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Temperature has profound effects on a
wide range of parameters of neural activ-
ity at various scales (Hodgkin and Katz,
1949). At the cell level, ionic currents,
membrane potential, input resistance,
action potential amplitude, duration and
propagation, and synaptic transmission
have all been shown to be affected
by temperature variations (Hodgkin and
Katz, 1949; Kullmann and Asztely, 1998;
Volgushev et al., 2000a,b; Fujii et al.,
2002). At mesoscopic scales of neural
activity, temperature changes can steer
network activity toward different func-
tional regimes (Reig et al., 2010), affect-
ing the duration, frequency and firing rate
of activated states during slow frequency
oscillations, and the ability to end these
states (Compte et al., 2003). Temperature
also has a substantial effect on chem-
ical reaction rates (Swan, 1974), and
affects the blood oxygen saturation level
by changing haemoglobin affinity for oxy-
gen (Guyton, 1987). Furthermore, cool-
ing reduces metabolic processes (Esmann
and Skou, 1988), and has been used to
silence cortical areas to study their func-
tion (Uyeda and Fuster, 1967).

While from single cell to mesoscopic
levels temperature can directly be mea-
sured, at the system level of non-invasive
studies using electroencephalogram or
functional magnetic resonance, it can
only be estimated indirectly, using the
temperature dependence of the magnetic
resonance signal’s frequency (Hindman,
1966; Parker et al., 1983; Kuroda et al.,
1996). Furthermore, a theoretical model
of brain temperature (Yablonskiy et al.,
2000; Sukstankii and Yablonskiy, 2006)
allows inferring from functional magnetic
resonance data that functional stimulation

can induce local brain temperature
fluctuations of up to ±1◦C with respect
to resting temperature, by locally chang-
ing the balance between metabolic heat
production and heat removal by blood
flow.

The potential impact of tempera-
ture modulations on functional brain
activity is significant. Given a tempera-
ture effect on blood oxygen saturation
levels of several percent/1◦C (Guyton,
1987), and an estimated average brain
van’t Hoff temperature coefficient Q10

(the factor by which a reaction rate
increases for 10◦C increases) of 2,3 (Swan,
1974), the observed temperature fluc-
tuations may lead to sizeable changes
in blood oxygen saturation levels and
to >2% variations in chemical reaction
rates.

Here we propose a way to directly quan-
tify temperature from system-level brain
recordings, and show how it can be used to
characterize neural activity associated with
cognitive function.

TEMPERATURE AS A BRIDGE FROM
RESTING TO TASK-RELATED BRAIN
ACTIVITY
Temperature is a physical quantity that
measures the mean kinetic energy of mat-
ter’s particles motion. Its role is to control
the energy transfer between the system and
other ones to which it is thermally cou-
pled. Temperature is an intensive property,
i.e., it is shared by all the system’s con-
stituents, and independent of system size.
Together with potential and other types of
particle energy, it contributes to the total
internal energy within a substance.

Temperature is defined as the inverse of
the entropy variation �S with respect to a

variation of the energy �E, at fixed volume

− 1

T
= ∂S

∂E
|
V,N

(1)

The inverse temperature β = 1/T is, in
essence, the cost, in entropy, of buying
energy from the rest of the world (Sethna,
2006). At low temperatures, the system has
few excited states and is relatively ordered;
energy changes �E lead to large variations
in the number of excited states, quanti-
fied by �S. High temperature corresponds
to low sensitivity of entropy to variations
in energy: the system is excited and disor-
dered (Sornette, 2004).

A bona fide temperature ought to reflect
heat flows and thermalization, i.e., how
fluctuations relax to states in which the
values of macroscopic quantities are sta-
tionary, universal with respect to dif-
fering initial conditions, and predictable
(Cugliandolo et al., 1997a).

