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Identifying promising compounds during the early stages of drug development is a major

challenge for both academia and the pharmaceutical industry. The difficulties are even

more pronounced when we consider multi-target pharmacology, where the compounds

often target more than one protein, or multiple compounds are used together. Here,

we address this problem by using machine learning and network analysis to process

sequence and interaction data from human proteins to identify promising compounds.

We used this strategy to identify properties that make certain proteins more likely to

cause harmful effects when targeted; such proteins usually have domains commonly

found throughout the human proteome. Additionally, since currently marketed drugs hit

multiple targets simultaneously, we combined the information from individual proteins to

devise a score that quantifies the likelihood of a compound being harmful to humans.

This approach enabled us to distinguish between approved and problematic drugs with

an accuracy of 60–70%. Moreover, our approach can be applied as soon as candidate

drugs are available, as demonstrated with predictions for more than 5000 experimental

drugs. These resources are available at http://sourceforge.net/projects/psin/.

Keywords: multi-target drugs, drug safety, target validation, machine learning, protein networks, supervised

learning

Introduction

New compounds are traditionally discovered by using large biological screening techniques to
identify substances that cause the desired effects. While this approach has been effective for years
and produced the drugs used today, technological advances are shifting the drug discovery process
toward a more rational approach, with computational drug-design and pathway analysis playing
major roles. With the costs of compound design dramatically increasing and most of these funds
being spent on drugs that never make it to market (Munos, 2009; Scannell et al., 2012), there is a
clear need for new technologies to develop more specific, less toxic compounds.

Recently, in silico analyses have been successfully applied throughout the drug discovery
pipeline. Examples include methods to help understand the changes caused by candidate
compounds in protein interaction networks (Csermely et al., 2005; Yildirim et al., 2007), and
algorithms to develop specific ligands that inhibit the activity of pathogen proteins (Fleishman
et al., 2011;Whitehead et al., 2012). In addition, computational analyses in key studies have revealed
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the off-targets of drug candidates and predicted important side
effects (Keiser et al., 2007, 2009; Campillos et al., 2008; Yamanishi
et al., 2008; Liu et al., 2011; Lounkine et al., 2012). These studies
have shown that computational analyses are an essential part of
drug discovery. Yet the early identification of problematic drugs
remains a major challenge.

Here, we propose a method to distinguish between
compounds that are safe and those likely to be harmful.
For this purpose, we considered the targets of more than 1800
approved and problematic drugs (i.e., withdrawn from market,
or halted in development due to safety concerns). To study
the properties of these targets, we created a protein similarity
network (PSIN), in which the proteins are connected only if their
sequences are similar. We found that the centrality measures of
the PSIN network clearly indicated which human proteins are
likely to cause harmful effects if their activities are modulated by
drugs; our analysis suggested that ∼5000 human proteins had
characteristics that resembled those of targets of problematic
drugs. Next, by using machine learning techniques, we developed
an index (called the Rejection Score) to quantify the likelihood of
a candidate drug being problematic. Although some substances
were difficult to classify and obtained intermediate scores,
most were consistent with their status of being approved or
problematic.

Finally, based on the targets of more than 5000 experimental
substances from major databases (∼700 of which are currently
undergoing pre-clinical or clinical evaluation), we predicted
which drugs have a high likelihood of approval by regulatory
agencies. This process of validation of individual proteins
and assignment of rejection scores to candidate drugs should
improve gene target selection and candidate prioritization in
drug development.

Materials and Methods

Protein Sequence Comparison
To perform the protein sequence comparisons required to
assemble the PSIN, we used a stand-alone version of BLAST
toolkit v2.2 (Camacho et al., 2009), and the human protein
sequence database obtained from Uniprot (released in August
2012). We removed all splicing variants from this database,
leaving only the first protein isoforms. We used the PSI-
BLAST algorithm and the BLOSUM distance matrix, with a gap-
open cost value of 11, gap-extension cost of 1, and minimum
expectation value of 1e-03. We set the E-value threshold for
inclusion in the multipass model at 1e-05, and six PSI-BLAST
iterations or less (if the results converged before; i.e., no further
sequences could be discovered in the database using the profile as
the input query).

Databases
The drugs, their targets, and status (approved, withdrawn, illicit,
experimental, etc), were obtained from Drugbank (Wishart et al.,
2006), from the Therapeutic Target Database (Zhu et al., 2012),
and from ChEMBL (Gaulton et al., 2012). We merged all three
databases into one dataset, with drugs containing targets from all
three databases. While the first two databases have information

about the legal status of the compounds, ChEMBL has only an
indication of “therapeutic” or “non-therapeutic,” and whether
a therapeutic drug contains a black-box warning. Therefore, to
study the characteristics of approved and problematic drugs. we
used only the drugs for which we had legal status information
from DrugBank or TTD, and the therapeutic drugs from
ChEMBL (Supplementary Table S1).

From the ChEMBL database, we considered only proteins
targeted by a compound if they had an IC50-value < 30 nM.
Additionally, several drugs did not have targets present in the
PSIN or in the protein-protein interaction network PPI. Because
these drugs targeted proteins that were isolated from the rest
of the network, only drugs with at least one target present in
the PSIN or PPI were considered, and for drugs with multiple
targets, those targets not present in either the PSIN or the PPI
were removed before any analysis was done.

