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Craniosynostosis, the premature closure of cranial suture, is a pathologic condition that
affects 1/2000 live births. Saethre-Chotzen syndrome is a genetic condition characterized
by craniosynostosis. The Saethre-Chotzen syndrome, which is defined by loss-of-function
mutations in the TWIST gene, is the second most prevalent craniosynostosis. Although
much of the genetics and phenotypes in craniosynostosis syndromes is understood, less
is known about the underlying ossification mechanism during suture closure. We have
previously demonstrated that physiological closure of the posterior frontal suture occurs
through endochondral ossification. Moreover, we revealed that antagonizing canonicalWnt-
signaling in the sagittal suture leads to endochondral ossification of the suture mesenchyme
and sagittal synostosis, presumably by inhibitingTwist1. Classic Saethre-Chotzen syndrome
is characterized by coronal synostosis, and the haploinsufficientTwist1+/− mice represents
a suitable model for studying this syndrome. Thus, we seeked to understand the underly-
ing ossification process in coronal craniosynostosis in Twist1+/− mice. Our data indicate
that coronal suture closure in Twist1+/− mice occurs between postnatal day 9 and 13 by
endochondral ossification, as shown by histology, gene expression analysis, and immuno-
histochemistry. In conclusion, this study reveals that coronal craniosynostosis inTwist1+/−
mice occurs through endochondral ossification. Moreover, it suggests that haploinsuffi-
ciency ofTwist1 gene, a target of canonical Wnt-signaling, and inhibitor of chondrogenesis,
mimics conditions of inactive canonical Wnt-signaling leading to craniosynostosis.
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INTRODUCTION
The skull vault in mammalian organisms is predominantly formed
by intramembranous ossification of membranes derived from
the neural-crest or mesoderm tissues (Jiang et al., 2002). In this
process, mesenchymal cells condense, form ossification centers
and expand. Cranial sutures form as the margins of the develop-
ing bones approximate, and the mesenchymal tissue separating the
bone fronts is recruited into the osteogenic fronts. Thus, a suture
consists of the suture mesenchyme, flanked by osteogenic fronts
on each side. Cranial sutures can either close, or remain patent
and thereby serve as growth centers for the expansion of the skull
vault at later stages of development. The architecture and arrange-
ment of these sutures is surprisingly well conserved in mammals
and other species (Opperman, 2000; Quarto and Longaker, 2005;
Sahar et al., 2005). Two unpaired sutures, the posterior frontal (PF)
between the frontal bones and the sagittal suture (SAG) between
the parietal bones form the median axis of the skull vault. The
paired coronal sutures (COR), located between the frontal and
parietal bones as well as the lambdoid sutures (LAM) between
the interparietal and parietal bones represent the coronal axis.

The mesenchyme of PF and SAG suture is of neural-crest origin,
whereas the COR suture mesenchyme is of mesoderm origin and
a juxtaposition between the neural-crest derived frontal bone and
the mesodermal parietal bone (Jiang et al., 2002). So far, the tis-
sue origin of the LAM suture is undetermined. Among these four
cranial sutures, only the PF (or metopic in humans) closes physio-
logically during the first months of life in humans and between day
13 and 15 postnatal in mice by endochondral ossification (Cohen,
1993; Sahar et al., 2005). Prolonged proliferation of suture mes-
enchyme or delayed differentiation of cranial osteoblasts results
in pathological suture expansion, whereas impaired prolifera-
tion or accelerated differentiation causes premature fusion, or
craniosynostosis, a common developmental disorder that can be
either inherited or isolated (Wilkie, 1997). In the past decades,
causative mutations in more than 10 genes have been identified.
For example, mutations in genes encoding fibroblast growth factor
receptors (FGFR) with craniosynostosis syndromes such as Pfeif-
fer, Crouzon, and Apert syndromes; mutations in TWIST, a basic
helix-loop-helix transcription factor, cause Saethre-Chotzen syn-
drome (Jabs et al., 1993, 1994; Bellus et al., 1996; Howard et al.,
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1997; Wilkie, 1997; Twigg et al., 2004; Wieland et al., 2004). How-
ever, a specific genetic diagnosis can only be made in 28% of the
cases (Morriss-Kay and Wilkie, 2005).

