominant negative (DN) effect over their wild-type counterpart, and additionally they 
can arm cancer cells with novel oncogenic gain-of-function (GOF) activities (4–6).

In over 70% of cases, the TP53 mutations are missense, most frequently within the region 
encoding the core domain of the p53 protein, which is responsible for binding DNA (7). Although 
the spectrum of the TP53 missense mutations is vast – counting about 1,800 different amino-acid 
changes (8) – several hotspot p53 mutants, in particular, affecting residues R273, R248, R175, and 
G245 of the p53 protein, are present with a higher frequency both in sporadic tumors (together over 
21% of total missense mutations) and in individuals with the Li–Fraumeni syndrome (LFS), a genetic 
disorder caused by inherited TP53 mutations that predispose carriers to an early-onset development 
of various cancers (9).

The hotspot changes in p53 are traditionally classified as “conformational” or “DNA contact” 
mutations. This notion comes from the biophysical observation that the former group disturbs the 

http://www.frontiersin.org/Oncology/
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2015.00289&domain=pdf&date_stamp=2015-12-21
http://www.frontiersin.org/oncology/archive
http://www.frontiersin.org/Oncology/editorialboard
http://www.frontiersin.org/Oncology/editorialboard
http://dx.doi.org/10.3389/fonc.2015.00289
http://www.frontiersin.org/Oncology/
http://www.frontiersin.org
https://creativecommons.org/licenses/by/4.0/
mailto:delsal@lncib.it
http://dx.doi.org/10.3389/fonc.2015.00289
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00289/abstract
http://www.frontiersin.org/Journal/10.3389/fonc.2015.00289/abstract
http://loop.frontiersin.org/people/285507/overview
http://loop.frontiersin.org/people/301863/overview
http://loop.frontiersin.org/people/30939/overview


December 2015 | Volume 5 | Article 2892

Walerych et al. Mutant p53 Gain-of-Function Heterogeneity

Frontiers in Oncology | www.frontiersin.org

proper folding of the core domain of p53, thus depriving it of 
the ability to bind the DNA and transactivate its target genes, 
while the latter group is composed of mutations in residues that 
are responsible for directly binding DNA, with a near-native 
core domain structure (10, 11). In the LFS, a wild-type TP53 
allele is usually present, whereas in LFS tumors, it is often (in 
the 40–60% of cases) subjected to inactivation (loss of heterozy-
gosity – LOH) – a process that is observed both in mouse LFS 
models (12) and in humans (13), involving various mechanisms 
of wild-type TP53 inactivation (14). Interestingly, it has been 
recently noted that in the embryonic stem cells from LFS mice the 
lost allele is often the mutant one, suggesting that a bi-directional 
TP53 LOH process may function as a cell-fate checkpoint and 
that there exists a selective pressure against the heterozygous 
TP53 state (15).

p53 mutant proteins are stabilized and protected from deg-
radation in a tumor microenvironment by various oncogenic 
signaling pathways (16, 17), and several studies in mutant p53 
knock-in (KI) mice showed that the presence of p53 mutants 
promotes tumor growth with higher metastasis rate and different 
tissue spectrum than the absence of wild-type p53 (12, 18). These 
in vivo proofs of mutant p53 GOF came as confirmation of the 
initial observations in cell models that mutant p53 missense vari-
ants may actively support cell transformation (19, 20).

Even though the oncogenic activity related to GOF p53 mutants 
has been described many times in the last 25 years of research 
on p53, there are still doubts concerning its significance. Current 
approaches are only starting to resolve whether missense p53 
mutants can be regarded as essentially one oncoprotein endowed 
with a conserved tumorigenic activity, or they represent a popula-
tion of different oncoproteins, each exerting its unique oncogenic 
potential. Mutant p53 is still not used in standard clinical practice 
as a target of anti-cancer therapies. We discuss these issues in the 
following sections of this review.

One OR MAnY – “MUTAnT p53” vs. 
“p53 MUTAnTS”

The rising importance of the GOF of p53 mutants in cancer has 
led to numerous studies describing their mechanisms of action 
and a brought forward question how much the obtained results 
can be generalized across different mutant p53 variants and cel-
lular or cancer backgrounds.