For the protein-protein interaction analysis, we used HIPPIE
(Human Protein-Protein Interaction Reference Schaefer et al.,
2012).

Assigning Drugs Approved or Problematic Labels
The legal status of the drugs from the two databases was highly
heterogeneous, containing approved drugs (those available by
prescription or over the counter), illicit, and withdrawn drugs
(those removed from the market or that had their development
halted due safety or efficacy concerns). For our study, we were
interested in understanding what distinguishes drugs successfully
used to treat patients from those causing drug attrition or
those that were withdrawn from the market due harmful effects.
Thus, we first identified drugs that were withdrawn from the
market in several countries and classified them as problematic.
Second, drugs that were discontinued during clinical trials due
to safety or efficacy issues were also considered problematic. In
contrast, we considered a drug “successful” if it was available
for purchase. Additionally, after detailed inspection of drugs
classified as “illicit” in the DrugBank database, we verified that
they were mainly used to treat psychological disorders (e.g.,
anxiety, schizophrenia, and insomnia), and had the potential
for abuse and addiction. Since these substances can be obtained
in most countries when prescribed by clinicians, we concluded
that most of them were not in fact illicit, but rather “controlled
substances,” in which case, we also considered them approved
drugs (Supplementary Table S2).

Centralities, Averages, and Relevance Measures
For each protein network, we calculated the betweenness of a
node v as:

B(v) =
∑ sij(v)

sij
, with i 6= j, v 6= i and v 6= j

where sij is the number of shortest paths between the nodes i and
j and sij (v) is the fraction of those shortest paths passing through
node v.

Burt’s Constraint was calculated as:

C(i) =
∑

j

(pij +
∑

q

piqpqj)
2
, with q 6= i, j, and j 6= i

Frontiers in Pharmacology | www.frontiersin.org 2 September 2015 | Volume 6 | Article 186

http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Lopes et al. Drugs and its network characteristics

where piqpqj is the product between the proportional strength
of the node i’s relationship with node q, and the proportional
strength of the node q’s relationship with node j. The details
of these calculations in their original sociological context were
reported by Burt (1992, 2004).

In addition, when considering multiple targets of the same
drug, we transformed all individual PSIN network measures to
the log10 scale and then combined their centrality measures by
calculating their arithmetic means.

Implementation, Data Analysis, and
Pre-processing
The computations involving pre-processing and machine
learning classifiers were performed by using the Weka suite
for data mining (Frank et al., 2004); our code was written in
Java and all algorithms were used with their default parameters.
The Support Vector Machine was implemented using LibSVM,
with the code available at https://weka.wikispaces.com/LibSVM
(visited in August 2015).

The statistical and network analyses were performed in R.
Additionally, we used the iGraph package (Csardi and Nepusz,
2006) for the network analysis, the poweRlaw package for power-
law fits, and the ROCR (Sing et al., 2005) package to create the
ROC curves.

Pre-processing involved four steps: (1) not all proteins had
centrality values in the PPI or in the PSIN, hence, we filled
those missing values with the mean of the training and test sets
separately by using the Weka function ReplaceMissingValues; (2)
we had to over-sample the smaller class because our dataset
contained more instances from the approved class than from the
problematic class. Hence, we used the SMOTE (Chawla et al.,
2002) algorithm for this task, with an oversample proportion
of 500% and 8 nearest neighbors. We used the Tomek links
(Tomek, 1976) method to remove instances whose nearest
neighbors belonged to the opposite class. This strategy proved
very effective relative to other pre-processing alternatives to deal
with unbalanced, overlapping datasets (Batista et al., 2004). (3)
we removed the instances that were on the “border” of different
classes, i.e., instances that were the nearest neighbors of several
instances from different classes (see Figures 1, 2 of Batista et al.,
2004); and (4) we ran a preliminary cleaning step by using
Multilayer Perceptron exclusively on the training set to remove
the misclassified instances (we used the RemoveMisclassified
routine from the Weka package).

For the training and testing procedure, we removed the
drugs that targeted the same set of proteins. For example, if a
hypothetical drug in the test set targeted proteins A, B, and C,
then all other compounds in the training set that targeted A,
B, and C were discarded. Additionally, we removed ∼100 drugs
that targeted the same proteins but had conflicting classifications
(i.e., some were approved and others problematic). This ensured
that we had no redundant instances in the dataset, and that
the same targets were not simultaneously in the training and
test sets. After calculating the mean centrality measures of all
drug targets, they were scaled to the interval [0,1] by using the
R package Reshape http://had.co.nz/reshape - visited in June
2015.

Results

Network Characteristics
A protein similarity network is distinct from a protein-protein
interaction network (PPI) because in the former, neighbor
proteins do not necessarily interact or regulate each other’s
activities; instead, two proteins are connected only if their amino
acid sequences are similar. Although other protein networks
exist (Weston et al., 2004; Camoglu et al., 2006; Zhang and
Grigorov, 2006; Atkinson et al., 2009; Rattei et al., 2010;
Valavanis et al., 2010), they suffer from shortcomings such
as the use of small protein datasets, employing information
other than amino acid sequences, not being specific for human
proteins, or not using signature-based methods to assess protein
similarity. These shortcomings led us to create a network with
the characteristics required to study the properties of drug
targets. We used PSI-BLAST (Altschul et al., 1997) to query
and compare the ∼20,000 human protein sequences in the
Uniprot database. BLAST searches were not reciprocal (i.e.,
searches with “protein A” identified “protein B” as similar, but
searches with “protein B” did not necessarily identify “protein
A” as similar). Therefore, to establish a link between two
nodes (proteins) in the PSIN we considered only bidirectional
hits.