Craniosynostosis in the Saethre-Chotzen syndrome, which was
first described 80 years ago (Saethre,1931; Chotzen,1932), involves
the COR, PF, and LAM sutures. Since the Saethre-Chotzen syn-
drome is associated with heterozygous loss-of-function mutation
in the TWIST1 gene (el Ghouzzi et al., 1997; Howard et al.,
1997), Twist1+/− mice provide a useful genetic model to study
this human genetic syndrome. Twist1+/− mice show COR fusion,
thereby resembling the Saethre-Chotzen syndrome in humans
(Bourgeois et al., 1998; Carver et al., 2002). However, it must
be pointed out that over 100 mutations in the coding region
of the TWIST1 gene have been found to cause Saethre-Chotzen
syndrome (Cunningham et al., 2007).

In our recent study we have demonstrated, that active canon-
ical Wnt-signaling is at least in part responsible for the patency
of cranial sutures, and that low levels of this signaling are “per-
missive” for craniosynostosis (Behr et al., 2010). Furthermore,
we have proposed a mechanism, in which decreased canonical
Wnt-signaling leads to craniosynostosis by downregulating the
expression of Twist1, a target gene of canonical Wnt-signaling
(Howe et al., 2003). This would in turn allow the occurrence of
chondrogenesis in the suture mesenchyme, a process which is oth-
erwise inhibited by Twist1 (Reinhold et al., 2006). These findings
were corroborated by the occurrence of partial synostosis in the
SAG suture of Twist1+/− mice (Behr et al., 2010).

Based on our previous observations, in the current study we
seeked to investigate in detail the timing and ossification mecha-
nism of COR craniosynostosis in Twist1+/− mice. Moreover, using
axin2-lacZ mice we have analyzed the activation of canonical Wnt-
signaling in the four main sutures in order to determine, whether
a correlation between suture patency and canonical Wnt-signaling
exists.

MATERIALS AND METHODS
MUTANT ANIMALS
Animals were cared for in accordance to the Institutional Ani-
mal Care and the Use Committee of Stanford University. In order
to study the activation of the canonical Wnt-signaling in cranial
sutures, Axin2+/− mice were utilized. Axin2+/− mice, with a LacZ
reporter gene were generated by breeding Axin2−/− males on a
pure CD-1 background with wild-type CD-1 females. In addi-
tion, Wnt1Cre+/− and R26R+/− mice on a C57/BL6 background
were mated to obtain double transgenic Wnt1Cre+/−/R26R+/−
mice. Twist1+/− mice were purchased from Jackson Laboratory
(Bar Harbor, ME, USA) and previously described (Chen and
Behringer, 1995). Genotyping was performed by PCR analysis of
genomic DNA.

TISSUES HARVESTING AND PROCESSING
Animals were sacrificed on the exact postnatal day (p) based on
birth date (day 0). Time points included: E18.5, p7, p9, p11, p13,
p15, p25, and p180. For each time point at least three animals were
sacrificed and processed for histology.

For tissues harvesting, animals were asphyxiated by CO2 and
decapitated. The PF and the SAG suture including the adjacent

osteogenic fronts of frontal and parietal bones were meticulously
harvested using a stereomicroscope (LeicaMZ16). Accordingly, the
COR and LAM sutures were harvested with the corresponding
osteogenic fronts of frontal and parietal or parietal and interpari-
etal bone. For RNA extraction, at least four suture complexes of
littermates were harvested and homogenized with a Pellet Pestle
Motor (Kontes) in 0.2 ml of Trizol (Invitrogen).

