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Multi-frame super-resolution (SR) processing seeks to overcome undersampling issues

that can lead to undesirable aliasing artifacts in imaging systems. A key factor in effective

multi-frame SR is accurate subpixel inter-frame registration. Accurate registration is more

difficult when frame-to-frame motion does not contain simple global translation and

includes locally moving scene objects. SR processing is further complicated when the

camera captures full color by using a Bayer color filter array (CFA). Various aspects of

these SR challenges have been previously investigated. Fast SR algorithms tend to have

difficulty accommodating complex motion and CFA sensors. Furthermore, methods that

can tolerate these complexities tend to be iterative in nature and may not be amenable to

real-time processing. In this paper, we present a new fast approach for performing SR in

the presence of these challenging imaging conditions. We refer to the new approach as

Fusion of Interpolated Frames (FIF) SR. The FIF SR method decouples the demosaicing,

interpolation, and restoration steps to simplify the algorithm. Frames are first individually

demosaiced and interpolated to the desired resolution. Next, FIF uses a novel weighted

sum of the interpolated frames to fuse them into an improved resolution estimate.

Finally, restoration is applied to improve any degrading camera effects. The proposed FIF

approach has a lower computational complexity than many iterative methods, making

it a candidate for real-time implementation. We provide a detailed description of the FIF

SR method and show experimental results using synthetic and real datasets in both

constrained and complex imaging scenarios. Experiments include airborne grayscale

imagery and Bayer CFA image sets with affine background motion plus local motion.

Keywords: super-resolution, image processing, image restoration

Introduction

Commercial visible color cameras using a single focal plane array (FPA) will typically use a CFA
to collect red, green, and blue (RGB) spectral scene information. While there are many proposed
color arrangements for CFAs [1], the Bayer pattern remains the most widely used [2]. The Bayer
pattern is a repeating 2 × 2 filter where the green filter is in a quincunx arrangement with twice
the sampling density of the red and blue filters. Only one color channel is collected in each
spatial sample. The other two bands must be estimated. Extensive research has gone into this
demosaicing process [3–5]. Additionally, grayscale cameras will typically balance sampling with
other factors, such as signal-to-noise ratio (SNR). This generally results in undersampled, aliased
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images [6]. Because CFA cameras trade spatial sampling for color
information, aliasing issues are exacerbated.

Multi-frame super-resolution (SR) is an effective method for
reducing aliasing in images that are limited by detector sam-
pling. Motion between image frames increases sampling diver-
sity. By combining image samples from multiple low resolution
(LR) frames into a single high resolution (HR) image, aliasing can
be reduced or eliminated. A thorough SR overview is provided
in [7] and a compendium of recent research is contained in [8].
Many SR methods utilize iterative approaches. These variational
approaches tend to be computationally intensive and may not be
amenable to real-time implementation. Another approach, based
on non-uniform interpolation, tends to be computationally sim-
pler than variational methods. These methods can provide fast,
potentially real-time implementation. The approach is to notion-
ally place all accurately registered frame samples into a com-
mon HR space. If uncontrolled inter-frame motion is present,
this results in non-uniform sampling. The non-uniformly sam-
pled data is used to interpolate onto a uniform HR grid and
restoration can then be applied. The fast adaptive Wiener filter
(AWF) combines interpolation and restoration simultaneously in
a spatially-adaptive weighted sum [9]. The AWF approach allows
restoration to be optimized for specific local non-uniform spatial
arrangements on the HR grid. For strictly translational motion,
it is possible to pre-compute all the AWF filter weights since
the observed pixel spatial pattern on the HR space is periodic.
Therefore, the number of filter weights is small, further increas-
ing computational speed. For affine inter-frame motion, the full
set of AWF weights is generally impractical to pre-compute. A
previously developed AWF SR method for affine motion [10]
places LR data onto a discrete grid rather than continuous HR
space and uses a partial observation window. Under these condi-
tions, filter weights can be pre-computed. However, quantization
onto a discrete grid can increase registration errors, impacting SR
performance [11]. Thus, treating affine inter-frame motion using
fast algorithms remains a challenge for SR.

Multi-frame SR in scenes that include small moving objects
can also be a challenge. Adding local motion robustness has
recently received attention [12–20]. Much of the research uti-
lizes iterative methods with increased computational complex-
ity. AWF SR was extended to add local motion robustness [21].
Beginning with a parametric global motion model, data that are
inconsistent with the global motion model are excluded from
contributing to the multi-frame AWF output. Areas of local
motion are handled separately with a single frame AWF SR filter.

Color multi-frame SR for CFA cameras is another area of
recent research and it can be viewed as an SR extension to
demosaicing. Many documented methods implement variational
approaches. These primarily differ in the implementation of the
data fidelity and/or regularization terms [22–29]. An AWF SR
method for CFA color imagery was proposed [11]. This approach
employs parametric correlation and color cross-correlationmod-
els to utilize cross-channel data and improve SR results over inde-
pendent channel SR methods. The approach was implemented
for translation-only global inter-frame motion. This constraint
allowed observed data samples to be placed onto a continuous
HR space and not be quantized to a discrete HR grid.