A minority of these studies is based on mutant p53 KI mouse 
models and led to a number of discoveries in the field, includ-
ing (i) the inhibitory role of mutant p53 on MRE11 protein and 
the induction of genomic instability (human TP53 KI “HupKI” 
mouse model) (21), (ii) the transcription-based activation of 
PDGFRβ signaling in pancreatic cancer model (22), (ii) the 
transcriptional activation of oncogenic Pla2g16 phospholipase 
(23), and (iv) the confirmation of prior cell-based reports on 
a mutant p53-mediated inhibition of the p63/p73 oncosup-
pressive activity (12, 18). The LFS mouse-model-based studies 
underlined differences between GOF properties of different 
p53 mutants and among the consequences of TP53 mutations 
in human and in mouse. Comparative studies of the R270H 

and R172H variants in KI mice showed different tumor spectra 
confirming the notion that the GOF of p53 mutants may differ 
(12). These spectra, however, turned out to be different also from 
the spectra caused by human counterparts of these mutant p53 
variants – R273H and R175H – in patients with LFS (e.g., lack of 
mammary carcinomas in mice – frequent in humans) (9). On the 
other hand, the investigation in KI mice of the R246S p53 mutant, 
corresponding to the human R249S p53 hotspot mutant, showed 
no clear indication of GOF (24), whereas in human cell-based 
experiments, this variant was demonstrated to induce growth, 
chemoresistance, and a specific mutant p53 transcriptional pro-
gram in several studies (25–27). Altogether these results indicate 
that mouse models – albeit very informative – may have their 
limitations and require careful confirmation of their significance 
in human systems.

Most of the human cell line-based studies on mutant p53 are 
based on initial phenotype-related experiments or large scale 
analysis, such as gene expression microarray or ChIP sequenc-
ing, leading to discovery of mechanisms/targets associated with 
a particular mutant variant in its endogenous background. 
In most cases, validation in other mutant p53 variants/back-
grounds is also reported. Such studies have led to describing 
important roles of mutant p53 in direct inhibition of the p63/
p73-mediated tumor suppression (28, 29), activation of the cell 
cycle drivers, such as Cyclins (30, 31), the vitamin D3 receptor 
signaling (32), steroid synthesis (mevalonate pathway) (33), 
the ID4-mediated angiogenesis (34), or nucleotide homeosta-
sis (26), to name a few. A comprehensive list of these studies 
published since 2005 – with the indication of the initially tested 
mutant p53 variant(s) and p53 mutants used for validation – is 
shown in Table 1.

Mutant p53 activities have been described both in the cell’s 
cytoplasm and in the nucleus. The reported cytoplasm-specific 
activities include the DAB2IP protein regulation affecting TNFα-
dependent signaling (36) and the regulation of PARP localization 
and activity (38). Nuclear activities are related to more general 
influence on the chromatin function (the example of the above-
mentioned MRE11 regulation) but, in most cases, are related to 
a specific transcriptional regulation. The available mutant p53 
ChIP-sequencing data and other DNA-interaction data have not 
defined a mutant p53 target site analogous to that of wild-type 
p53, and currently the main hypothesis is that mutant p53 transac-
tivation takes place through interaction with several transcription 
factors  –  among them NFY complex, SREBP 1 and 2, or ETS2 
(Table 1). In most cases, mutant p53 proteins boost basic proper-
ties of these transcription factors, leading to the aberrant activation 
of their downstream programs and to the intersection with other 
key oncogenic pathways, as shown for the mutant p53-SREBP or 
NFY causing activation of the YAP/TAZ pathway (46, 47).

Even though experimental approaches using single initial 
in  vivo and in  vitro models led to the discovery of numerous 
pathways controlled by mutant p53, it is unclear whether these 
pathways have the same central role in diverse cellular contexts.

In an attempt to fill this gap, studies have been conducted 
involving the overexpression of multiple mutant p53 variants in a 
p53-null or wild-type background (Table 1). Investigation in the 
p53-null background of non-small lung carcinoma H1299 cells 
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TABLe 1 | Selected mutant p53 gain-of-function effects, mediators, and related therapeutic opportunities, published since 2005.

Mutant p53 discovered Mutant p53 validated Pathway(s) Mediator(s) Downstream 
proteins/genes

Leading model(s) Mutant p53-related 
phenotype

Suggested 
treatment

Reference

R248W R273H, R175H DNA damage 
response

MRE11 AKT HUPKI mice/MEFs Genomic instability – (21)

R175H, R280K, L194F, R273L, 
R249S, R248Q, C242F

DNA damage 
response

ETS2a TDP2a Li–Fraumeni-derived cell line Chemoresistance Etoposide (35)

R273L, R249S, R280K,  
R175H

Nucleotide 
homeostasis

ETS2a Nucleotide metabolism 
genesa

Li–Fraumeni and breast 
cancer cells

Cell proliferation – (26)