The PSIN has ∼17,000 proteins connected by ∼1,700,000
edges. The network does not have a single large component;
rather, it has more than 800 smaller connected components.
We used the degree (the number of edges—i.e., neighbors—
each node has) to quantify the connectivity of the PSIN. Its
nodes have an average of 200 connections, with the most
connected having ∼2600 neighbors. We verified that, similar
to PPI networks, the degree distribution of the PSIN also
fits in the power-law distribution, where many nodes have
a few connections and a few nodes have many connections
(Supplementary Figure 1). Nodes with up to 500 neighbors were
connected to other nodes of similar degree, and above this
point, the nodes were usually connected to those with 400–500
connections (Figure 1A).

In the PSIN, the proteins are connected to each other by
similarity of one or more shared domains. We verified that
most of the low-degree nodes and their neighbors belonged to
the same families, because these proteins had domains found
only in a few other proteins. For instance, the family of alpha-
defensin proteins, responsible for Gram-negative antibacterial
activity, formed a cluster of only five proteins connected to
each other through their exclusive and characteristic defensin
domain. In contrast, highly connected proteins had a mixture
of common and rare domains. For example, the notch1
protein has several repetitions of its 7 domains, which are
connected to 1445 proteins from more than 50 families
(Figure 1B).

In summary, the degree distribution in the PSIN resembled
the power-law, like other protein networks. Low-degree proteins
comprised rare domains and were mainly connected to members

of the same family; high-degree proteins were composed of both
rare and common domains, and were connected to members of

several different families.

Frontiers in Pharmacology | www.frontiersin.org 3 September 2015 | Volume 6 | Article 186

https://weka.wikispaces.com/LibSVM
http://had.co.nz/reshape
http://www.frontiersin.org/Pharmacology
http://www.frontiersin.org
http://www.frontiersin.org/Pharmacology/archive


Lopes et al. Drugs and its network characteristics

FIGURE 1 | (A) Nodes with up to ∼500 connections are neighbors of proteins with approximately the same degree. After the peak, nodes with higher degrees

are connected to other nodes with ∼400 connections. Darker tones of blue indicate a higher concentration of nodes with these degree values. (B) Depicted

are a few neighbors of notch1, their families, and domain compositions (with the shared domains boxed red). In the PSIN, notch1 is connected to members of

the Peptidase S1 family through their shared EGF domain. The proteins from the other three families are connected to each other and to notch1 by their

ankyrin domain.

Network Characteristics of Drug Targets
By using the PSIN and a PPI database, we searched for
characteristics that discriminated between the targets of
approved and problematic drugs.

We obtained all drugs and their reported targets from three
major drug-target databases (see Materials and Methods), and
merged all three databases taking into account the different
drug names and synonyms; the merged dataset contained 1802
drugs for which their legal status was available (approved,
withdraw, illicit, etc., Supplementary Table S1), and more than
5000 experimental drugs (Supplementary Table S2). Next, we
assigned a simplified class label to each of the 1802 drugs,
indicating whether the drug was considered safe and was
marketed (approved), or if it had had its development halted or
was withdrawn from the market (problematic).

We observed that the targets of approved and problematic
drugs largely overlapped (Figure 2A), and there were more
reported targets in the combined databases for the approved
drugs than for the problematic drugs (Figure 2B). This is due to
the strict requirements for drug approval by regulatory agencies,
since before going to market, companies must provide detailed
reports about modes of action, and after a compound is released,
researchers from academia often report additional targets.

For each target of the approved and problematic drugs, in
addition to the degree (the number of neighbors a protein
has in the network), we calculated their betweenness, closeness
centrality, and Burt’s constraint in the PSIN and PPI networks.
The betweenness describes how central a node is, counting the
number of shortest paths that must pass through that node to

connect the other nodes in the network. The closeness centrality
from a node measures how many steps are necessary to reach
every other node. The Burt’s constraint, was first employed
in a socio-psychological context, where the author studied the
location of individuals in a large social network and quantified
which individuals are in a position of advantage, located between
groups, and have access to information and resources from
different environments (Burt, 1992, 2004) (Figure 2C).

Compared with proteins targeted by the approved drugs, those
targeted by problematic compounds had a significantly higher
degree in both networks, andmuch lower closeness centrality and
Burt’s constraint values (Figure 3; for each centrality measure,
One-Way ANOVA, p < 0.0001, followed by Tukey’s HSD
test; Supplementary Figure 2). In contrast, we observed no
significant differences in the betweenness values of proteins
targeted by problematic and those targeted by approved drugs
in the PSIN or in the PPI network. These findings indicate that
while targets of approved drugs have protein domains that are
not shared among many other proteins and are involved in fewer
interactions, targets of problematic drugs have domains that are
more common throughout the proteome and have more protein
interactions reported.