In this paper, we propose an SR method that we believe
addresses many of the practical issues raised above, while main-
taining a relatively low computational complexity.We refer to the
new method as Fusion of Interpolated Frames (FIF) SR. The FIF
method has been designed to simplify SR for CFA sensors when
the inter-frame motion is more complex than simple translation.
However, the approach can be applied to standard single chan-
nel imaging sensors as well. To provide computational simplicity,
FIF SR decouples the demosaicing, interpolation, and restora-
tion steps in the SR process. After demosaicing and single frame
interpolation/registration, FIF SR uses a novel weighted sum of
the interpolated full-color frames for an improved HR estimate.
There are three components to the weight: a subpixel interpola-
tion distance metric, a motion model error metric, and an esti-
mate of channel cross-correlation. Finally, restoration is applied
to deconvolve the system point spread function (PSF). We show
that FIF can handle affine inter-frame motion with robustness to
locally moving small objects. These motion conditions are typical
in airborne imaging applications [21]. As far as we are aware, this
approach is unique and has not been investigated previously.

The rest of the paper is organized as follows. In Section Obser-
vation and Reconstruction Models, we present the observation
model used to form the basis of the reconstruction approach. We
provide details of the FIF SR algorithm for Bayer CFA data in
Section FIF SR Algorithm. Experimental results using both simu-
lated and real data sets with varying levels of imaging complexity
are provided in Section Experimental Results. Finally, we provide
conclusions in Section Conclusion.

Observation and Reconstruction Models

A forward observation model is used to develop the FIF SR
method. The model relates the true wavelength-dependent con-
tinuous scene to observed low resolution (LR) images. We
employ the alternative observation model of [11], shown in
Figure 1. This model commutes inter-frame motion and the sys-
tem PSF relative to the order of operations in a physical sys-
tem. This commutation holds true for translational motion and
a spatially invariant PSF. It also holds true for rotational motion
if the PSF is circularly symmetric, and approximately for full
affine motion if zoom and shear are limited [10]. The continu-
ous scene d(x, y, λ) is imaged by a system with camera motion
between frames. Spectral channel filters are applied, creating J
continuous images. For Bayer cameras, the channel filters are 3
spectral filters. The color channels, red, green, and blue (RGB),
can be represented by j = 1, 2, and 3, respectively. The output
is degraded by the system PSF, represented by hj(x, y), where j
designates a unique wavelength-dependent PSF for each chan-
nel. Camera motion results in a geometric transformation of
d(x, y, λ). The variable αp captures global inter-frame motion
parameters for all frames, p = 1, 2, . . . , P. The filtered contin-
uous outputs are sampled according to the detector array CFA
pattern, creating the lexicographical vectors f(p). Finally, n(p) are
vectors of additive noise samples. The noise samples are assumed
to be zero-mean independent and identically distributed Gaus-
sian random variables with a variance of σ2η. The observed frames
are then represented as g(p) = f(p) + n(p). For a Bayer CFA
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FIGURE 1 | Forward observation model used to develop the FIF SR method.

camera, these observed frames can be represented as g(p) =

[g1(p)
T, g2(p)

T, g3(p)
T]T , where g1(p), g2(p), and g3(p) corre-

spond to the color channels. The ideally sampled image is rep-
resented in lexicographical form by the vector z = [zT1 , zT2 , zT3 ]

T ,
where zj = [zj,1, zj,2, . . . , zj,MN]

T contains the ideal samples for
channel j. The parameters M, N are the number of desired HR
samples in the x, y directions, respectively, to achieve Nyquist
sampling.

The system PSF can account for a number of imaging system
effects. For this work, we follow the approach in [11] and include
only optical diffraction and spatial detector integration. For a
diffraction-limited optical system, the spatial cutoff frequency is
given by

ρc =
1

λ f /#
(cyc/mm), (1)

where λ is the center wavelength of light into the system and
f /# is the optical f-number. According to the Nyquist Sampling
Theorem [30], a band-limited image can be uniquely determined
from its discrete samples if it is sampled at twice or more than the
cutoff frequency,

1

δs
≥ 2ρc. (2)

Here, δs is the spatial sampling interval (i.e., pixel pitch) and 1/δs
is the spatial sampling frequency. For a single color of the Bayer
CFA image, the spatial sampling is based on the detector pitch
and CFA pattern. The CFA doubles detector sampling interval for
red and blue color filters (approximately 1.4× for the quincunx-
sampled green filter), leading generally to increased aliasing over
panchromatic cameras of the same fundamental detector pitch.

FIF SR algorithm

A block diagram of the FIF SR algorithm is illustrated in Figure 2.
The major steps in the FIF are demosaicing (for CFA input
imagery only), registration and interpolation, fusion of interpo-
lated frames, and restoration. Figure 3 shows an output image
at major steps to illustrate the dimensionality and information

produced by each of these steps. Note that the desired HR sam-
pling grid is designated by the upsampling factor parameter L,
which represents the ratio of desired full-color HR sampling to
basic CFA sampling of the red (or blue) color channels. Figure 3
shows each input CFA image of size 192×128, so the red (or blue)
channel size is 96× 64. Applying SR to the level of L = 8 results
in the desired full-color image of size 768 × 512. The following
subsections address each of the major algorithm steps in detail.