The notion of temperature is inti-
mately related to that of equilibrium.
Operationally, equilibrium is defined by
the zeroth law of thermodynamics, which
states that if two systems are in thermal
equilibrium with a third one, they must
be in thermal equilibrium with each other.
The zeroth law allows using thermal equi-
librium as an equivalence relationship on
the set of thermally equilibrated systems,
inducing a partition into subsets in mutual
equilibrium. Temperature maps these sub-
sets onto real numbers, with ordering and
continuity properties.

Thermometers can be used to estab-
lish whether two systems will remain
in thermal equilibrium when brought in
contact. Thus, provided an appropriate
thermometer can be devised, temperature
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can be used as a macroscopic collective
variable describing the system, through
which value its different subparts can be
sorted.

THERMOMETERS AND THE
FLUCTUATION–DISSIPATION THEOREM
A thermometer is a device, e.g. an oscil-
lator, which when coupled to a given
observable X, feels both its fluctuations
in the absence of perturbations, measured
by the two-time autocorrelation function
CX

(
t, t′

) = 〈
X (t) X

(
t′
)〉

, and the result
of its own action on the system, propor-
tional to the response function RX

(
t − t′

)
,

i.e., how X responds at time t to a small
perturbation at time t′ (Kurchan, 2005).

For a system at equilibrium, these
two opposing effects give the correct
energy, i.e., the one predicted by equipar-
tition theorem, for every thermometer
and observable, only if correlations and
responses associated with any observable
are proportional

T =
∂CX

(
t, t

′)
/∂t

RX
(
t − t ′) = CX

(
t, t′

)
/χ

(
t, t′

)

(2)
where χ

(
t, t′

) = ∫ t
t′ RX (t, τ)dτ is the

integrated response.
The fluctuation–dissipation theorem

(FDT) ensures that, for a system at equilib-
rium, the temperature T of the bath with
which the system is in equilibrium is the
ratio between the response to an external
field conjugate to some observable and the
corresponding autocorrelation function in
the unperturbed system (Kubo, 1966).

In terms of brain activity, the FDT
would say that stimulus-evoked brain
responses can be understood through
a suitable observation of the correla-
tion of brain fluctuations at rest (Papo,
2013). Temperature represents a quanti-
tative relationship between generic prop-
erties of ongoing brain activity and
neural activity associated with cognitive
function.

If the observable is the local signal
energy, as is typically the case in functional
imaging or electrophysiological studies,
T quantifies the relation between energy
fluctuations and the heat capacity CV :

T2 ∝ 〈E − 〈E〉〉2

CV
(3)

Insofar as CV measures the number
of states accessible per temperature unit
(DeDeo and Krakauer, 2012), tempera-
ture regulates the rate at which the system
makes microstates available as a function
of fluctuations in energy levels, consistent
with Equation (1).

Fluctuation–dissipation far from equilibrium
Brain fluctuations generically show prop-
erties typical of non-equilibrium systems.
The relaxation time is considerably slower
than exponential (Linkenkaer-Hansen
et al., 2001; Buiatti et al., 2007; Ciuciu
et al., 2012; Zilber et al., 2012). Brain
activity is weakly non-ergodic (Bianco
et al., 2007), i.e., all possible states remain
accessible, but some require exceedingly
long times to visit (Bouchaud, 1992), and
undergoes aging (Barkai, 2003), i.e., con-
trary to equilibrium fluctuations, which
are time homogeneous and for which both
the correlation C and the response func-
tion R depend on τ = t − tw elapsed from
the instant tw at which a field is applied,
these quantities separately depend on both
tw and t. Preliminary evidence suggests
that brain fluctuations undergo a form
of aging termed renewal aging (Bianco
et al., 2007), the possible etiologies and
phenomenologies of which are discussed
in Godrèche and Luck (2001); Allegrini
et al. (2003); Barkai (2003); West et al.
(2008); Burov et al. (2010); Barkai et al.
(2012); Lomholt et al. (2013); Schulz et al.
(2013) and references therein. The impor-
tance of these studies for neuroscience
is huge, not least because aging is eval-
uated for single realizations (rather than
for group averages) and this is particularly
important in a field where repetitions of
the same experiment encounter intrinsic
difficulties.