Figure 3 suggests that proteins targeted by approved
compounds and problematic compounds have characteristics
similar to problematic targets. This finding could shed light
on why some drugs are approved, while others are rejected,
even though they target the same protein. For example, VEGF
receptors, which are involved in blood vessel growth, are popular
anti-cancer targets. Usually, the drugs targeting these receptors
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FIGURE 2 | (A) Although most targets of approved drugs are exclusive, the problematic targets are almost entirely covered by the approved category. Between

parentheses are the number of singleton proteins in the PSIN. (B) Approved and problematic drugs have different numbers of reported targets. While most

problematic drugs have only one target reported, approved drugs have several—identified either by the community after the drug is marketed or by companies as part

of the drug-approval process. (C) The Burt’s constraint was proposed in a sociological context to study positions of advantage for individuals in a group. In this simple

example, if the nodes are individuals, on the left no node can negotiate or bargain with the others, since they all have alternative connections. However, on the right, if

a structural hole exists, Node 1 is in a better position, since the other two nodes may not be aware of each other’s existence;hence, Node 1 is less “constrained” than

the other two. In a protein similarity context, proteins with low constraint values are generally those with several common domains, located between different protein

families. In contrast, proteins with large constraint values are the peripheral nodes, with a few domains shared among only a few other proteins.

FIGURE 3 | (A–D) In general, targets of problematic drugs have high degrees and closeness centralities in the PSIN and PPI networks. However, their betweenness

values are not significantly different from the targets of approved drugs in either protein network (One-Way ANOVA, ***p << 0.0001 and *p > 0.05, sample sizes for

each group are the same as depicted in Figure 2A). The closeness from the targets of both networks was close to two main values, differing by only decimal digits;

therefore, we rounded the values to their closest integer, namely 17 or 19 in the PSIN and 14 or 18 in the PPI. While three PSIN centrality measures were found to be

strong indicators of the differences between targets of problematic and approved drugs, the centrality measures of the PPI network could also detect these

differences, albeit in a moderate fashion (Tukey’s Honest Significance Difference—Supplementary Figure 2). Overall, this likely stems from the fact that the current

PPIs still have only ∼10,000 proteins and numerous false-positive interactions; with new proteins and high-quality interactions being constantly added, we expect this

to change in the future.

cause major side effects (Roodhart et al., 2008) including
hypertension, coagulation disorders, and neurotoxicity. We
found that the three VEGF receptors had characteristics
similar to other targets of problematic drugs, suggesting that
compounds that target proteins with these characteristics will
either be unapproved or, if approved, will likely cause harmful
effects.

Next, we asked how many proteins share the characteristics of
the approved and problematic targets. We observed that ∼65%
of problematic drug-targets had a degree value > 110 and a
Burt’s constraint <0.025, whereas only ∼22% of approved drug-
targets had these characteristics. In the PPI,∼62% of problematic
targets had a degree value >11 and a Burt’s constraint <0.1,
compared with ∼33% of approved drug-targets with these
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characteristics. In general, these values are ones that show
the highest separation between the targets of problematic and
approved drugs (Supplementary Figure 3). When we consider
the centrality measures separately, in the PSIN, ∼7600 proteins
had degree and Burt’s constraint values similar to those of
problematic targets, and in the PPI, ∼4600 had degree and
constraint values similar to other proteins of the problematic
group. When we consider the characteristics of both networks
together, ∼1200 proteins had measures that closely resembled
those of problematic drug targets. Notably, this group has
several popular targets of anticancer drugs, including almost all
members of the cyclin-dependent kinase family, aurora kinases,
and Pim/PLK serine threonine kinases. We then attempted to
verify whether compounds targeted neighbor proteins in the
PSIN. We built a contingency table counting the number of
compounds that targeted neighbor proteins and the number of
compounds that did not target neighbor proteins in the PSIN and
tested its statistical significance by using Fisher’s exact test. We
obtained a p > 0.05, confirming that compounds often target
proteins with no detectable sequence similarity (Keiser et al.,
2007; Apsel et al., 2008; Yamanishi et al., 2008).

Taken together, our results indicate that the centrality
measures calculated from the PSIN (and to a lesser extent from
the PPI) can be used to distinguish between individual targets of
approved and problematic drugs. These characteristics define the
“danger zone” for therapeutic modulation, that is, they serve as
indictors that modulating the activity of these proteins may be
harmful to human health.

Classifying Multi-target Drugs
Since drug targets of approved and problematic drugs could
be distinguished individually, we asked whether evaluating the
characteristics of all proteins targeted by a compound would help
to predict the compound’s safety and consequently, its approval
or rejection. For classification and prediction tasks, supervised
learning algorithms use a training set with examples assigned
to different classes, and after a training phase, these algorithms
attempt to predict the classes of instances they have not seen
before. In our case, our training set comprised drugs, their
targets, and their status (approved or problematic).

We built a dataset by calculating the centrality measures
used above for each target of each drug; however, since
most drugs have multiple targets, we combined the centrality
measures of these targets using the means of their individual
measures (see Materials and Methods). Overall, our dataset
comprised 1802 drugs: 1445 approved and 357 problematic
(Supplementary Table S1). As in most real-life scenarios, this
dataset is characterized by the imbalance between the number of
approved vs. problematic drugs–a characteristic that is notably
difficult for machine learning algorithms (Batista et al., 2004).
Therefore, we pre-processed the dataset to increase the sensitivity
of the classifiers to the characteristics of the problematic class
(see Materials and Methods), and for the classification routine,
we compared the performance of 14 machine learning classifiers,
namely KStar (Cleary and Trigg, 1995), Naive Bayes (John and
Langley, 1995), J48 (Quinlan, 1993), Thresold Selector (Witten
et al., 2011), Multilayer Perceptron (MLP)(Bishop, 1995), JRip

(Cohen, 1995), IB1 (Aha et al., 1991), PART (Frank and Witten,
1998), END (Dong et al., 2005), Random Tree (Breiman, 2001),
Rotation Forest (Rodríguez and Kuncheva, 2006), Random
Forest (Breiman, 2001), Decorate (Melville and Mooney, 2003),
and Support Vector Machines (SVM)(Cortes and Vapnik, 1995).

