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To perform parametric identification of mathematical models of biological events,
experimental data are rare to be sufficient to estimate target behaviors produced by
complex non-linear systems. We performed parameter fitting to a cell cycle model with
experimental data as an in silico experiment. We calibrated model parameters with the
generalized least squares method with randomized initial values and checked local and
global sensitivity of the model. Sensitivity analyses showed that parameter optimization
induced less sensitivity except for those related to the metabolism of the transcription
factors c-Myc and E2F, which are required to overcome a restriction point (R-point). We
performed bifurcation analyses with the optimized parameters and found the bimodality
was lost. This result suggests that accumulation of c-Myc and E2F induced dysfunction of
R-point. We performed a second parameter optimization based on the results of sensitivity
analyses and incorporating additional derived from recent in vivo data. This optimization
returned the bimodal characteristics of the model with a narrower range of hysteresis than
the original. This result suggests that the optimized model can more easily go through
R-point and come back to the gap phase after once having overcome it. Two parameter
space analyses showed metabolism of c-Myc is transformed as it can allow cell bimodal
behavior with weak stimuli of growth factors. This result is compatible with the character
of the cell line used in our experiments. At the same time, Rb, an inhibitor of E2F, can allow
cell bimodal behavior with only a limited range of stimuli when it is activated, but with a
wider range of stimuli when it is inactive. These results provide two insights; biologically,
the two transcription factors play an essential role in malignant cells to overcome R-point
with weaker growth factor stimuli, and theoretically, sparse time-course data can be used
to change a model to a biologically expected state.
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INTRODUCTION
Parametric identification is a significant process of model build-
ing. The identification problem concerns the possibility of draw-
ing inferences from observed samples to an underlying theoretical
structure. The basic results for linear simultaneous equation sys-
tems under linear parameter constraints were found in 1950, and
extensions to non-linear systems and non-linear constraints were
made by Fisher (1961) and others.

There exist some steps of parametric identification: (1) check-
ing structural identifiability, to clarify practical difficulties such as
multimodality and lack of practical identifiability; (2) analysing
sensitivity and ranking parameters; (3) model calibration includ-
ing problem formulation, numerical solution, and global opti-
mization methods of parameters; and based on this knowledge,
performing (4) optimal experimental design.

These processes are performed to explain observed biologi-
cal phenomena, or to fill gaps between the molecular level and
larger patterns. Meanwhile, we may identify the key mechanisms
of a system in a model, which can allow us to predict missing

components, concepts, or unobserved phenomena, and serve as
a guide for further experiments.

During each division cycle, cells need to duplicate their
genomes and distribute the two copies equally to the two daugh-
ter cells. The processes of DNA-duplication (S-phase) and cell
division (mitosis) are separated by two gap phases (G1 and
G2). During these phases, several mechanisms operate to pre-
vent cells from continuing the cell cycle under inappropriate
conditions. Normal cells can interrupt the cell cycle in the gap
phases through growth inhibitory mechanisms that activate the
retinoblastoma proteins (Rb) or p53 transcription factors. In can-
cer cells, these growth inhibitory pathways are often disrupted,
leading to unscheduled proliferation (Hanahan and Weinberg,
2000).

We used Yao’s 2008 model (Yao et al., 2008), which is con-
sistent with experimental data exhibiting bimodality. The model
represents the underlying mechanisms of a restriction point (R-
point), which is the critical event for a mammalian cell to commit
to proliferation independently from extracellular growth stimuli.
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Normal cells respond to extracellular growth factors. Their
absence arrests the cell cycle in the G1 phase. However, growth
factors are required only until a few hours prior to the initiation of
S-phase. This moment in G1 was first described in 1974 by Pardee
(1974) and is named the R-point. It was clarified later that cells
that pass the R-point can progress to S-phase independently of
mitogens (Sherr and Roberts, 2004). Importantly, Pardee found
that the R-point was defective in cancer cell lines. In addition,
cancer cells were much more resistant to the inhibition of pro-
tein synthesis, which is supposed to be required for the R-point,
suggesting that the required R-point factors are either stabilized
in cancer cells or not necessary to progress the cell cycle (Campisi
et al., 1982). An example of their findings is when the Rb pro-
tein has its activity inhibited, and the machinery of the R-point is
disrupted and the cell lines are transformed into malignant lines.