Demosaicing
The first step is to demosaic the observed CFA image set, recov-
ering the full-color image at each temporal frame. Note that in
the case of grayscale imagery, this step is simply bypassed. Exten-
sive research has been done on demosaicing Bayer images and
much has focused on reducing interpolation artifacts with edge
adaptive techniques or color channel cross-correlation. For FIF
SR, one may choose any suitable method for the type of data
involved. Here we use a gradient-corrected bilinear interpolation
method with gains to control the level of correction [31]. With
fixed gain coefficients, this method can be implemented with a
set of finite impulse response (FIR) filters to increase speed. This
is accomplished with a set of simple 5×5 linear filters with 9 coef-
ficients for the green channel and 11 coefficients for each of the
blue and red channels. Because each channel filter is independent,
the channels can be filtered in parallel.

Registration and Interpolation
With the full-color LR image set now available, the next steps are
to register and interpolate the images to a common reference grid
at the desired SR sampling resolution. This process results in a set
of P full-size color images, sampled at the desired outputM × N
HR level. As shown in Figure 2, this image set is designated as
cj(p) = [cj,1(p), cj,2(p), . . . , cj,MN(p)]

T , for channel j = 1, 2, ..., J
and frame p = 1, 2, ..., P.

In this work, we assume that global background motion is
dominant. Global affine parameters are estimated for each frame
relative to the selected reference frame (usually the most recent
frame). These affine parameters are estimated using an itera-
tive gradient-based least squares algorithm [32] at multiple scales
[33]. This approach is described in [10], with analyses of aliasing
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FIGURE 2 | Overview of the FIF SR method.

FIGURE 3 | Graphical details of major steps in FIF process.

impacts shown in [21]. For general J channel data, parameters can
be estimated for each demosaiced channel data and then aver-
aged. For the Bayer CFA, we use the demosaiced green channel
data to estimate the motion parameters. Because the green chan-
nel is more densely sampled in the observed CFA data, the demo-
saiced green channel data generally contains less aliasing than the
red or blue channels. This results in better registration estimates.
To further reduce aliasing impacts for motion parameter estima-
tion, the images are pre-filtered with a Gaussian low pass filter
(LPF). Finally, to improve motion parameter estimation when
local moving objects are present, a fraction of the highest motion
error pixels that don’t obey the global motion assumption are
excluded using the approach of [21].

With the registration parameters now estimated, each of the
demosaiced frames can be interpolated and aligned to the HR
reference grid by means of a global affine warping. In our imple-
mentation, we first resize the demosaiced images with a Lanc-
zos kernel interpolator to get the images to the HR size (or
higher), and then apply the affine warping the images using

simple bilinear interpolation. The Lanczos kernel is a sinc win-
dowed sinc function and is considered to represent a good com-
promise between complexity and upsampling performance [34].
It can be implemented efficiently using fast Fourier Transform
filtering. Using bilinear interpolation on the Lanczos resized
images provides the necessary affine warping with a low compu-
tational complexity. The Lanczos resizing prior to bilinear inter-
polation means that the bilinear interpolation has a finer grid
to start from, and its deficiencies are minimized. One can, of
course, implement the warping and resizing in one step, pro-
vided you sacrifice Lanczos performance or bilinear interpolation
speed.

The most complex operation in this step is multi-scale affine
motion estimation. This operation is simplified by using a single
channel for the estimation. Each frame is registered indepen-
dently, so the estimation can be implemented as a parallel oper-
ation. The actual upsampling and warping are also performed
independently by channel and frame, so those steps can also be
parallelized.
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Fusion of Interpolated Frames
The heart of the FIF SR method is the fusion of the interpo-
lated frames from the previous step. The result is a single HR
image for each channel, denoted aj = [aj,1, aj,2, . . . , aj,MN]

T for
j = 1, 2, ...J. The fusion is done by means of a weighted sum of
the input frames. In particular, each output pixel is a weighted
sum of all of the corresponding pixels at the same spatial location
from the interpolated input channels frames. This weighted sum
is given by

aj,k =

P
∑

p= 1

3
∑

q= 1
wj,k(q, p) · cq,k(p)

P
∑

p= 1

3
∑

q= 1
wj,k(q, p)

, (3)

for j = 1, 2, ..., J and k = 1, 2, ...,MN. Note that aj,k is spa-
tial sample k of channel j in the fused image, and wj,k(q, p) is

the weight for the qth color channel of the pth frame at spatial
location k used to estimate aj,k. A special case of the FIF algo-
rithm is when the fusion does not use color cross-channel infor-
mation in estimating a given HR image channel. Each channel
aj,k is estimated using only data from its own color channel and
spatial location. The normalized weighted sum for this simpler
“independent channel” FIF SR is

aj,k =

P
∑

p=1
wj,k(j, p) · cj,k(p)

P
∑

p=1
wj,k(j, p)

, (4)

for j = 1, 2, ..., J and k = 1, 2, ...,MN. These weighted sum-
mations are sample-based calculation, so every fused sample and
channel can be calculated in parallel.