To obtain cryo-sections the suture complexes were briefly
washed in cold PBS and then fixed with 0.4% PFA overnight
at 4˚C. After a second wash with cold PBS, tissue samples were
decalcified in 19% EDTA at 4˚C for the appropriate time (from
1 day up to 2 weeks), depending on the developmental stage of
the skull. Specimens were then transferred in sucrose 10 and
30% (both incubations overnight) and cryo embedded in opti-
mal cutting temperature compound (OCT-Tissue-Tek). To obtain
paraffin sections, the suture complexes were washed in PBS and
fixed in 10% neutral buffered formalin at room temperature
overnight. After a second wash with PBS, tissue samples were
decalcified as described above. Specimens then underwent dehy-
dration in a graded series of alcohol and xylene and were paraffin
embedded.

HISTOLOGY
For both, cryo and paraffin sectioning the entire COR, LAM, PF,
and SAG sutures were cut in 10 μm sections. For each suture,
between 50 (E18.5) and 400 sections (p180) were obtained (three
sections per slide). Every third slide of each cryo sectioned suture
was stained with Xgal (Roche). For paraffin-sectioned sutures,
each sixth slide was stained by pentachrome to determine the
exact region within the suture. Sections were examined with a
Zeiss Axioplan microscope. Images were captured by AxioVision
(Zeiss) and processed with Adobe Photoshop (Adobe Systems).
Xgal staining in the suture mesenchyme of Axin2+/− mice was
quantified semi-automated by using the magic wand tool in
Photoshop with the tolerance settings at 60. Data are presented
in pixels. In order to calculate the fractions of Xgal staining
in relation to the respective suture area, the suture area pix-
els were determined with the lasso tool in Photoshop. Fractions
were generated by dividing Xgal positive pixels by the respective
suture area.

REVERSE TRANSCRIPTION-PCR
RNA isolation, reverse transcription (RT) quantitative real-time
PCR (qPCR), and primers were described previously (Quarto
et al., 2005, 2008; Sahar et al., 2005). Briefly, real-time RT-PCR
was performed using the ABI Prism 7900 Sequence Detection Sys-
tem, TaqMan Gene Expression Master Mix, and TaqMan Gene
Expression Assays (Applied Biosystems). Cycling conditions were
initial denaturation at 95˚C for 3 min, followed by 30 cycles con-
sisting of a 15-s denaturation interval at 95˚C and a 30-s interval
for annealing and primer extension at 60˚C. The relative mRNA
levels in each sample were normalized to its Gapdh content.
The results are presented as means ± SD of three independent
experiments.

IMMUNOHISTOCHEMISTRY
For immunohistochemistry of COR sutures, antigen retrieval
was performed by incubating the slides with Proteinase K
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FIGURE 1 | Pentachrome staining of the four representative cranial

sutures: posterior frontal (PF), coronal (COR), sagittal (SAG), and

lambdoid (LAM) at postnatal day (p) 25. A complete closure of COR
suture is observed in Twist1+/− mice, while the suture remains patent in
wild-type mice. The arrow indicates the fused coronal suture in Twist1+/−

mice. Scale bar: 100 μm.

(Sigma-Aldrich, St. Louis, MO, USA) at 37˚C for 10 min. Antibod-
ies against Sox9 and Collagen II (ColII; SC-17340, SC-28887, Santa
Cruz Biotechnology, Inc., Santa Cruz, CA, USA) were used accord-
ing to the manufacturer’s instruction. A goat or rabbit biotinylated
secondary antibody followed by the AB reagent and NovaRed (Vec-
tor Laboratories, Burlingame, CA, USA) were used for detection.
Irrelevant goat or rabbit IgG (Calbiochem) used as a negative
control did not produce any staining (data not shown). Results
were obtained from at least two animals and were carried out in
duplicates.