This model correctly reconstructs the most fundamental
behavior of the molecular network system of the mammalian cell
cycle, such as bimodality, by its structure. The molecular mech-
anism, which this model represents, is also significant to control
the switching among different physiological cellular states: from
normal cell proliferation to malignant, or differentiation and cell
death. These switching mechanisms between normal prolifera-
tion and other states are the key to tumourigenesis, the variation
in leukocyte production, and so on. The missing property of
this model is that it has never been fitted to a time-course data
of molecules. There exist other models that represent cell cycle
mechanisms; however, many of them have not yet been tested
with high resolution experimental data to follow the dynamics of
the system. This is a difficulty when using mathematical models,
even if they have good potential to predict important insights.

The model calibration problem consists of finding a model to
minimize the distance among model predictions and the experi-
mental data. There exist several strategies for model calibration.
One is the maximum likelihood. In this analysis, a probabilistic
distribution in the noise is considered but without considering
any uncertainty in the parameters. Another is Bayesian estima-
tion, which introduces information about a prior probabilistic
distribution of the parameters and noise.

We applied generalized least squares for our parameter opti-
mization, which requires almost no prior information (Balsa-
Canto et al., 2008). Prior to and after optimization, we performed
both local sensitivity analysis (LSA) and global sensitivity analy-
sis (GSA) (Rodriguez-Fernandez and Banga, 2010). LSA is usually
performed to measure how sensitive the model is to small changes
in the original parameter values that are first given. On the other
hand, GSA is performed to measure how sensitive the model is
to changes in the parameters over the full range of plausible val-
ues. The objective of performing the sensitivity analyses was to
rank the parameters in order of importance for observation, then
use the rank to assist in fixing parameters to improve practical
identifiability.

In order to find necessary additional information through
experiments, analysing the parameter sensitivity and checking
the global ranking and identifiability are needed (Balsa-Canto
and Banga, 2011). We used these results to design several rounds
of parameter optimization. The objective of the ranking was to
assess the importance of individual parameters. Several criteria

have been suggested to locally rank parameters (Balsa-Canto and
Banga, 2011). Relative local parametric sensitivities are computed
for a number of nIhs samples using the Latin Hypercube Sampling
approach within parameter bounds to generalize it to a global
rank (Balsa-Canto and Banga, 2011).

We performed bifurcation analysis to understand how the
parameter calibration affected the behavior of the model
(Ermentrout, 2002). Many numerical models, when applied to
real biological systems, involve non-linearities that make possi-
ble the model’s chaotic behavior and oscillation. At the same
time, many models are difficult to solve analytically because of
their complex structure. Numerical solutions have an advantage
in such cases in that they can be used to perform further anal-
yses with those models. The cell cycle model we chose shows
oscillation as one of the characteristics of this model. Bifurcation
analysis allowed us to test how the characteristics of the systems
depend on the parameters. Two-parameter curves show us a range
of parameters that may produce multiple states.

Here, we describe all the above investigation results and dis-
cuss the potential of parameter fitting to a sparse dataset to
improve model behavior when representing physiological condi-
tions. Finally, we discuss how to make further improvements with
additional experiments and simulations.

METHODOLOGY
MODEL AND DATA
The model we used for our analyses was originally published
by Yao et al. (2008) and was analyzed following the procedures
listed below. A diagram of the reconstructed model is shown
in Figure 1, and the differential equation set is shown in the
Appendix. The experimental data, which we used for the param-
eter fitting, were produced as described in the Experimental
Methods.

MODEL RECONSTRUCTION
We reproduced Yao’s 2008 Model with Cell Designer (Funahashi
et al., 2008). The Yao 2008 model is in Biomodels.net
(Chelliah et al., 2013) (no.318). We imported the Systems
Biology Markup Language (SBML) (Hucka et al., 2004) file
(BIOMD0000000318.xml) to CellDesigner, and then recreated
it as a reaction network. All the kinetic laws, parameters, and
annotations (RDF) from biomodels.net were kept in the model.

We modified the reaction network so as to be close to that
described in Yao’s study (Yao et al., 2008). The model consists of
7 ODEs (Appendix), thus there are 7 species (proteins) in our
version of the reaction network (Figure 1). Nevertheless, there
are only 5 proteins in Yao’s network as shown in Yao’s Figure 1
(Yao et al., 2008). We assume that this happened because they had
omitted two of the reaction species in their figure to focus on the
activation-inhibition process of the network to simplify the dia-
gram; as a result, inactive proteins are not shown in their figure.
We included these inactive reaction species to rebuild their model
correctly.