To understand the rationale of our approach to defining the
fusion weights, it may be helpful to consider that each interpo-
lated frame can be viewed as a noisy and blurred realization of
the true image z. In addition to traditional sensor noise, demo-
saicing and interpolation error in these images, resulting from
aliasing, can be viewed as a noise source that will vary from frame
to frame because of inter-frame motion. Local motion can also
be viewed as a “noise” relative to the ideal reference image. In
light of this, the fusion step uses a weighted sum of all interpo-
lated frames at the kth spatial position to estimate the kth HR
output pixel in each channel. The weights we propose have three
components. The first component seeks to deemphasize interpo-
lated pixels with a large demosaicing and interpolation error, in
favor of those with less. The second seeks to deemphasize pix-
els where the local motion departs from the reference frame, in
favor of those that match the reference. Finally, the third com-
ponent seeks to exploit inter-channel correlation. Let the weight
components be defined as follows

wj,k(q, p) = w
(1)
k
(q, p) · w

(2)
k
(p) · w

(3)
j,k
(q). (5)

Calculating the weight for each channel and sample is a sample-
based calculation. Every sample and channel can be calculated

in parallel. Each weight component is described in detail in the
following subsections.

Interpolation Error Weight

The first weight, w
(1)
k
(q, p), captures information regarding

the interpolation error associated with cq,k(p). This weight is
inversely proportional to the fractional LR pixel distance between
HR spatial position k and the nearest original LR observed pixel
from gq(p) (LR frame p channel q) without interpolation. The
idea being that if an original LR pixel from LR frame p channel q
is very close spatially to HR position k, we can expect less inter-
polation error in cq,k(p). Thus, we wish to have increased weight

for that sample [i.e., increased w
(1)
k
(q, p)]. Based on the registra-

tion information, the coordinates of each LR observed pixel can
be expressed in terms of the HR grid, in order to facilitate the
pixel distance calculations.

Let Rk(q, p) represent the Euclidean distance (expressed in
LR pixel spacing) between HR spatial position k and the near-
est original LR observed pixel from gq(p). When Rk(q, p) = 0,

we wish to have a weight of w
(1)
k
(q, p) = 1, and this represents

the case where there is no demosaicing/interpolation error. As

Rk(q, p) increases, we wish to have w
(1)
k
(q, p) decrease. Multiple

robust loss functions, used forM-estimation and denoising appli-
cations [35], were investigated for potential use in developing the
weight function. An experimental study was performed in which
the entire FIF algorithm was implemented and multiple robust
loss functions were assessed in the weight component calcula-
tions. In this application, we have achieved good results using a
robust Leclerc loss function. This function has a similar form to a
Gaussian function and is expressed as

w
(1)
k
(q, p) = exp

(

−Rk(q, p)
2

2h2s

)

, (6)

where hs is a tuning parameter for the rate of decay with frac-

tional distance. Since the calculation of each w
(1)
k
(q, p) value is

independent, this operation can be performed in parallel for each
sample and channel.

We see that, at zero fractional distance, the weight will have a
value of 1. At large fractional distances, the weight approaches
zero. Figure 4 shows an example of this concept for a single
color channel, q = 1 (red channel), and frame p with SR at
the L = 2 level. For HR sample k = 6, the nearest LR sample
from observed LR red channel has a relatively large distance of
R6(1, p), as shown. On the other hand, HR sample k = 9, has a
small distance of R9(1, p). Thus, we expect that c1,9(p) will have
less interpolation error than c1,6(p). The weights will exploit this
information by means of Equation (6).

Local Motion Weight
Local motion is determined by calculating the difference between
each frame and the reference frame in cq(p). Because cq(p)
still contains aliasing, simple differencing will induce extraneous
errors since aliased regions can appear as local motion. There-
fore, an LPF is applied prior to calculating the difference frames
[21]. Implicit in this step is the assumption that local motion is
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FIGURE 4 | Single frame example showing the basis for fractional

distance measurements.

due to extended objects moving between frames. This requires
filtering at a level to sufficiently reduce aliasing artifacts while
maintaining the ability to locate moving objects [21]. A small
kernel maximum filter is applied after the LPF to maintain the
integrity of small, extended moving objects (as small as 3–5
pixels).

Note that if local motion is present, it may impact every color
channel in cq(p). As with registration, we use the green channel of
CFA imagery to estimate the local motion because of the reduced
aliasing in this channel. If a pixel is impacted by local motion,
we wish to reduce the weight associated with this sample in the
weighted sum. We found good results using the robust Leclerc
function as

w
(2)
k
(p) = exp

(

−D2
k
(p)

2h2m

)

, (7)

where Dk(p) is the LPF difference frame value at sample k of
frame p relative to the reference frame. The term hm is a tun-
ing parameter that controls the sensitivity of the function to the
difference values. Note that the reference frame pixel at each
location will also get a local motion weight of 1. The weight
is a sample-by-sample calculation based on frame differenc-
ing. Therefore, each sample can be independently calculated in
parallel.