RESULTS
DIFFERENT OCCURRENCE OF CRANIOSYNOSTOSIS IN TWIST1+/−

CRANIAL SUTURES
Although, craniosynostosis is a well established phenotype in
Twist1+/− mice (Bourgeois et al., 1998; Carver et al., 2002; Bialek
et al., 2004), little is known about the detailed impact and ossifi-
cation mechanism in the occurrence of craniosynostosis in these
mice. For this reason, we performed coronal and sagittal sections
on all four skull vault sutures of Twist1+/− mice at a mature time
point for suture closure (p25; Figure 1). The PF suture, which
physiologically closes during the second week of postnatal life
through endochondral ossification (Sahar et al., 2005), showed
a complete closure in Twist1+/− and wild-type mice. Interestingly,
wild-type PF suture was larger and had a higher bone mass com-
pared to Twist1+/− mice. As expected, the COR suture, which
physiologically remains patent, was fused in 5/7 Twist1+/− mice.
The SAG suture, which likewise stays patent, showed partial clo-
sure in Twist1+/− mice as previously reported (Behr et al., 2010).
Finally, the LAM suture was patent in all examined Twist1+/− and
wild-type mice.

CRANIOSYNOSTOSIS OF CORONAL SUTURES IN TWIST1+/− MICE
OCCURS THROUGH ENDOCHONDRAL OSSIFICATION
In Twist1+/− mice, which are viable, COR suture is known
to be pathologically closed (Carver et al., 2002), mimicking
craniosynostosis in Saethre-Chotzen syndrome in humans. Thus,
it provides the opportunity to study suture closure in more detail.
Since we previously uncovered, that physiological PF suture clo-
sure occurs through endochondral ossification (Sahar et al., 2005),
which could also be observed in SAG suture synostosis elicited
by antagonizing canonical Wnt-signaling (Behr et al., 2010), we
addressed the question through which ossification mechanism
craniosynostosis of COR suture in Twist1+/− mice occurs. For
this purpose, COR sutures of Twist1+/− mice were examined
at similar time points as predicted by PF suture closure (Sahar
et al., 2005). Indeed, between p9 and p15, COR suture clo-
sure could be monitored in COR sutures of Twist1+/− mice.
Pentachrome staining revealed chondrocytes in COR sutures of
Twist1+/− mice at p9 and p11 in 4/7 animals (Figure 2). Of
note, we did observe variations in the phenotype characteris-
tics, which was most likely due to a varying penetrance of this
mutation. To further prove that COR suture mesenchyme of
Twist1+/− mice is undergoing endochondral ossification, we per-
formed qPCR analysis for chondrogenic markers. As shown in
Figure 3A, qPCR revealed a clear chondrogenic pattern with a
temporal upregulation, followed by downregulation of Sox 9, the
master regulator of chondrogenesis, and Collagen II (Coll II ),
component of chondrocytes extracellular matrix. At later time,
upregulation of Collagen X (Coll X), a marker of hypertrophic
chondrocyte, was observed. By postnatal day 15, high levels of
Osteocalcin (Oc) were detected as result of bony bridge for-
mation between the two osteogenic fronts of COR suture, and
therefore its closure. Conversely, qPCR analysis of COR suture
of wild-type mice did not reveal chondrogenic markers (data
not shown). Immunohistochemistry analysis showed markedly

FIGURE 2 |Time course of COR suture closure inTwist1+/− mice. At day
p11 pentachrome staining reveals the presence of cartilage (blue staining)
between the bone plates of the COR suture of Twist1+/− mice, while no
cartilage is present in wild-type mice. By day p13, pathological closure of
COR suture is observed in Twist1+/− mice. Dashed lines indicate the bone
plates. Scale bar: 50 μm.
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FIGURE 3 | Presence of specific chondrogenic markers in the

differentiating COR suture mesenchyme. (A) Expression analysis of
chondrogenic markers by qPCR showing a chondrogenic pattern of the
differentiating COR suture mesenchyme in Twist1+/− mice. By postnatal day
15 upregulation of osteocalcin (Oc) is observed, as result of the COR suture
closure. (B) Immunohistochemistry for Sox9 and Col II confirm cartilage
tissue formation in the COR suture of Twist1+/− at day p11. Scale bar: 10 μm
Expression analysis of chondrogenic markers by qPCR showing a
chondrogenic pattern of the differentiating COR suture mesenchyme.

elevated levels of Sox9 and Collagen II proteins in the suture
mesenchyme of Twist1+/− as compared to wild type at p11
(Figure 3B).

