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Human diseases have been investigated in the context of single genes as well as complex
networks of genes. Though single gene approaches have been extremely successful in
the past, most human diseases are complex and better characterized by multiple interact-
ing genes commonly known as networks or pathways. With the advent of high-throughput
technologies, a recent trend has been to apply network-based analysis to the huge amount
of biological data. Analysis on Boolean implication network is one such technique that dis-
tinguishes itself based on its simplicity and robustness. Unlike traditional analyses, Boolean
implication networks have the power to break into the mechanistic insights of human dis-
eases. A Boolean implication network is a collection of simple Boolean relationships such
as “if A is high then B is low.” So far, Boolean implication networks have been employed
not only to discover novel markers of differentiation in both normal and cancer tissues,
but also to develop robust treatment decisions for cancer patients. Therefore, analyses
based on Boolean implication networks have potential to accelerate discoveries in human
diseases, suggest therapeutics, and provide robust risk-adapted clinical strategies.

Keywords: bioinformatics, cancer, computational biology, differentiation, microarray analysis, prognostic biomark-
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INTRODUCTION
In the past detailed single gene investigations in the context of
human diseases was extremely successful and produced many
useful drugs (Miller et al., 1982; Slamon et al., 2001; Cunning-
ham et al., 2004; Scott et al., 2012). However, the progress was
extremely slow and the success was achieved at the cost of a huge
number of failed investigations with multiple billions of dollars
in investments (Arrowsmith, 2011; Allison, 2012). Unlike in the
past years, it is now easy to gather information from tens of thou-
sands of genes simultaneously. Modern approaches can leverage
these huge amounts of biological data to understand human dis-
eases. Therefore, a recent trend in analysis has been shifted to
multiple genes that are part of a single functional unit commonly
known as networks or pathways. The new approaches have been
termed network analysis or systems biology. Clearly, these new
approaches have the potential to tackle the complexity of human
diseases (Mootha et al., 2003; Segal et al., 2003; Basso et al., 2005;
Subramanian et al., 2005; Margolin et al., 2006; Bonneau et al.,
2007; Lee et al., 2009; Schadt et al., 2010; Bousquet et al., 2011;
Gupta et al., 2011; Jornsten et al., 2011). However, the systematic
noise in the system has always challenged these approaches. The
noise in the system is due to experimental or biological noise and
also noise in measuring gene expression values in a microarray
hybridization experiment. In addition to noise, other challenge to
the network-based approaches is to translate the discoveries to the
clinic.

In this mini review, we discuss a systems biology or network-
based analysis using Boolean implication network (Sahoo et al.,
2008). A Boolean implication network is simply a collection of
Boolean implication relationships as described by Sahoo et al.
(2008). Boolean typically means a logic calculus of two values,

which are high and low gene expression values in this context. A
Boolean implication relationship is a simple “if-then” relationship
between the high and low gene expression values between a pair of
genes. For example,“if A is high, then B is high” is a Boolean impli-
cation relationship between a pair of genes A and B, where A high
and B low is ruled out as a possible scenario as shown in Figure 1.
Therefore, whenever gene expression of A is high, we observe gene
expression of B is also high. In other words, A high is a subset of
B high. In a two dimensional scatter plot between two genes and
their thresholds for high and low values, there are four possible
quadrants: “A low B low,” “A low B high,” “A high B low,” and “A
high B high.” One or more sparse quadrants in this plot is math-
ematically represented as a Boolean implication. For example, the
Boolean implication “if A high, then B high” represent a sparse
“A high B low” quadrant. There are six possible Boolean impli-
cation relationships, two of them are symmetric, and other four
are asymmetric. The symmetric Boolean implication relationship
has two diagonally opposite sparse quadrant and the asymmetric
Boolean implication relationship has only one sparse quadrant.
As shown in Figure 1, the threshold to define “high” and “low”
gene expression levels are determined using StepMiner (Sahoo
et al., 2007). The expression levels of each probeset are sorted and
a step function fitted (using StepMiner) to the sorted expression
level that minimizes the square error between the original and
the fitted values. We determined the noise margin by using very
tightly correlated genes and found that there is still a difference of
twofold change (in log scale a value of Miller et al., 1982) among
the values that are linearly related. Therefore, we used a noise
margin of 1 (threshold −0.5 to threshold +0.5) and discarded all
the microarrays that fall within these region for Boolean implica-
tion analysis. The noise margin was an important consideration
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FIGURE 1 | Boolean implication in gene expression database.
Boolean implication is a pair-wise gene expression relationship between
two genes with respect to their gene expression values. (A) Schematic
example of a Boolean implication between two genes A and B. Threshold
to separate high and low gene expression values are computed using
StepMiner. A noise margin of 0.5 is used for statistical calculations. Each
of the four quadrant is tested for their sparsity. In this case, A high and B

low quadrant is sparse representing the Boolean implication “if A high,
then B high.” (B) An example of a significant Boolean implication
between ESR1 and CD9: if ESR1 high, then CD9 high. Every point is a
microarray experiment performed on human samples on Affymetrix
platform. There are 46,045 microarrays in this scatter plot all of which
were downloaded from NCBI’s Gene Expression Omnibus (GEO)
website.

that allowed us to identify many significant Boolean implication
relationships.