Channel Cross-Correlation Weight
Full-color images can have regions of high color cross-
correlation. This cross-correlation can be leveraged in FIF so
that all q colors in cq(p) can be used to estimate every j
HR channel. The channel cross-correlation weight captures this
spatially-varying color cross-correlation. Through assessing mul-
tiple robust functions, the best performance has been found using
a modified bisquare robust function [35] as

w
(3)
j,k
(q) =















[

1−
S2
k

h2c

]8

Sk < hc and j 6= q

0 Sk ≥ hc and j 6= q
1 j = q

. (8)

The term hc is a tuning parameter and Sk is an estimate of the
color saturation at HR sample k. This function has a value of 1
when there is zero saturation and has a value of zero when satu-
ration is large. When the output and input color channels match
(i.e., j = q), this gives a weight of 1. For cross-channels, if the
saturation is above the threshold of hc, the non-matching input
color channel gets a weight of 0 and is therefore not used at all.
In non-saturated regions, the non-matching input color is given
a non-zero weight.

The premise for using color saturation follows from prior
work in demosaicing and SR. Many SR methods for CFA images
incorporate some aspect of color cross-correlation [11, 25, 36,
37]. Additionally, many demosaic methods use smooth hue tran-
sition assumptions in the form of color ratios or color differences
[38–42]. These approaches recognize the benefit of utilizing color
correlation to improve algorithm performance. We use the color
saturation channel from the hue, saturation, value (HSV) color
space hexcone model [43] which is functionally related to color
ratios and differences.

Using the color saturation channel as a spatially-varying met-
ric for assessing color correlation seems reasonable. For exam-
ple, a pure grayscale region has highly correlated color chan-
nels. These regions also completely lack color saturation, so there
appears to be a functional relationship between saturation of
cross-correlation. In image regions completely saturated by a sin-
gle color, using a large cross-channel weight would introduce
noise artifacts into this channel because of noise in low-valued
color channels. Here, better SR results may be achieved by apply-
ing a small cross-correlation weight and using only the saturated
color channel [44].

The challenge now is to estimate the saturation values on
the HR grid in the presence of sensor noise, aliasing, and local
motion. To reduce aliasing, an LPF is applied to every frame
of cj(p). The resulting image set is designated as the local mean

image set ĉj(p) = [ĉj,1(p), ĉj,2(p), ...ĉj,MN(p)]
T . Because regions

of location motion will negatively impact the calculation, we use

the local motion weight w
(2)
k
(p) and form a robust local mean

image as follow

c̄j,k =

∑P
p=1 w

(2)
k
(p)ĉj,k(p)

∑P
p=1 w

(2)
k
(p)

, (9)

where c̄j =
[

c̄j,1, c̄j,2, . . . , c̄j,MN

]T
. The color saturation values

are computed from these local mean images using the hexcone
model [43]. The weight in Equation (8) and the saturation chan-
nel are sample-based operations, so these steps can be imple-
mented in parallel by sample. Creating the local mean image
requires a filtering operation, but the weighted sum in Equation
(9) is sample-based and can be implemented in parallel.
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Restoration Filter
The FIF SR estimate, ẑ, is completed by applying a Wiener filter
to the fused image channel image, aj. We use a fast Fourier trans-
form (FFT) basedWiener filter with constant noise to signal ratio
parameter, Ŵ[45]. A wavelength-dependent restoration filter is
applied to each channel. The restoration is quite straightforward
and fast, requiring only an FFT, multiplication, and inverse FFT.

The Wiener filter is the minimum mean square error estima-
tor for wide-sense stationary and Gaussian signals and noise [46].
It may not be optimal in other cases. For example, it is known
to have difficulty dealing with highly non-Gaussian noise, such
as impulsive noise. Notwithstanding this, it is a very widely used
image restoration method, blending noise smoothing and inverse
filtering [46]. We believe it provides a practical and useful solu-
tion this application. It offers a good balance between computa-
tional complexity and performance. Note that other restoration
methods could be employed at this stage in the FIF algorithm as
required by the signal and noise statistics.

Experimental Results

Experimental results are presented here to demonstrate the effi-
cacy of the FIF SR approach.We begin with simulated data exper-
iments that allow us to quantify performance. Results from real
datasets are also presented. Real data experiments include Bayer
CFA data and panchromatic data. The panchromatic data is from
an airborne midwave infrared (MWIR) sensor system. The FIF
SR algorithm is comparedwithmultiple SR approaches. Themost
fundamental method is to simply demosaic the single-frame ref-
erence LR image and interpolate the result to the desired HR
image size. We use the MATLAB “demosaic” function and cubic
spline interpolation for this method.