We asked how the classifiers perform if we use only
the centrality measures from the PSIN, from the PPI, or a
combination of both. We divided the input dataset into 70%
of instances for training and 30% for prediction, with no
overlapping drugs between them. Drugs that bind the same set
of protein targets were removed to prevent obvious redundancies
during classifier evaluation (see Materials and Methods). This
procedure was repeated 100 times to quantify the prediction
accuracy for each set of centrality measures. We then verified
that although the topological characteristics of the PPI network
could moderately distinguish between individual approved and
problematic drugs, the predictive power of the machine learning
algorithms was highest when using only the centrality measures
of the PSIN network (Supplementary Figure 4), therefore, for
subsequent analyses we used only the PSIN.

After close inspection of the drug-targets dataset, we realized
that confounding factors of the drug-binding protein data might
affect classifier performance (e.g., differing numbers of binding
partners per drug, missing drug-targets in the protein networks).
Therefore, we designed three tests to determine whether the PSIN
data could enhance classifier performance over the performance
obtained when only these confounding factors were considered.
In the first test, we shuffled the class-labels (i.e., approved and
problematic labels and the targets of all drugs—always keeping
the same proportions as the original datasets—and compared
them to the performances obtained when using the standard
dataset, by using the 70%–30% division for training and testing
sets, respectively. We verified that while most classifiers had an
area under the ROC curve (AUC) close to 0.7 when trained to
the complete dataset, the classifiers generally performed close
to random guessing (AUC∼0.5) when trained using random
datasets (p < 0.01, comparing the AUCs of each classifier,
Wilcoxon two-sided signed-rank test).

In the second test, we developed a more stringent procedure
wherein we created 40 randomized datasets also by shuffling
the labels of the proteins in the PSIN, but here, for each
single cross-validation, we first randomly split the standard
dataset (i.e., that derived from the PSIN) into the 70%–30%
training–test sets and determined the AUC. Next, we took
each of the 40 randomized datasets and carefully divided
them into training and testing data, making sure that we
selected the same drugs that were used for training and
testing with the standard data, and calculated the AUC.
The 40 AUCs from the randomized data represented our
null distribution, that is, the expected AUC achieved when
drugs can bind any proteins. From this null distribution,
we determined the likelihood that the AUC achieved by the
standard data happened by chance, by comparing all runs of
the randomized data to the standard dataset, and we verified
that the overall classification procedure had better performance
than random datasets in more than 88% of all comparisons
(Supplementary Figure 5).
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In the final test, we shuffled only the PSIN protein
labels, removing the class distinctions discussed in Figure 3,
while keeping the same network topology distributions (i.e.,
the power-law degree distribution). Again, we divided the
dataset into 70%–30% for training and testing, respectively,
repeating this procedure 100 times, and compared the results
to the standard dataset. We observed that the classifiers
performed considerably better than all of the shuffled networks
(Supplementary Figure 6).

Together, these results demonstrate that the PSIN and
the machine learning classifiers can overcome the effects of
confounding factors, and distinguish multi-target problematic
and approved drugs based solely on the network characteristics
of their targets. Some of the algorithms outputted only
binary classifications (END, Random Tree, SVM), or had the
same underlying base classifier (J48); therefore, for further
classifications, we used three algorithms (KStar, MLP, and
Rotation forest) that were built using different underlying
principles and outputted a probability that a drug belonged to
the problematic class. This approach should compensate for any
inevitable biases that all algorithms have.

Predicting Drug Safety
After analyzing the capabilities of the classifiers, we used them
as a prediction tool for new multi-target drugs. For fairness,
all previous tests to study the characteristics of the classifiers
had been performed without parameter or dataset optimization.
However, to use as a prediction tool, it is desirable to fine-tuned
the input dataset and include only the most meaningful examples
in the training set.

While the approved drugs are generally compounds approved
by regulatory agencies and successfully commercialized, the
problematic drugs were deemed problematic for one or more
of 10 different reasons (Supplementary Table S3). We wanted to
test whether individually removing each of these 10 reasons from
the input set would improve the classification.

For this purpose, we created 10 different datasets containing
all of the approved and problematic drugs except those in each
of the 10 groups that led to the drug failure. Each of these 10
datasets was then randomly divided into training and test sets by
using the 70%–30% proportion, and the AUC of the classification
was calculated. This procedure was repeated 100 times and
our results showed that removal of one group of problematic
drugs (those deemed “withdrawn”) considerably improved the
classification (p < 0.001, One-Way ANOVA, followed by Tukey’s
HSD test). Most likely, these compounds targeted proteins
that were also targeted by approved drugs, but—in contrast to
approved drugs—had harmful effects. Thus, by removing these
drugs from the dataset, we removed a confounding factor and
consequently reduced the false positives and increased the overall
drug classification.