SYSTEMS BIOLOGY USING BOOLEAN IMPLICATION
It is possible to discover Boolean implication relationships in the
largest possible dataset that include all publicly available microar-
rays from Gene Expression Omnibus (GEO) or ArrayExpress.
These relationships represent natural invariants in a particular
species. For example, a Boolean implication relationship in a par-
ticular dataset that contains all human samples on Affymetrix
platform represents a natural invariant gene expression relation-
ship in human. Many of these invariants are due to tissue specific
gene expression. For example, a brain specific gene and a prostate
specific gene can never be expressed together. Therefore, they will
have a Boolean relationship of the form “if A high, then B low.”
Similarly, many of these relationships can be due to developmental
gene expression pattern or related to the biological process of dif-
ferentiation. Mining developmentally regulated genes (MiDReG)
is a simple algorithm that uses Boolean implication to identify
genes expressed at different stages of differentiation (Sahoo et al.,
2010). The key concept behind this algorithm is to use invariants
to predict state of the gene expression pattern. We describe here
how MiDReG and Boolean implication are used in B cell, bladder
cancer, and colon cancer differentiation.

B-CELL DIFFERENTIATION
B cells are special types of blood cell that are created from a
blood stem cell by the process of differentiation. As the stem cell
undergoes the process of differentiation, many genes changes their
expression pattern. There are genes that are specific to the stem

cell only and also there are genes that are specific to the differ-
entiated B cell. MiDReG algorithm takes advantage of these gene
pairs that have a significant Boolean implication “if A high, then
B low,” and predict other genes that are expressed in the prog-
enitors or precursors of B cells (Inlay et al., 2009; Sahoo et al.,
2010). Let’s assume that gene A is expressed at the blood stem
cells and it turns off as the stem cells differentiate to B cell. Sim-
ilarly, let’s assume that gene B is off at the stem cell and it turns
on as the stem cell differentiates to B cells (Figure 2A). There-
fore, in this narrow view of differentiation gene A and gene B are
mutually exclusively expressed. Let’s assume that there is a signif-
icant Boolean implication “if A high, then B low.” The significant
Boolean implication represents a global invariant in all microarray
datasets. In this case, if we want to identify a gene X that turns on
after gene A turns off and before gene B turns on, we could sim-
ply use Boolean implication “if A high, X low,” and “if B high, X
high” (Figure 2A). Since the Boolean implication is an invariant,
we could hypothesize a state of differentiation where gene A is off,
gene X is on, and gene B is off. In addition, this state of differ-
entiation is between stem cell and the mature B cell. Therefore,
gene X could potentially mark precursors of the mature B cell.
We validated the gene expression patterns of the newly discovered
genes using this approach by qPCR on the sorted B-cell progeni-
tors from mouse blood and bone marrow. Review of the published
literature of knockout mice revealed that many of our discovered
genes were directly involved in B-cell differentiation. Out of 62
MiDReG genes, 41 genes were found to be knocked out in mice.
Out of these 41 mice knockouts, 26 (63.4%) genes show defects in
B-cell function and differentiation, 9 (22.0%) genes are associated
with known B-cell function according to other experiments, and 6

Frontiers in Physiology | Systems Physiology July 2012 | Volume 3 | Article 276 | 2

http://www.frontiersin.org/Systems_Physiology
http://www.frontiersin.org/Physiology
http://www.frontiersin.org/Systems_Physiology/archive


Sahoo Boolean implication network

  MiDReG in B cell differentiation

CA1KRT20E
x
p

re
s
s
io

n

Gene X

B Cell Differentiation

E
x
p

re
s
s
io

n

if A high, then X low

if B high, then X high

A B

Stem Cell B Cell

Predicted Gene X

MiDReG in bladder cancer differentiation

MiDReG in colorectal cancer differentiation

Bladder Cancer Differentiation

E
x
p

re
s
s
io

n

K5 K20X

if X high, then K20 low

if X high, then K5 high
Predicted Gene X

if CA1 high, then KRT20 high

Colorectal Cancer Differentiation

A

B

C

FIGURE 2 | Discovery of markers of differentiation using MiDReG
algorithm. Mining developmentally regulated genes (MiDReG) is an
algorithm that uses Boolean implication to predict specific markers of
differentiation in normal and cancer tissues. (A) MiDReG algorithm is used
to predict markers of B-cell differentiation. (B) MiDReG algorithm is used to
predict markers of bladder cancer differentiation. (C) MiDReG algorithm is
used to predict markers of colorectal cancer differentiation.

(14.6%) genes could have a B-cell function based on their expres-
sion in the B cell and reported other hematopoietic functions.
A detailed analysis on mouse lineages using MiDReG revealed a
new earliest marker of B-cell differentiation Ly6D. This gene was
investigated in detail by Inlay et al. (2009). Overall, our results
on the B-cell differentiation suggested that MiDReG is a simple
but extremely powerful approach to discover novel markers of
progenitor cells.