We also include the color AWF SR method of [11]. The color
AWF SR algorithm follows the full 12-parameter, 3-PSF model.
A variational method using regularized least squares (RLS) is
also included. This is a multi-channel extension to the method of
[47]. The RLS is modified to perform independent-channel SR on
Bayer images.We also present results of the SRmethod described
in [25]. Thismethod, calledMulti-Dimensional Signal Processing
(MDSP), is a maximum a posteriori (MAP) approach.

The above SR methods were developed specifically for global
translational-only motion and do not accommodate local motion
scene objects. For experiments containing global affine motion
with local motion, we include a modified version of RLS, termed
“robust” RLS. Affinemotion estimation is implemented in aman-
ner similar to [21]. Local motion detection is included and the
single reference frame is applied in locations of detected motion
in any of the input frames. The robust RLS method has been
modified to handle data from Bayer CFA cameras and SR is
performed independently on each channel. For these more com-
plicated imaging conditions, the translation-only color AWF SR
method was also modified to handle local motion. Single frame
color AWF SR is performed in regions where local motion is
detected.

Quantitative metrics used for the simulation experiments
include mean square error (MSE) and mean absolute error
(MAE). These two metrics are typically used in quantitative

comparisons. However, these metrics may not necessarily cor-
relate to visual perception of image quality. To provide alter-
nate quantitative metrics, we also include the Multi-Scale Struc-
tural Similarity (MS-SSIM) Index [48]. MS-SSIM was developed
for grayscale images. For color image comparisons, MS-SSIM is
calculated on each channel separately. Feature, Similarity Index
(FSIM) [49] is also used. This metric captures low-level features,
primarily toward the local structure. A color extension to FSIM
(called FSIMc) was developed by incorporating luminance and
chrominance components. The scale forMS-SSIM and FSIMc are
0–1 (higher values indicate better performance).

Simulated Experiments
Global Translational Motion with No Local Motion
A simple simulation experiment is performed to baseline FIF
performance. The simulation is limited to global translational
motion with no local motion objects in the dataset. We compare
the FIF method to a channel-independent FIF approach of Equa-
tion (4). In the channel-independent FIF, the color cross-channel

weight w
(3)
j,k
(q) is not implemented. This allows us to assess the

benefit of cross-correlation channel information in FIF.
The full-color (24-bit) Kodak lighthouse image is used for this

experiment. The full-color image is considered the truth image
for quantitative comparison. To create the simulated dataset,
the full-color image is degraded by the following steps. First,
wavelength-dependent PSFs are applied to each color channel
with f /# = 4.0 and 5.6µm square detector size. We perform
random shifting, decimation, and mosaicing and create P = 10
LR Bayer images. Finally, white Gaussian noise with variance
σ2n = 10 is added. Each LR color channel is decimated and
mosaiced to be 8× smaller in each spatial direction than the HR
image, so SR is performed to the L = 8 level.

Figure 5 shows a region of interest (ROI) of the truth image
and the output of the SR methods. Aliasing causes color fringing
that is readily apparent in the demosaic/interpolation result. Edge
artifacts are apparent in the picket fence regions of the RLS, inde-
pendent color channel FIF SR, and MDSP SR outputs. Visually,
the full FIF and color AWF outputs look very similar and appear
to provide the best reconstruction.

Table 1 contains quantitative results with the top two per-
formers shown in bold type. The methods that operate on
each color channel independently tend to provide better results
than simple demosaic/interpolation because these approaches
use multiple frames of information in the SR output. MDSP
has generally similar performance to the independent channel
methods. Color AWF has the best performance with full FIF
SR slightly less in each metric. However, FIF SR provides more
capability in handling complex global motion and local mov-
ing objects, as seen in subsequent experiments. This experiment
also highlights the benefit of including cross-channel informa-
tion in FIF SR. The full FIF approach provides nearly 20% (MSE)
improvement over the independent channel FIF and performs
much better by any metric.

Global Translational Motion with Local Motion
The second simulation assesses performance in the presence of
local motion. Since MDSP does not adapt for locally moving
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FIGURE 5 | Simulated data results for (A) original HR image, (B) demosaic/interpolation, (C) MDSP SR, (D) RLS with independent color channel

regularization, (E) color AWF SR, (F) independent color channel FIF SR, and (G) full FIF SR.

TABLE 1 | Performance results for simulation experiment #1.

Method MAE MSE MS-SSIM Red MS-SSIM Green MS-SSIM Blue FSIMc

Demosaic/Interpolation 10.83 343.1 0.848 0.863 0.847 0.850

MDSP Iterative SR 9.45 225.1 0.896 0.907 0.883 0.930

RLS 8.89 209.1 0.910 0.919 0.890 0.934

Color AWF SR 8.33 161.1 0.922 0.923 0.915 0.941

Independent channel FIF SR 9.28 224.2 0.899 0.915 0.883 0.924

Full FIF SR 8.48 181.3 0.927 0.928 0.914 0.938

objects, it is not included. Here we compare performance to the
robust RLS method and the version of color AWF SRmodified to
accommodate local motion.