In our reaction network, the above 5 proteins in Yao’s Figure 1
(Myc, E2F, Rb, CycD, and CycE) are shown as “Active” pro-
teins (which have dashed rectangles around the proteins), and
the other 2 “Inactive” proteins (phosphorylated Rb and Rb-E2F
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FIGURE 1 | Reconstructed diagram of Yao’s 2008 model (Yao et al.,

2008) in Cell Designer (Funahashi et al., 2008). Each square indicates
protein, and rectangles with dotted lines indicate activated forms of those
proteins. The whole the diagram is included inside a compartment, which
represents a cell, with double yellow lines. White circles with a crossing
line indicate a reactant source, and gray circles with a crossing line indicate
waste. All edges correspond to the fluxes from a reaction species to the
others.

complex) are required to express the original mathematical model
(to be 7 ODEs). Highlighted reactions (colored in green, red, and
black) in the model are mapped to the reactions in Yao’s original
figure. We confirmed that our modified model generates the same
simulation results as the original BIOMD0000000318.xml.

ANALYSIS METHODS
We used the Matlab toolbox Advanced Model Identification using
Global Optimization (AMIGO) (Balsa-Canto and Banga, 2011),
which includes options for local and global sensitivity analyses,
local and global ranking of parameters, parameter estimation, and
Fisher Information Matrix evaluation. XPPAUT (Ermentrout,
2002) was used for the basic simulation and bifurcation analysis
of the model. In the following sections, we briefly describe each
analysis.

Parameter optimization
We performed model calibration by generalized least squares
because the method does not require any prior information of
the model. The generalized least squares is described as:

J(θ) =
nε∑

ε = 1

nO
ε∑

O = 1

(yε, O(θ) − ymε,O)
T

Qε, O(yε, O(θ) − ymε,O)

where Q is the quadratic cost function. In our case, we used
“standard least squares” with constant variance. Briefly, this is
encoded as

inputs.PEsol.PEcost_type=“lsq”; % “lsq” (weighted least
squares default) |“llk” (log likelihood) |“user_PEcost”

inputs.PEsol.llk_type=“homo”; % to be defined for llk function,
“homo” |“homo_var” |“hetero”

where “lsq” indicates Weighted Least Squares Funtion. For the
cases where no information about the experimental error is avail-
able, “homo” is given homoscedastic noise with known constant
variance.

θ, which gives minimum J(θ), is the least square estimator. This
method can provide the best estimate for a linear model. Qε, O is
a non-negative definite symmetric weighting matrix. The weight-
ing coefficients ωε, O

SS = 1, . . . ,nε, O
S located in the diagonal of

the matrix are positive or zero and fixed a priori. Basically, if
ωS= 1, it means to assign the same level of importance to all data;
if ωs= 0, it means a datum is eliminated because it is deemed
not relevant; if ωS= max(ymε, O)2, the square of the maximum
experimental data for the observable O and the experiment ε

reduces the effect of having observations of different orders of
magnitude. We used objective value in order to estimate if the
parameter optimization improved fitting of the model to our
experimental data. It is also mentioned frequently as residual
standard error, and known if the value is exactly 0 then the model
fits the data perfectly.

Local Sensitivity Analysis (LSA)
Local (Relative) Sensitivity Analysis (LSA) was performed with
AMIGO for the case of (a), with original parameter settings of
Yao’s model, and (b), optimized parameters with our experimen-
tal data, to rank the parameters in order of importance for the
observable variables.

Rank parameters based on LSA
The parameters were ordered according to the value of Sε, O

p. We
used the R programming language to produce the graphs of LSA
results (R Development Core Team, 2008).