In the presence of complex fluctuations,
the FDT does not hold in its classical form
(Kubo, 1966), and an appropriate gener-
alization needs to be found. Generalized
FDTs have been proposed for aging fluctu-
ations of various kinds (Cugliandolo et al.,
1997b; Crisanti and Ritort, 2003; Pottier
and Mauger, 2004), including renewal
aging (Allegrini et al., 2007; Aquino et al.,
2007).

Out of equilibrium, the equilibrium
temperature T no longer completely char-
acterizes probability distributions for the
system’s degrees of freedom, so that,

for instance, the particles’ velocity and
position distributions are no longer spec-
ified. Fast fluctuations thermalize to the
bath temperature T but slow modes do
not, and the direction of heat flows is char-
acterized by an effective temperature Teff >

T (Kurchan, 2000). Teff is, in essence, what
a thermometer responding on the time
scale at which the system slowly reverts to
equilibrium would measure (Cugliandolo
et al., 1997a). For an aging system, a gen-
eralized FDT can be written as:

T

X (t, tw)
= ∂C (t, tw)/∂t

R (t, tw)
(4)

where X (t, tw) is the fluctuation-
dissipation ratio (FDR), and the ordinary
FDT is recovered for X= 1 (Cugliandolo
et al., 1997b). The time-dependent effec-
tive temperature Teff (t, tw) ∝ T/X (t, tw)

allows quantifying the distance to equilib-
rium, and the extent to which the FDT is
violated, at a given scale of activity.

As the system ages, the number of
dynamically accessible configurational
states diminishes (Angell et al., 2000)
and the corresponding Teff is higher than
the equilibrium temperature T, whereas
external stimuli, force the system out of
equilibrium, rejuvenating it (Dupuis et al.,
1999; Linkenkaer-Hansen et al., 2004). Teff

counts the number of metastable states of
the system in the same way as T reflects
the number of microstates at equilibrium
(Martinez and Angell, 2001).

Multi-thermalization and dynamic
heterogeneity
In an equilibrium system, any thermome-
ter coupled to a part of the system reads
the same temperature (Kurchan, 2005). In
out-of-equilibrium systems, thermaliza-
tion happens at widely different timescales
simultaneously, within the same region
of space. Correspondingly, the brain
responds with avalanches spanning a
broad range of scales when driven by
changing external fields (Lundstrom et al.,
2008).

Each timescale may be associated
with its own FDR, containing information
on the process relaxation, and Teff (Jack
et al., 2006). A system can be at equi-
librium on one scale and out of equi-
librium on another, or may even be
in equilibrium but show scale-dependent
properties (Cugliandolo et al., 1997b;
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Crisanti and Ritort, 2003). Measuring Teff

at various scales allows understanding
the relationship between spontaneous and
stimulus-induced brain activity at each
scale, and the extent to which each scale
of brain activity deviates from equilibrium
conditions, produces entropy etc.

Furthermore, at any given time,
different regions in the brain relax at dif-
ferent rates. Teff can be used to estimate
the degree of dynamical heterogeneity, i.e.,
of spatiotemporal fluctuations in the local
dynamical behavior. This can be done
by calculating the dynamic susceptibil-
ity χT (t) = ∂ 〈C (t)〉/∂T (Berthier et al.,
2005).

EVALUATING TEMPERATURE
Functionally induced brain temperature
changes and the associated spatio-
temporal scales can be estimated using
the model of brain temperature proposed
in Yablonskiy et al. (2000); Sukstankii and
Yablonskiy (2006).

For brain activity at rest, the local steady
state temperature T0 can be estimated by

T0 = Tarterial +
(�H0 − �Hb

)

ρB · CB
· rCMRO2

rCBF
(5)

where Tarterial is arterial inflow temper-
ature, �H0 the enthalpy generated by
the reaction between oxygen and glucose,
�Hb the energy used to release oxygen
from haemoglobin, ρB the blood heat den-
sity, CB the blood heat capacity, rCMRO2

the regional oxygen metabolic rate, and
rCBF the regional cerebral blood flow
(Yablonskiy et al., 2000).