R175H L194F, R273H IL-8 and GRO-α 
signaling

NFYAa Cyclin A, B, E, CDK1, 
CDC25Ca

Breast cancer cell lines Cell proliferation – (30)

R273H, R280K Interleukin signaling, ID4 IL-8, GRO-α Breast cancer cell lines Angiogenesis – (34)
R273H VDR signaling VDRa IGFBP3, CYP24A1a Breast cancer cell lines Reduced apoptosis Vitamin D3 

restriction?
(32)

R273H, R280K PDGF receptor β 
signaling

p73a, NFY 
complexa

PDGFRβa Pancreatic cancer mouse 
model and cell lines

Metastasis Imatinib (22)

H179R, G245S, R248Q,  
R249S R273H

Phospholipid 
metabolism

ETS2a Pla2g16a KI mouse model, 
osteosarcoma cell line

Tumor growth and 
metastasis

– (23)

R280K R273H Cell cycle,  
cell movement

Pin1 Cyclin E2, BUB1, 
DEPDC1a

Breast cancer cell lines Cell proliferation, 
migration

Pin1 
inhibitors?

(31)

R175H TGFβ-induced 
migration/invasion

SMAD/p63a SHARP-1, Cyclin G2 Breast cancer cell lines Metastasis – (29)

R175H, R273H, M237I TNFα-driven 
inflammation

DAB2IP JNK, NF-κB, and their 
targets

Breast cancer cell lines Cancer-related 
inflammation

– (36)

R273H R280K Steroid synthesis SREBP1/2a MVK, FDFT1, TM7SF2, 
NSDHLa

Breast cancer cell lines Tumor growth Statins (33)

– HB-EGF signaling NRD1 – p53 null lung carcinoma Invasion – (37)
R280K, L194F DNA replication, 

PARP signaling
– PARP, MCM4, PCNA Breast cancer cell lines Cell proliferation PARP 

inhibitors?
(38)

R175H, R273H 
(overexpressed)

R280K EGFR/integrin 
signaling

p63 α5β1 integrin, EGFR p53 null lung carcinoma, 
breast cancer cell lines

Cell motility, invasion – (39)

R175H, R273H, D281G 
(overexpressed)

– NF-κB signaling – NFKB2a p53 null lung carcinoma Chemoresistance Etoposide (40)

R175H, R248Q, R273H 
(overexpressed)

R175H, R273H Glucose metabolism, 
Warburg effect

RhoA/ROCK GLUT1 p53 null lung carcinoma, 
MEFs, breast cancer cell lines

Tumor growth – (41)

R175H, R248Q, R248W, 
R249S, R273H, R282W 
(overexpressed)

R273H, R280K Membrane and 
secreted signaling 
factors

p63a DKK1, METTL7B, 
TFPI2a

p53 null lung carcinoma, 
breast cancer cell lines

Invasion – (42)

V143A, R175H, R248W, 
R249S, R273H, R282W 
(overexpressed)

R175H, R248Q, R273C Cell cycle, apoptosis TopBP1a, p63/
p73a, NFYa

Cyclin A, B, E, CDK1, 
CDC25C, BAX, NOXAa

p53 null lung carcinoma, 
breast cancer cell lines

Proliferation Calcein (43, 44)

R175H, H179R, 
G245S, R248Q,R273H 
(overexpressed)

R175H, R273H Ras-mediated 
signaling

BTG2, NF-κBa CXCL1, IL1B and 
MMP3a

Human lung fibroblasts WI-38 – – (45)

R248Q, R249S, R273H 
(endogenous)

R175H, R248W Chromatin 
epigenetic 
modification

ETS2a MLL1, MLL2, MOZa Breast cancer cell lines, MEFs, 
Li–Fraumeni cell lines

Proliferation and 
tumor growth

COMPASS 
complex 
inhibitors

(27)