Next, from the complete dataset (with 1802 drugs), we selected
one drug at a time and used the drugs from the optimized
dataset as a training set. Importantly, we also removed from
the training set any drug that targeted the same proteins
as the drug being evaluated (the predictions are available in
Supplementary Table S4).

We found that the classification of existing and experimental
drugs into two classes (i.e., approved and problematic) could be
over-simplistic; for drug development, it is more informative to
quantify how likely a compound is to cause harm (Evans et al.,
2009). Therefore, we created an index, which we named the
“Rejection Score” (RS), by using the average of the probabilities
calculated by use of the three chosen classifiers. We used this
index to indicate whether a compound was predicted to be safe
(RS close to 0.0) or more likely to be toxic (RS close to 1.0).

We found that 55% of approved drugs had a RS < 0.02
(Figure 4A, Table 1); yet, only 23% of problematic drugs had RSs
close to 0.02. Conversely, 23% of approved drugs and 61% of
problematic compounds had RSs greater than 0.9. Beyond this
point, we observe a sharp increase in the number of problematic
drugs and a slow increase in the number of approved drugs;
hence, drugs with RSs of 0.9–0.95 could be considered “high-
risk” compounds that are likely to cause strong side effects
(nonetheless, their use may be warranted to treat life-threatening
diseases). It is important to note that these cut-offs are arbitrary
and may vary depending on the risk that is deemed acceptable.
Moreover, given that drugs have distinct numbers of targets,
we tested the rejection score and observed that it moderately
correlated with its number of targets (Supplementary Figure 7).

Next, we asked whether the Rejection Scores reflected the
known adverse reactions of marketed drugs. To answer this
question, we analyzed the labels and package inserts of 245 drugs
obtained from the SIDER database (Kuhn et al., 2010). We chose
drugs with RSs covering the full range of predicted scores (i.e.,
from 0.0 to 1.0); for all selected drugs, we listed the indicated
precautions, contraindications, adverse reactions, warnings, and
where available, boxed warnings (Supplementary Table S5).

Several drugs with an RS of 0.9–1.0 had associated warnings
and cautions regarding the risk of severe reactions, for example,
beta-blocker drugs (Pirbuterol, Atenolol, Alvimopan), which
can cause life-threatening reactions including heart failure,
bradycardia, and angina. The side effects of beta-blockers have
been known for decades (Frishman, 1988), and the high RSs of
these drugs likely stem from the fact that their target proteins
(Beta-1 and Beta-2 adrenergic receptors) have characteristics
similar to those of other problematic drug targets, namely a
high-degree (500+), and a low Burt’s constraint (<0.006).

At the other end of the scale, we found that drugs with
RSs of 0.0–0.2 and of 0.2–0.4 have been commercially available
for years; an example is Bumetanide (RS 0.26), a diuretic that
may cause profound water loss and electrolyte depletion only if
used in excess. Bumetanide’s reported targets include proteins
involved in the transport of potassium, chloride, and sodium,
and these transporters have low PSIN degree values (∼24) and
high Burt’s constraints (∼0.14), which are characteristics of
proteins that are relatively isolated in the network and that are
similar to only a few others. Another example is Diazepam (RS
0.0005), a benzodiazepine broadly prescribed since 1963 to treat
anxiety and insomnia that can cause unpleasant, but manageable
side effects, such as nausea, skin rashes, and headache (Riss
et al., 2008). The targets of Diazepam, gamma-aminobutyric acid
(GABA) receptors, have low PSIN degree values (46), and a high
Burt’s constraint (0.0826), and form a cluster in which these
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FIGURE 4 | (A) The cumulative percentage of approved, experimental, and

problematic drugs, according to their rejection scores (RSs) (the complete

predictions are available in Supplementary Tables S3, S4). (B) We predicted

the status of experimental drugs from the TTD, Drugbank, and ChEMBL

databases. In general, more than half of the drugs have high rejection scores,

whereas about 20–30% have RSs that position them among the low-risk

compounds. Each chart contains the number of drugs of the respective group.

proteins connect to each other and to a few other GABA receptor
subtypes.

In addition to drugs classified as approved or problematic,
we also calculated the RS of ∼5000 experimental drugs.
Experimental drugs listed in TTD and Drugbank are those
currently being evaluated in clinical and pre-clinical trials, that
have already undergone such evaluation, did not make it to

TABLE 1 | Percentage of drugs classified according to their Rejection

Score.

Rejection score Percentage of drugs (%)a

Approved Problematic

0.0004 88.9 1.96

0.0008 76.2 10.36

0.0055 53.28 19.04

0.2400 33.14 30.53

0.9291 23.73 40.05

0.9998 6.92 85.15

a In this dataset, 357 drugs were deemed “Problematic”; 1445 were deemed “Approved.”

See Supplementary Table S4 for details.

market, or are being tested for alternative indications. We also
predicted the RSs of non-therapeutic substances from ChEMBL.
The respective compounds selected from all three databases are
listed in Supplementary Table S3, and their RS predictions are
shown in Supplementary Table S6.

For experimental drugs, while more than 50% of compounds
were predicted to have high rejection scores (>0.95), only 15–
20% of compounds in clinical trials had scores similar to those
of approved drugs (Figure 4B), suggesting that only a small
number of these candidate compounds may be approved and not
cause severe side effects. These observations are consistent with
the known high attrition rates observed in the pharmaceutical
industry (Kola and Landis, 2004).