Functional activity changes the
oxygen extraction fraction OEF =
rCMRO2/rCBF. Since typically
rCBF > rCMRO2, T the model pre-
dicts that local changes in temperature
and in rCBF always have opposite sign
(Sukstankii and Yablonskiy, 2006).

The model estimates in the order of a
few millimeters the characteristic length �
of regions where temperature changes can
be observed (Sukstankii and Yablonskiy,
2006).

Changes in global CBF induce a tem-
perature dynamics with a relaxation time
tT = Ctissue/(rCBF · ρB · CB) . Estimates of
tT ∼40–60 s (Sukstankii and Yablonskiy,
2006) indicate that for t < tT , below the
vascular response scale, measurements are

out of equilibrium, T is not well defined,
and Teff should be estimated.

Importantly, the model provides quan-
titative indications on steady state tem-
perature modulations, and the precision
with which these can be evaluated, but says
little on the fluctuations that these may
undergo.

EFFECTIVE TEMPERATURE IN REAL
DATA
Teff can be estimated empirically (Martin
et al., 2001; Buisson et al., 2003; Hérisson
and Ocio, 2004; Mizuno et al., 2007)
using standard non-invasive recordings
such as electroencephalography or func-
tional brain imaging, respectively plot-
ting the local electrical or BOLD signal

amplitude χ
(

t, t
′)

against CX
(
t, t′

)
, and

regarding brain stimulation and more gen-
erally cognitive demands can be thought of
as fields pushing brain activity away from
equilibrium, so that the FDT no longer
holds. For instance, χ may be elicited by
trains of stimuli of measurable frequency
distribution (Bianco et al., 2007).

For equilibrium systems, this would
yield a straight line with slope −1/T. Out-
of-equilibrium systems typically have a
more complex, system-dependent χ − CX

relationship. For instance, multiscaling
and aging lead to a non-linear χ − CX plot
(Crisanti and Ritort, 2003), and a corre-
sponding spectrum of slopes.

The Teff (t, tw) dependence on t and
tw helps determining aging properties and
FDT violations (Hérisson and Ocio, 2004).
The former can be studied by monitor-
ing the time evolution of C (t, tw) vs.
(t, tw + τ), and by following the evolu-
tion of the linear response to a pertur-
bation applied at tw. Deviations from the
FDT can be estimated by plotting χ (t, tw)

against the correlation for fixed tw, vary-
ing t between tw and infinity (Cugliandolo,
2011).

The estimated Teff can then be used
to quantify the whole system’s dynamical
heterogeneity by evaluating χT (t) with an
appropriate ansatz (Berthier et al., 2005).

Depending on the recording technique,
Teff could be estimated with a temporal
precision ranging from the order of the
temporal window within which correla-
tions and responses are evaluated, up to
tT , in the tens of seconds range (Sukstankii
and Yablonskiy, 2006), and a spatial one

at least of the order of the characteristic
length �, of several millimeters (Parker
et al., 1983).

CONCLUSIONS
We proposed a method to measure
brain temperature from any kind of
non-invasive recording, which takes into
account the non-equilibrium, multiscale
nature of brain activity.

Effective temperature can identify, at
various spatial and temporal scales the
non-equilibrium regime at which the
brain is working.

Temperature can be treated not only
as an order parameter i.e., as a collec-
tive variable describing brain activity, but
also as a control parameter, steering it to
various regimes. Intuitively, cognitive pro-
cesses such as learning or reasoning may be
characterized as thermally-guided searches
within and modifications of a complex
landscape (Sherrington, 1997, 2010).

One could observe how temperature
varies during the execution of a cogni-
tive task, and then how phase transitions
may occur, using temperature as a con-
trol parameter and some other property of
neural activity as the order parameter.

More generally, assessing temperature
and thermal history enables both a dynam-
ical characterization of brain activity and
a complete reconstruction of its ther-
modynamics, affording neuroscientists a
description of the object of their investiga-
tions with a sound physical basis.
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