aTranscription-related mediators and transcriptionally regulated downstream mutant p53 targets.
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led to discovering the role of mutant p53 in integrin recycling 
(39), in the NF-κB signaling (40), and in the Warburg effect (41) 
as well as a role of TopBP1 in the upstream regulation of mutant 
p53 (43). These studies largely confirmed that the mutant p53 
GOF is exerted indirectly at the level of transcription by coopera-
tion with transcription factors. Neilsen et al. showed that genes 
activated by mutant p53 largely overlap between mutant variants 
overexpressed in H1299 cells, but interestingly also frequently 
share promoter sequences with p63 and wild-type p53 (42). This 
indicates that the mutant p53-mediated promoter activation may 
be an aberrant representation of the interaction of wild-type 
p53 with transcription factors in normal cells. Other mutant 
p53 overexpression studies led to uncovering regulation of the 
epithelial-to-mesenchymal transition (EMT) phenotype by 
mutant p53 upon wild-type TP53 silencing in MCF10A mam-
mary epithelium cells (48) as well as the cooperation of mutant 
p53 with the Ras oncogenic program in WI-38 human embry-
onic lung fibroblasts (45). Much of this evidence, however, still 
awaits confirmation in experimental settings in which mutant 
p53 variants are endogenously expressed. During the course of 
transformation, cell lines carrying endogenous TP53 mutations 
become addicted to the mutant p53 GOF – as often their growth 
or migration/invasion abilities are compromised upon mutant 
p53 knock-down (27, 31, 36, 49). Conversely, p53-null and wild-
type p53 cell lines survive and proliferate without mutant p53, 
suggesting that very likely the GOF program observed under 
such conditions only partially resembles the cancer-related one. 
Therefore, the lack of the cellular context in which p53 mutants 
are naturally embedded and background-associated effects 
represent relevant weaknesses of the studies in a p53-null or p53 
wild-type background.

A solution to these limitations may be represented by studies 
that include an initial analysis using different p53 mutants in 
their endogenous backgrounds. Analyzing downstream pro-
grams – both at the phenotypic and the molecular level – may 
help to understand to what extent p53 mutants possess a “core” 
oncogenic program, and whether some mutants display specific 
features. A recent study by Zhu et  al. focuses on the common 
DNA interaction pattern of three distinct p53 mutants, in their 
endogenous context of breast cancer cell lines, using as term of 
comparison the pattern obtained from two cell lines bearing 
wild-type p53 (27). As a highlight of this multi-mutant p53–DNA 
interaction pattern, the group identified the chromatin regulatory 
genes that are activated by the transcription factor ETS2, a previ-
ously known mutant p53 interactor (23, 26, 35). The relevance of 
a mutant p53/ETS2 cooperation has been confirmed as a general 
feature in several mutant p53 expressing cell lines and thanks to 
the transcriptional program perturbed, as a critical modulator of 
the chromatin modification (27).

Even with these many studies published this is apparently 
only the beginning of a deeper understanding of both specific-
ity and general picture of mutant p53 GOF in cancer. Multiple 
cellular/cancer models have to be studied simultaneously in 
unbiased, large-scale manner, by comparing more mutant p53 
variants, including non-hotspot mutations. Another important 
issue is how these discoveries could be transferred into clinical 
applications.

TARGeTinG MUTAnT p53 in CAnCeR

The issue regarding how widely the GOF effects are shared 
between multiple mutant p53 variants extends to the experi-
mental targeted therapies based on the presence of mutant 
p53. Since TP53 is one of the most frequently mutated genes 
in cancer, reactivation of the wild-type p53 oncosuppressive 
properties and eliminating the mutant p53 GOF are potentially 
instrumental in personalized treatment of hundreds of thou-
sands cancer patients worldwide. In this context, the possibility 
to distinguish mutant p53-specific processes from those shared 
by at least hotspot mutant p53 variants seems of relevance in 
order to develop and test drugs targeting properties and/or 
downstream pathways that are common to as many mutant p53 
variants as possible.

Research on widely acting molecules targeting mutant p53 
began over two decades ago. Some of the first approaches included 
inhibitors of Hsp90, a molecular chaperone that participates 
in a multiprotein complex stabilizing GOF p53 mutants with 
distorted DNA-binding domain structure (50). Hsp90 inhibitor 
geldanamycin was shown to lower levels and nuclear transloca-
tion of mutant p53 (51, 52). The interest toward Hsp90 inhibitors 
remains high, as the recent study by Alexandrova et al. describes 
significantly increased survival of mutant p53 KI mice treated with 
the geldanamycin derivative 17-DMAG or with a new generation 
Hsp90 inhibitor – ganetespib (53). Other drugs – such as the his-
tone deacetylase inhibitor SAHA (Vorinostat) (54) and sodium 
butyrate (NaB) (55) – have been also shown to downregulate the 
levels of mutant p53 variants.