To summarize, most of our predictions seem to match the
status of marketed drugs and their reported adverse reactions,
and in general, our results show that drugs with high RSs
were more likely to be discontinued in their development or be
withdrawn from the market after commercialization.

Discussion

Here, we investigated the characteristics of proteins targeted
by approved and problematic drugs. We found that they
have distinguishing characteristics that can be readily identified
by using protein similarity and protein-protein interaction
networks. In addition, we used machine learning methods to
devise a score to quantify the risks of a drug being harmful to
human health. We used this approach to predict the safety of
several drugs and found that, for the most part, the prediction
is consistent with their status of approved or problematic.

Given the prediction accuracy of ∼70%, it is unlikely that
pharmaceutical companies would use such prediction results for
Go/No-Go decision on compounds that may be already in the
late pre-clinical or clinical stages. However, such information
may be highly valuable in creating an overall portfolio of the
candidate compounds from their very large chemical libraries. If
a pharmaceutical company uses our method to evaluate millions
of compounds and decides to moderately bias their choices
according to the ratings presented here, the long-term outcome
may be very different. This will be increasingly important
when assessing the suitability of multiple-target drugs—i.e., it
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is essential to efficiently identify combinations of targets and
compounds that are both safe and effective.

Interestingly, while attempting to find general properties of
individual proteins that may be associated with side effects,
we found characteristics from protein networks that clearly
distinguish between targets of approved and problematic drugs
(Figure 3). The degree, betweenness, and closeness centrality
of proteins are well known measures and are broadly used
in network studies. The Burt’s constraint is already used in
sociological studies and interestingly, revealed itself as a strong
indicator of protein druggability (Figure 3B). Together, these
network characteristics define a new axis along which drug
targets can be assessed for their viability. In addition, together
with other considerations (e.g., existence of accessible binding
pockets, and the location and time-point of expression), this
methodology can help validate safe targets whose modulation is
therapeutically relevant (Bunnage, 2011). Further, the correlation
between the RSs and the severity of the reported adverse
reactions was not perfect; some drugs with a high RS had only
mild adverse reactions, while others with low RSs had clear
warnings about their potential harm. A potential explanation
is that some drugs targeting highly connected proteins were
approved despite their known adverse reactions (e.g., anti-cancer
drugs), while relatively safe drugs may not have been developed
due to business decisions. Thus, the Rejection Score should
not be considered in isolation, but in conjunction with the
network centralities of the drug’s targets. For instance, a drug
with low RS targeting high-degree proteins suggests that this
compound is likely to cause moderate or severe side effects
but still has the potential to be approved, depending on its
indication. Conversely, if a compound has a high RS and
targets high-degree proteins, this is a strong indication that this
compound will be problematic because only a few or no other
drugs targeting proteins with similar characteristics have been
successfully commercialized.

When developing therapeutic compounds it is difficult to
assess beforehand which proteins can be targeted without
causing major side effects but still overcome cell tolerance
to perturbations (Kitano, 2007; Hopkins, 2008). Moreover,
understanding and anticipating side effects can be complex. For
instance, the weight gain, diabetes, and cardiovascular problems
experienced by patients being treated with antipsychotic drugs
have causes that remain unclear (De Hert et al., 2012),
although mounting evidence suggests that a compound’s side
effects are caused by modulation of its primary and secondary
targets (Xie et al., 2009; Correll et al., 2011; Lounkine et al.,
2012).

Some cases were difficult to classify. A notable example was
Thalidomide (RS = 0.0004), a drug used to treat morning
sickness and removed from the market after it was associated
with birth defects (Stephens et al., 2000). Due to its inhibition
of blood vessel growth (D’Amato et al., 1994), this compound
was investigated to treat cancer (Verheul et al., 1999) and
appeared to improve the survival of multiple myeloma patients
(Singhal et al., 1999). With a low RS, this drug targeted
proteins with characteristics of both approved and problematic
targets, indicating that in addition to network characteristics,

it is essential to verify that the stage of development and
the location for target inhibition is appropriate (i.e., inhibiting
angiogenesis in tumors is desirable, but during limb development
is catastrophic).

Naturally, our approach has limitations. First, there are false-
positives in both the PPI and PSIN networks. In the former,
false-positives exist mainly due different experimental setups
(Venkatesan et al., 2009), and in the latter, the algorithm used
to build the network has a statistical cut-off, which, although
strict, does not completely prevent proteins from being set as
neighbors by chance. Second, the list of targets reported for each
drug is incomplete and it varies from reporting several targets
for approved drugs, to only a few for problematic compounds.
As recently demonstrated, known drugs have multiple protein
off-targets, bound with enough specificity to interfere with their
functions (Campillos et al., 2008; Yamanishi et al., 2008; Keiser
et al., 2009; Lounkine et al., 2012). Additionally, the targets
reported in the database might show not only direct interaction,
but also indirect activation or repression. Therefore, future
studies should take into account the nature of the interaction
between the compound and the members of pathways, as well
as which isoforms of the proteins are the actual targets of
the drugs (here, as in most pathway databases and protein
networks, we considered only the first splicing variant). Another
limitation of the approach presented here is the mismatch
between the RSs of drugs and their reported adverse effects.
The reason for this mismatch is known, but its resolution is
markedly complicated. Drugs approved despite their known
severe adverse effects, as well as drugs deemed problematic for
business-related reasons, are confounding factors even for the
most sophisticated classifiers. Ideally, one would separate drugs
by indication or class, train classifiers using only the drugs
in each group, and finally check the predictions against drug
labels and the complete documentation for the drugs in the
training set. However, this is not practical at present because
no database has enough positive and negative examples from
each drug class, and only a fraction of all results and adverse
reactions observed during clinical trials are available at present
(Wieseler et al., 2013). Therefore, to benefit from the methods
presented here, it is important to always consider the RS of
drug candidates together with the centrality of the protein
targets. Nevertheless, the quality of protein networks and of
the drug-target databases is constantly improving, and despite
these limitations, the methods presented here predicted the safety
or danger of 60–70% of known drugs (Figure 4A). Moreover,
we believe that as more comprehensive post-translational and
structural information becomes available, its integration to the
PSIN will enhance its predictive capabilities, furthering our
understanding of the mechanisms of drug action and its effects
on protein structures.