CONTRIBUTION OF NEURAL-CREST ORIGIN CELLS TO THE LAMBDOID
SUTURE
We did establish that both, PF suture in wild-type mice and
COR sutures in Twist1+/− mice close by endochondral ossifi-
cation. These results were interesting, because these sutures do
not share the same embryonic origin of other cranial sutures.
While the PF and SAG suture mesenchymes are of neural-crest
origin, the COR suture is derived from the mesoderm (Jiang et al.,
2002). Since this study, which utilized Wnt1Cre/R26R mice, was
carried out at embryonic stages, no information was available
for LAM suture (Jiang et al., 2002). LAM sutures in Twist1+/−
mice were unique in a way, that they did not show any signs of
fusion, rather their osteogenic fronts were wide apart (Figure 1).
Hence, we were interested in the embryonic origin and examined
LAM sutures of p7 Wnt1Cre/R26R mice. Xgal staining revealed
positive cells in the suture mesenchyme, indicating the contri-
bution of neural-crest origin cells to the paired LAM suture
(Figure 4A). In conclusion, among all four cranial skull vault
sutures, only COR is of mesodermal origin. However, the tissue
origin did not explain differences between a fusing COR suture
and a patent LAM suture in Twist1+/− mice, since fusion like-
wise occurs in neural-crest derived sutures like the PF and SAG
sutures.

CANONICAL Wnt-SIGNALING ACTIVITY IS ASSOCIATED WITH SUTURE
PATENCY AND CLOSURE
We have previously postulated that canonical Wnt-signaling
tightly controls cranial suture closure or patency, with low canoni-
cal Wnt-signaling and finally its absence in fusing PF suture, which
physiologically closes, whereas in SAG suture sustained canonical
Wnt-signaling is associated with suture patency (Behr et al., 2010).
We now seeked to investigate, whether this phenomena is likewise
true for the mesoderm derived COR suture or the neural-crest
derived LAM suture, which are both physiologically patent. For
this purpose we used in Axin2+/− mice, in which Xgal stain-
ing monitors activation of canonical Wnt-signaling (Yu et al.,
2005). Indeed, in reporter mice expressing Axin2-lacZ both the
COR and LAM suture show a substantial activation of canonical
Wnt-signaling (Figure 4B). After quantification of Xgal staining,
which is indicative for canonical Wnt-signaling, it was evident, that
canonical Wnt-signaling was most pronounced in LAM sutures
followed by the SAG and finally the COR sutures at p25 and
p180 (Figure 4C). As reported previously, absence of canonical
Wnt-signaling was observed in PF sutures at p25 or later. By ana-
lyzing the anatomy of the LAM suture mesenchyme, an expansion,
which could be linked to increased canonical Wnt-signaling, was
evident. Taken together these results suggest that a strict correla-
tion between suture patency and the presence of active canonical
Wnt-signaling exists.

DISCUSSION
In the current study, we demonstrated that craniosynostosis in
COR sutures of Twist1+/− mice occurs by endochondral ossifica-
tion between p9 and p15 as consequence of impaired expression
of Twist1, a downstream target of canonical Wnt-signaling and
inhibitor of chondrogenesis.