BLADDER CANCER DIFFERENTIATION
Differentiation within cancer is a very controversial topic (Reya
et al., 2001). However, in bladder cancer it is established that there
are two different cell types identified by Keratin 5 and Keratin
20 (Chan et al., 2009). Keratin 5 marks immature cell types that
can differentiate to Keratin 20 positive cells (Chan et al., 2009).
MiDReG algorithm was used to identify an upstream marker Ker-
atin 14 (Volkmer et al., 2012). There is a significant Boolean
implication relationship between Keratin 5 and Keratin 20 “if
Keratin 5 high, then Keratin 20 low” that enabled the MiDReG

algorithm to predict upstream markers. In this case, we are inter-
ested in a marker X that goes down early compared to Keratin
5. Thus, it is expressed at the most immature state of the can-
cer cell. The candidate markers were chosen based on Boolean
implication “if X high, then Keratin 5 high” and “if X high, then
Keratin 20 low” (Figure 2B). Keratin 14 was one of the markers
that satisfied these two Boolean implication strongly. In addition,
Keratin 14 was a single prognostic marker in both gene and pro-
tein expression datasets. The prognostic power of Keratin 14 was
independent of currently established stage and grade. Therefore, a
simple immunohistochemical analysis can identify high risk blad-
der cancer patients. Since, clinicians decide whether to perform
cystectomy which is complete bladder removal based on stage and
grade, it is possible to incorporate Keratin 14 based risk stratifi-
cation into this important clinical decision endpoint. Clinicians
are currently developing risk-adapted clinical strategies based on
Keratin 14 for bladder cancer patients.

COLON CANCER DIFFERENTIATION
Many important markers in the differentiation of colon cancer
cells follow Boolean implication (Dalerba et al., 2011). For exam-
ple, there is a significant Boolean implication between Keratin
20 and CA1 “if CA1 high, then Keratin 20 high” (Figure 2C).
This relationship is particularly strong with no exception. There
are no tumors with CA1 high and KRT20 low. Even in a tumor
when CA1 positive cells are present they have to go through
a KRT20 positive precursor cell during differentiation. Accord-
ingly, CA1 positive cells are a subset of Keratin 20 positive cells in
both normal colon and colorectal cancer tissues. In addition, Ker-
atin 20 negative patients have worse outcome compared to CA1
positive and Keratin 20 positive cancer patients. Other markers
such as MS4A12, CD177, and SLC26A3 follow similar Boolean
implication relationships.

STRENGTHS AND LIMITATIONS
In this review we show that Boolean implication can be used to
identify markers of differentiation in both normal and cancer tis-
sues. The strength of Boolean implication is its ability to identify
asymmetric gene expression relationships. In contrast, most other
approaches focus on using symmetric gene expression relationship
to build gene expression network. We have shown that some of the
gene expression patterns in differentiation can be modeled using
asymmetric Boolean implication. Therefore, it would be useful for
predicting important genes involved in the process of differentia-
tion. In addition, markers of differentiation are most likely robust
prognostic biomarkers in cancer patients. Using these markers,
clinicians may be able to develop better risk-adapted treatment
decisions for cancer patients. The limitation of Boolean implica-
tion is that it requires large number of samples. Also, it might
miss many other important genes that are involved in differentia-
tion but do not have significant Boolean implication. Accordingly,
Boolean implication is a very stringent criterion. Therefore, it pulls
out many important genes and appears to be less noisy compared
to traditional approaches.

An important distinction between Boolean implication analy-
ses compared to other traditional network-based analyses is that
most of these other analyses are focused on identifying gene
regulatory networks or signal transduction pathways. Boolean
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implication has not been utilized to identify gene regulatory net-
works or signaling networks which contains simple feed-back and
feed-forward structure. Instead, it was used to identify cell type or
tissue specific gene expression patterns and they are interpreted
in terms of development and differentiation. This is very differ-
ent from Bayesian or mutual information based networks that
primarily identify transcription factors and their targets (Segal
et al., 2003; Basso et al., 2005; Margolin et al., 2006; Lee et al.,
2009). Similarly, Boolean implication analyses are also different
from traditional Boolean networks that are used to build a func-
tional executable model or a circuit model (Glass and Kauffman,
1973; Shmulevich and Kauffman, 2004). There are also networks
based on ODE models which describes mechanistic biochemi-
cal interactions (Ferrell et al., 2011). Both the Boolean and ODE
based approaches described above models non-linear dynami-
cal systems (Glass and Kauffman, 1973; Shmulevich and Kauff-
man, 2004; Ferrell et al., 2011). In contrast, Boolean implication
analyses models static invariant relationships in a large biological
dataset.

In summary, Boolean implication is an empirically observed
relationship in the data, which may not hold for data gathered
for different tissue types or under different conditions. Like cor-
relation networks, Boolean implication networks do not capture

causality. Boolean implication captures both symmetric as well
as asymmetric relationships. It provides a powerful platform for
discovery of novel markers of differentiation in both normal and
cancer tissues.
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