We use the full-color (24-bit) Kodak barn image for this sim-
ulation. To create a locally moving object, we inserted a color
chirp object into P = 10 HR images with the object moving
at a constant rate across the image set. We then degrade the
image as described in the previous simulation. This results in a

set of LR Bayer CFA images with a moving object. The first and
last HR input images and a simulated CFA frame are shown in
Figure 6. The moving object is more challenging than expected
in real imaging situations, but is used to stress the performance
assessment.

Cropped results are shown in Figure 7. We include the base-
line color AWF output to highlight the effects when local motion
is not accounted for. The modified color AWF output does
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FIGURE 6 | Simulated CFA images for local moving target experiment, (A) first frame and (B) last frame of synthetically generated HR image, and (C)

simulated CFA image frame.

FIGURE 7 | Simulated data results for global translational motion with local motion (A) original HR image, (B) demosaic/interpolation, (C) color AWF

SR, (D) color AWF with local motion, (E) robust RLS, (F) FIF SR.

TABLE 2 | Performance results for simulation experiment #2.

Method MAE MSE MS-SSIM Red MS-SSIM Green MS-SSIM Blue FSIMc

Demosaic/Interpolation 9.11 213.0 0.842 0.861 0.841 0.864

Color AWF w/local motion 7.80 141.1 0.911 0.919 0.912 0.933

Robust RLS 8.30 168.5 0.893 0.910 0.888 0.919

Full FIF SR 8.12 164.9 0.908 0.916 0.897 0.928

Bold values designate the top 2 performers in each metric.
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reconstruct the moving object. However, the object and sur-
rounding regions are not as sharp as the rest of the image since
the method uses single frame SR in local motion regions. The FIF
and robust RLS appear to provide the best visual results. How-
ever, robust RLS shows more artifacts in local motion regions
since it also uses single frame data in any region of detected local
motion.

Table 2 shows quantitative results. Color AWF is excluded
in the table since it was unable to reconstruct the local motion
object. FIF and the modified color AWF provide the best recon-
struction. The AWF method is able to maintain performance
because local motion occurs in a relatively smooth region of the
scene and global motion is limited to translation.

Global Affine Motion with Local Motion
For this experiment, global affine (translation and rotation)
inter-frame motion is added to the previous experiment.
The maximum rotation is 2.5◦. Other than the inclusion of
rotational motion, the simulation is the same as the prior
experiment.

Figure 8 shows cropped results. Because demo-
saic/interpolation uses only the single reference frame, its
performance is the same as the prior experiment. Artifacts are
readily apparent in the modified color AWF SR output since
it operates under a global translational motion assumption. In
this experiment, we tested single frame color AWF SR, which
performs better than multi-frame color AWF SR. Robust RLS

FIGURE 8 | Simulated data results of affine motion with local motion for (A) original HR image, (B) demosaic/interpolation, (C) color AWF with local

motion, (D) single frame color AWF SR, (E) robust RLS, (F) FIF SR.

TABLE 3 | Performance results for simulation experiment #3.

Method MAE MSE MS-SSIM Red MS-SSIM Green MS-SSIM Blue FSIMc

Demosaic/Interpolation 9.12 213.0 0.842 0.860 0.839 0.865

Color AWF w/local motion 12.89 390.4 0.725 0.745 0.743 0.819

Single frame color AWF SR 9.19 216.0 0.844 0.861 0.842 0.867

Robust RLS 8.51 177.0 0.893 0.908 0.876 0.914

Full FIF SR 8.01 165.1 0.910 0.919 0.899 0.927

Bold values designate the top 2 performers in each metric.
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and FIF results appear very similar to the prior experiment,
demonstrating their capability to handle affine motion.

Quantitative results are shown in Table 3. FIF SR provides the
best results by any metric. Robust RLS performs slightly worse.

For this simulation, the robust RLS method used 15 iterations for
each channel. The total run time was about 14min or approx-
imately 19 s per iteration per channel. Total run time for the
FIF method was about 11 s. While the implementations used

FIGURE 9 | Images from Imaging Source color camera for global affine motion with local motion for (A) first and (B) last frame of the image set.

FIGURE 10 | Imaging Source images for affine motion with local motion dataset, (A) demosaic/interpolation, (B) color AWF with local motion, (C)

robust RLS, and (D) FIF SR.
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un-optimized processing code, it is indicative of the relative ease
in implementing these methods in real time. Additionally, since
robust RLS is an iterative operation, it may be less amenable
to parallel implementation to support real-time processing. Pro-
cessing used MATLAB on a Windows 64-bit operating system
with an Intel core i5 CPU with a 2.50 GHz clock speed and 8 GB
of RAM.

Real Data Experiments
Two real datasets were processed and examined. The first
dataset collected Bayer CFA images using an Imaging Source
DFK21BU04 CCD color camera that uses a 1/4" Sony ICX098BQ
charge-coupled device (CCD) with a 640×480 sensor and 5.6µm
square detector elements. The camera does not have an anti-
aliasing filter, making it appropriate for collecting test data. This
camera collects images with a dynamic range of 8 bits. A variable
lens set to f /4 was used. A set of P = 10 frames was selected
from a video sequence. The color channels are undersampled by
8.6×, 10.2×, and 12.4× for the red, green, and blue channels,
respectively.