We have previously reported that physiological closure of the
PF suture, which is of neural-crest origin, occurs by endochon-
dral ossification (Sahar et al., 2005). Later, we found that this
process is tightly regulated by canonical Wnt-signaling; i.e., high
levels of canonical Wnt-signaling are associated with cranial suture
patency, while low levels are associated with suture fusion (Behr
et al., 2010). Endochondral ossification of suture mesenchyme in
the cranial vault is somewhat surprising, since the default mode
of osteogenesis in the skull vault is intramembranous ossification.
However to date little is known about the ossification mechanism
governing premature closure of sutures in pathologic conditions
such as craniosynostosis.

The Twist1+/− mouse has been previously used to study the
molecular pathogenesis of Saethre-Chotzen syndrome. Carver
et al. (2002) reported fusions of the coronal suture in Twist1+/−
mice at postnatal day 30, however this study was performed on
whole-mount stained skulls, which does not allow a detailed
anatomic analysis of the suture.

An independent study by Yoshida et al. (2005) showed that
during establishment of the COR suture area Twist is required
for the regulation of sutural cell proliferation and osteoblast dif-
ferentiation. These authors demonstrated that inhibition of Twist
synthesis, using morpholino-antisense oligonucleotides in calvar-
ial organ culture resulted in a narrow COR sutural space and fusion
of bone domains (Yoshida et al., 2005).
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FIGURE 4 | Activation of canonical Wnt-signaling in embryonic

and postnatal cranial sutures. (A) Xgal staining of LAM suture
harvested from Wnt1Cre/R26R mouse. Xgal staining indicates the
neural-crest origin of the LAM suture mesenchyme. The boxed
area is enlarged to the right. (B) Xgal staining of PF, COR SAG, and

LAM suture mesenchymes in Axin2+/− mice from e18.5 to p180. Scale
bar: 100 μm. Inserts represent zoomed areas of the coronal sutures.
Dashed lines indicate the bone plates. (C) Quantification of Xgal staining
of different cranial suture mesenchymes in Axin2+/− mice at day p25
and p180.

A hint that the Twist1+/− mouse model is relevant for under-
standing human Saethre-Chotzen syndrome was generated by a
clinical case reporting, that suture fusion in a child also occurred
at postnatal stages. While an X-ray performed at 4-month of age
still showed patent COR sutures in a Saethre-Chotzen syndrome
child, fusion was reported at 14-month of age (de Heer et al., 2004).

An interesting question is, whether endochondral ossification
is a default mode for cranial suture mesenchyme undergoing cran-
iosynostosis, or whether different mechanism(s) are also account-
able. It has been proposed that COR suture fusion in Twist1+/−
mice is caused by a boundary defect, induced by invading neural-
crest cells into the otherwise undifferentiated mesodermal COR
suture (Merrill et al., 2006). The authors further showed, that the
migration of neural-crest cells is accompanied by an increase of
Msx2 and reduction of ephrin-A4 expression (Merrill et al., 2006).
A different mechanism for cranial suture closure in Twist1+/− mice
was proposed with regards to Twist1 heterodimers and homod-
imers (Connerney et al., 2006, 2008). It was shown that a balance
of Twist homodimers (location at the osteogenic fronts) and
Twist1 heterodimers (location in the mid-suture) is tilted toward
the homodimers in Twist1+/− mice (Connerney et al., 2008). In

turn, Twist1 homodimers increase expression of Fgfr2, which then
leads to craniosynostosis. Moreover, the authors demonstrated,
that it was possible to rescue suture fusion in Twist1+/− mice
by inhibiting FGF-signaling (Connerney et al., 2008). In line
with this observation, Rice et al. (2000) reported alteration of
Fgfr2 in the SAG suture mesenchyme of Twist1+/− mice. While
these studies described alterations of other pathways in Twist1+/−
mice such as Fgf or Msx, our study focused on the ossification
process through which craniosynostosis occurs in Twist1+/− mice.
Given that Twist1 inhibits chondrogenesis (Reinhold et al., 2006),
reduced levels as found in Twist1+/− mice favor chondrogen-
esis, therefore paving the way for endochondral ossification in
COR sutures.