Different suggested strategies involve blocking the mutant 
p53 activation by targeting proteins, such as Pin1 (31) or TopBP1 
(43). Inhibitor of TopBP1  –  Calcein (44)  –  and experimental 
inhibitors of Pin1 (56) are examples of molecules targeting 
specific upstream activators of mutant p53. Among compounds 
that have been shown to efficiently directly target mutant p53 are 
small peptides (57–59). None of them, however, is so advanced in 
experimentation as small molecules that directly modify mutant 
p53 promoting its transition into a wild-type like form, capable 
of activating the tumor suppressive wild-type p53 transcriptional 
targets. The first described micromolecule targeting mutant p53 
was CP-31398 (60) that, despite turning out not to directly interact 
with mutant p53 but rather with its target DNA sequences (58), 
is still considered as a promising drug candidate (61, 62). Most 
studies were, however, performed on the PRIMA-1 molecule (63) 
and later on its more potent and less toxic derivative PRIMA-
1MET/APR-246 (64). Experiments showed that this molecule 
is able to directly bind and modify thiol residues in mutant p53 
transforming it into a wild-type-like protein (65), thus becoming 
able to activate wild-type p53 targets, such as GADD45B, NOXA, 
or CDKN1A (p21), and induce in vitro and in vivo cell cycle arrest 
or apoptosis (66, 67).

In the case of drugs targeting mutant p53, most studied 
molecules, as those mentioned above, target several mutant p53 
missense variants, while drug candidates focusing on particular 
mutants are rare. NSC319726 is one such these compounds. 
Identified by screening studies, NSC319726 possesses specific 
activity toward the R175H mutant p53 and induces apoptosis 
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in human cells (68). Two other studies led to discovering 
PhiKan083 (69) and PK7088 (70) as molecules that specifi-
cally target and reactivate mutant p53 hotspot variant Y220C, 
which is found at a relatively high frequency in breast cancer 
(5). The low number of such studies and the fact that other 
mutant p53 reactivating compounds target various mutant p53 
variants may suggest that the classic distinction of contact and 
structural p53 mutants may not be decisive and these mutant 
types may, in fact, represent structural extremes of a spectrum 
of distortions in the DNA-binding domain, leading to similar 
GOF effects.

Another important strategy to mutant p53 targeting is based on 
the treatment with drugs that downregulate oncogenic pathways 
activated by the means of mutant p53 GOF (listed in Table 1). 
This activation in general leads to two types of therapeutically 
relevant outcome  –  chemoresistance and chemosensitization 
(Figure 1). In the first case, the sensitivity to either specific or 
broad activity anti-cancer compounds, including doxorubicin, 
cisplatin, or etoposide, is dampened in the presence of mutant 
p53 (35, 49). In the latter case, a number of pathway targeting 
drugs – such as statins that inhibit the mevalonate pathway (33), 
imatinib inhibiting PDGFRβ (22), or COMAPSS complex inhibi-
tors (27) – can cause increased cell death in mutant p53 vs. wild-
type p53-bearing cancer cells. The performance of these drugs 
is often promising, but their drawback is the limited number of 
mutant p53/cell backgrounds tested.

A big issue of the mutant p53-oriented therapies is their 
slow progress toward the clinics, most of them being still at an 
early stage of development (71). The only drug directly targeting 
mutant p53 that has reached the clinical stage is PRIMA-1MET/
APR-246. This compound successfully went through phase I/II 
clinical trial in hematological malignancies and prostate cancer 
that included mutant p53 patients (72). An approach targeting 
triple negative breast cancer (TNBC) cells with p53 deficiency or 
mutant status using Chk1 inhibitors showed promising results in 
in vitro and mouse tests (73, 74), while it failed to show significant 
improvement in human patients (75). At the same time, many of 
the drugs that could be beneficial for mutant p53 patients – Hsp90 

inhibitors, HDAC inhibitors, or statins – are undergoing clinical 
trials in cancer in which the mutant p53 status is not considered 
or even known (76–78).

The combination of drugs directly targeting mutant p53 with 
drugs inhibiting mutant p53-related pathways is surprisingly 
avoided (Figure 1), although it might favor the decrease of com-
pensatory responses and dosage toxicity, and thus an increase in 
the therapeutic efficacy. This notion is supported by a number 
of experiments showing that the combination of PRIMA-1 
and PRIMA1-MET/APR-246 with cisplatin (CDDP) results in 
synergistic effects in cancer cells and xenografts (79–81). Taking 
into account that mutant p53 is known to increase chemore-
sistance to cisplatin (49), it is not surprising that targeting 
the cause of this chemoresistance opens the window to more 
effective treatments. This combinational approach may suggest 
that other compounds are worth being tested together with 
mutant p53 targeting drugs, such as PRIMA-1MET/APR-246 
(Figure 1).

Even though TP53 is one of the most frequently mutated 
genes in human cancer and mutant p53 emerges as a major 
oncoprotein controlling an exceptionally vast network of tumor-
promoting activities, it still possesses underused potential as a 
drug target and much effort is needed to bring it to a prominent 
position on the map of personalized therapeutic solutions for 
cancer patients.
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