The second dataset is from an airborne MWIR panchro-
matic camera with f /2.3 optics and 19.5µm detector pitch.
The camera’s bandwidth is 3–5µm, resulting in about 4.2×
undersampling. This is the same MWIR dataset used in [10]
and those results can be qualitatively compared to the results
presented here.

Bayer CFA Camera
The Bayer color camera dataset contains affine inter-frame
motion primarily consisting of rotation and a pencil is moved
across a circular chirp panel. This creates a very challenging
image set for two primary reasons. First, the chirp panel contains
spatial frequency patterns and structures not typically seen in nat-
ural images. Also, the pencil has saturated color patterns and its
shape comes to a sharp point. The object’s movement across the
chirp pattern highlights challenges in reconstructing the image in
regions where the object moves across the set. Figure 9 shows the
first and last frame of the set. The object moves from the bottom
to the top of the scene and the rotational motion is apparent.

The following SR methods were applied for this assess-
ment: demosaic/interpolation, color AWF SR with local motion,
robust RLS, and FIF SR. Cropped ROI outputs are shown in
Figure 10. Results are qualitatively comparable to the assess-
ment described in the simulation experiment of Section Global
affine motion with local motion. Demosaic/interpolation con-
tains high levels of aliasing dominated by color fringing. Robust
RLS does not effectively reduce this color fringing because of
its independent channel operation. For primarily the same rea-
son, the small color features in the moving pencil are not fully
reconstructed.

The modified color AWF SR method reduces the color fring-
ing in most of the scene and the moving object is recon-
structed fairly well. However, in regions where the pencil motion

FIGURE 11 | Section of real MWIR panchromatic data results for (A) input LR image, (B) bicubic interpolation, (C) robust RLS, (D) FIF SR.
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FIGURE 12 | Section of second real MWIR panchromatic data results for

(A) input LR image, (B) bicubic interpolation, (C) robust RLS, (D) FIF SR.

is present in any frame, single frame AWF SR is applied
and color fringing is quite apparent. Artifacts are also appar-
ent at the edge of the panel due to rotational inter-frame
motion.

FIF provides probably the best visual image quality. Color
fringing is greatly reduced and FIF provides the best performance
in the local motion region. Numbers along the bottom edge of
the chirp pattern are clearest compared to the other methods.
The most noticeable issue with FIF is the tip of the pencil not
being fully reconstructed. This is caused because of an inherent
trade in parameter selection between reducing the color fring-
ing in the chirp pattern and completely reconstructing the pen-
cil tip. Because real-world image set would not typically contain
periodic spatial frequency structures, the trade for other datasets
may likely involve increasing color fringing in order to fully
reconstruct a small target.

Panchromatic MWIR Camera
For this experiment, the FIF method was modified to handle sin-
gle channel data to compare FIF with the robust RLS since robust
RLS was developed for panchromatic data. Bicubic interpolation
is also included in the experiment. The SR improvement level was
set to L = 4 and P = 10 frames were used. Figure 11 shows a
cropped region from an input frame and SR results. These images
capture a local moving object at the top of the image and sets of

4-bar resolution targets. Input data shows aliasing artifacts in the
all resolution targets.

Bicubic interpolation provides some improvement, resolving
the first 2–3 sets of bars. Robust RLS and FIF perform demon-
strate very good visual performance. They perform compara-
bly to each other, resolving the bar patterns to about the 7th
set of bars. Processing times were measured using un-optimized
code and previously detailed processor specifications. For full LR
image data (10 frames of 128 × 256 pixels per frame), the FIF
method ran in approximately 4 s while the robust RLS method
took about 200 s. For this experiment, RLS performed for 15
iterations, resulting in about 13 s per iteration.

Figure 12 shows the results for a second dataset. No local
moving objects were in the data and the results are cropped to
capture the bar pattern. These data highlight the aliasing effects
with a different sample phasing than the prior results, as seen in
the observed LR data for the vertical bar patterns. The SR results
are the same as the prior dataset with robust RLS and FIF per-
forming comparably. The horizontal bars are still resolved to the
6th or 7th set, but because of the sample phasing, the vertical bars
are now resolved to about the 9th set.

Conclusion

The FIF SR method is a straightforward and relatively fast
approach that can handle SR processing in complex imaging
conditions. We present the derivation of FIF utilizing tempo-
ral and cross-channel information in a unique weighted sum.
Details of the weight components are provided showing how each
component contributes to the proposed method.

The experimental results show the FIF method maintains per-
formance with datasets that include affine globalmotion and local
moving objects. While experiments focused on Bayer CFA cam-
eras, airborne panchromatic camera data was also investigated.
The FIF SR method performs comparably against other state-
of-the-art SR methods in simpler constrained conditions and
outperforms these methods in challenging realistic conditions.
Because of its straightforward, non-iterative construction, the FIF
method more readily lends itself to real-time implementation
over more complex variational SR methods.
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