Few studies investigated COR suture fusion in other models.
A different hypothesis for the occurrence of COR craniosynos-
tosis was generated with the first Apert syndrome mouse model
Fgfr2250/+ (Chen et al., 2003). The authors proposed, that this
mutation causes excessive apoptosis and therefore reduced thick-
ness, a narrower suture mesenchyme and ultimately premature
fusion of COR suture in Fgfr2250/+ mice (Chen et al., 2003).
Later it was found that in Fgfr2S252W/+ skulls, which represent
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the most common mutation in Apert syndrome, COR craniosyn-
ostosis occurred during early stages of development (E16.5 to p1)
starting from the base of the suture (Holmes et al., 2009), which is
consistent with a report about COR suture fusion in Fgfr2-III+/�

mice as early as E18 (Hajihosseini et al., 2001). In contrast to the
first report about COR suture fusion in Fgfr2250/+ mice (Chen
et al., 2003), the authors suggested that apoptosis is more a conse-
quence rather than a cause of sutural fusion in Fgfr2S252W/+ mice
(Holmes et al., 2009). To some extent COR suture fusion was also
studied in a mouse Apert model with a P253R mutation of Fgfr2
(Yin et al., 2008). In this model, COR suture was fused at day p21.
However, the fusion was subtler than in Twist1+/− mice, which
showed a solid bone plate (Yin et al., 2008). Finally, Eswaraku-
mar and colleagues reported complete fusion of the COR suture
in Fgfr2cCLR/+-mice at p14, however they did not look at earlier
stages (Eswarakumar et al., 2006). Indeed, it will be of interest
to investigate whether COR suture closes through endochondral
ossification also in these other mouse models.

Although in a different context, in earlier studies histologi-
cal analysis revealed that PF suture “prematurely” fused in the
Axin2-null mutants at 4 weeks postnatally, while only μCT analy-
sis showed closure of COR suture (Liu et al., 2007). However,
it must be pointed out that PF suture closes physiologically at
2 weeks postnatally. Moreover, in this Axin2-null mutant, only
binding of β-catenin to the Axin-dependent degradation complex
in the cytosol is disrupted. The interaction of β-catenin with the
LEF/TCF transcription and the cadherin mediated adhesion com-
plexes remains intact at the Axin2-null nucleus and plasma mem-
brane, respectively (Liu et al., 2007). Further analysis of Axin2-null
mice PF suture detected an expansion of the Sox9-expressing

precursors only at postnatal days 0 and 8, earlier than chondro-
genic differentiation of suture mesenchyme. However, there was
no obvious difference in Sox9 expression during chondrogenesis
of the Axin2+/+ and Axin2−/− nasal cartilages (Liu et al., 2007).

We have previously demonstrated that canonical Wnt-signaling
is a crucial pathway, controlling sutures closure or patency (Behr
et al., 2010). It is known that expression of Twist1 is regulated by
canonical Wnt-signaling (Howe et al., 2003). Our earlier study
indicated that in PF and SAG sutures Twist1 gene expression,
as well Twist1 protein mirrored the different activation levels of
canonical Wnt-signaling (Behr et al., 2010). Here we show that
Twist1 haploinsufficiency mimicking a“context”of inactive canon-
ical Wnt-signaling induces endochondral ossification of COR
suture leading to craniosynostosis. Similarly, inhibition of canon-
ical Wnt-signaling in the SAG suture leads to sagittal synostosis,
a process occurring through endochondral ossification, paralleled
by lower levels of Twist protein (Behr et al., 2010). As described pre-
viously for the SAG suture in Twist1+/− mice (Behr et al., 2010),
reduced levels of Twist1 leads to the occurrence of endochon-
dral ossification also in the COR suture mesenchyme. Thus, the
current study further highlights the importance of canonical Wnt-
signaling and Twist1 in determining and controlling cranial suture
fate by regulating endochondral ossification.
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