Finally, our prediction that several experimental drugs may
not be approved provides evidence that the approaches presented
here can be used long before a drug reaches the end of
the development pipeline (Scannell et al., 2012); in fact, as
soon as the targets of a compound are determined, we would
recommend that that compound be subjected to the procedures
described here.
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Supplementary Figure 1 | We verified that the PSIN degree distribution

could be fitted in the power-law. The figure depicts the degree distribution

(black circles) and the curve-fit (in red), with the modifying exponent parameter

indicated in the figure. The fit is satisfactory for most nodes, but those with a

higher degree have some deviation from the fitted curve. Additionally, we can

observe the degree distribution for the HIPPIE database, and for a sequence of

15,000 random numbers chosen with replacement from the interval [1, 2000].

Supplementary Figure 2 | Tukey’s Honest Significant Difference test

indicating the differences between the groups of drug targets. APP stands

for Approved drug-targets, PRO Problematic drug-targets, and BOTH are the

proteins targeted by drugs from both groups. The sample sizes of each group are

the same as those shown in Figure 2A.

Supplementary Figure 3 | The figure shows the distribution of the degree

and the Burt’s constraint of the targets of approved and problematic

drugs. In the PSIN, the highest separation between targets of approved and

problematic drugs occurs at a degree value of 110; 75–80% of approved drug

targets have values lower than this value, whereas only 30–35% of problematic

drug targets have degree values smaller than 110. Additionally, we can observe

that the separation of targets of problematic and approved drugs is much

narrower in the PPI than in the PSIN, making it more difficult to distinguish the

potential therapeutic targets based on the centrality measures of the PPI network.

Supplementary Figure 4 | Boxplots with popular measures used to

evaluate classifiers and different datasets. We can verify that for most

measures and classifiers, the PSIN alone yields the best results.

Supplementary Figure 5 | We created randomized datasets that

maintained the dependencies between the samples by shuffling the labels

of the proteins in the PSIN and recalculating the average network

topologies for each drug to create a single randomized dataset. In total, we

created 40 randomized datasets. (A) Depicts an example, for a single

cross-validation where we randomly split the standard dataset (i.e., that derived

from the PSIN) into a training set and a test set and determined the AUC. Next, we

took each of the 40 randomized datasets, carefully split them into training and

testing data making sure we selected the same drugs that were used for training

and testing with the standard data, and calculated the AUC. The 40 AUCs from

the randomized data represent our null distribution, that is, the expected AUC

achieved when drugs can bind any proteins. From this null distribution, we

determined the likelihood that the AUC achieved by the standard data happened

by chance. Thus, the p-value for a single iteration is the fraction of AUCs from the

randomized data that was greater than or equal to the AUC achieved with the

standard data; for example, a p-value of 0.1 would indicate that in 10% of cases

the randomized data yielded an AUC equivalent to the standard run (B), Dataset

#0 is the standard run, the remaining are the randomized datasets. We then

repeated this for 120 cross-validation iterations (totaling 4920 calculations) and

calculated the average and the median p-values observed across all iterations of

the three classifiers used to formulate the Rejection Score. (C) Depicts histograms

of the p-values achieved from 120 cross-validation iterations.

Supplementary Figure 6 | Depicted are the Area Under the ROC Curves

(AUCs) where the Complete Dataset (i.e., original PSIN), is compared with

a dataset in which we kept the networks intact, but shuffled the protein

labels. We observe that most classifiers obtained higher AUCs than the shuffled

datasets, indicating that even though confounding factors (e.g., number of targets

per drug) play a role in the classification, the classifiers were still able to provide

significant added value to the overall procedure. In each panel, the groups were

compared by using the Wilcoxon two-sided signed-rank test, and in all cases,

they were distinct with p << 0.01.

Supplementary Figure 7 | We observed a negative correlation (−0.35)

between the number of targets a drug has and its rejection score (if the

number of targets was in the logarithmic scale, the correlation

was −0.51), yet, most drugs with only a few or with many targets still had

similar rejection scores. The figure also suggests that we were not capturing

the characteristics of only one or two of the databases.

Supplementary Table 1 | Drugs, targets, and their regulatory status.

Supplementary Table 2 | Experimental drugs and their targets.

Supplementary Table 3 | Criteria used for the drug categorization.

Supplementary Table 4 | Computational classification of marketed drugs.

Supplementary Table 5 | Drugs, Rejection Scores, and reported adverse

effects.

Supplementary Table 6 | Computational classification of experimental

drugs.
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