Global Sensitivity Analysis (GSA)
Global Sensitivity Analysis (GSA) was performed to measure how
sensitive the observables are to changes in the parameters over
the full range of plausible values: (a), with default values of Yao’s
original model, and (b), with optimized parameters based on
experiments. We assessed the importance of individual parame-
ters and also ranked parameters based on the results of GSA, the
criteria of which were originally suggested by Brun et al. (2001),
but were extended to the formula shown below by Balsa-Canto
et al. (Balsa-Canto and Banga, 2011). The result of parameter
ranking based on GSA is indicated by the order of decreas-
ing msqr, which is best suited to serve as a ranking criterion
(Balsa-Canto and Banga, 2011).

msqris defined as:

δmsqr
p = 1

nIhsnεnOnS

√√√√
nIhs∑

Ihs = 1

nε∑
ε=1

nO∑
O = 1

nS∑
S = 1

(Sε,O
p(tε,Op))

2

We used the R programming language to produce the graphs of
GSA results (R Development Core Team, 2008).
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Bifurcation analysis
We performed Bifurcation analysis of Yao’s model with (a) default
and (b) optimized parameters by XPPAUT. Bifurcation analysis
was based on the parametric dependence of dynamic systems
encoded as differential equations. This approach is called the
continuation method. Its name is derived from the fact that the
number and type of steady states can vary as a function of one or
more parameters. Typically, one starts with a stable steady state
and then varies a particular parameter in very small increments
and calculates the type of the steady state at the next point of
parameter space. The parameter we used here was the stimulus,
S. For the 2-dimentional bifurcations plots, we scanned S vs. the
number of other parameters. We let XPPAUT scan the region
around their default or their optimized values starting at a low sta-
ble steady state. We defined the range from 0.1 to 10 times their
starting values for each parameter to test, and between 0.0 and
1.5–2.5 for the stimulus, S.

EXPERIMENTAL METHODS
Cell culture and synchronization
3Y1 rat embryonic fibroblasts were cultured in 5% CO2 at
37◦C in Dulbecco’s modified Eagle’s medium (DMEM) supple-
mented with 10% fetal calf serum (FCS) (Hiroi et al., 2006).
Cell synchronization was performed by the thymidine double
block (Hiroi et al., 1999). Exponentially dividing cells were
incubated at 37±◦C for 18 h in medium containing 0.56 mM 20-
deoxythymidine. Then the cells were washed with fresh DMEM-
10% FCS without 20-deoxythymidine and then recultured for
15 h in drug-free medium. The cells were synchronized at the next
G1/S boundary by incubating them for a further 15 h in medium
containing 0.56 mM 20-deoxythymidine. After the removal of
the second thymidine-block, cells were harvested at the indicated
times and subjected to flow cytometry.

DNA flow cytometry
DNA content was determined by flow cytometry. 5 × 105 cells
were washed once in phosphate buffered saline (PBS) and fixed
in 70% ethanol for 30 min on ice. The cells were centrifuged
at 400 × g for 5 min, and the pellet was incubated at 37◦C for
20 min in 500 μl of PBS containing 0.1 mg/ml RNase A. The cells
were then pelletted and stained with 100 μl of 25 μg/ml propid-
ium iodide in PBS. Finally, the stained cells were suspended in
0.1% BSA/PBS and analyzed using a flow cytometer (Beckman-
Coulter). The data were acquired and analyzed by the provided
computer program (Beckman-Coulter, WinCycle). A sequence of
single-parameter DNA histograms was analyzed to determine the
proportions of cells in each phase.

Western blot detection
Western blot analysis was performed as described (Hiroi et al.,
2002). In preparation for western blotting, 5 × 105 cells were
lysed in 100 μl of radioimmunoprecipitation (RIPA) buffer
(150 mM NaCl, 1% NP-40, 0.1% sodium dodecyl sulfate (SDS),
50 mM Tris-HCl (pH 7.5), 0.1 mM Na-orthovanadate, 0.1 mM
NaF, 1 mM dithiothreitol (DTT), 1 mM phenylmethylsulfonyl
fluoride, 1 μg/ml pepstatin, 1 μg/ml leupeptin, and 1 μg/ml apro-
tinin). After a 10 min incubation on ice, lysed cells were cen-
trifuged at 20 000 × g for 10 min at 4◦C. After adjustment of

the protein concentration, the supernatants were used for western
blotting. The proteins or control peptide for each target protein
in SDS loading buffer (2% SDS, 10% glycerol, 60 mM Tris-
HCl, 100 mM DTT, and 0.001% bromophenol blue) were boiled
for 5 min, separated by SDS-polyacrylamide gel electrophore-
sis (16% polyacrylamide gels), and blotted onto Immobilon-PSQ

membranes (Merck Millipore, Billerica, MA). Sample transfer
was confirmed with gel staining (coomassie brilliant blue; CBB)
and a secondary-layered backup membrane. The filters were
blocked with 5% skim milk in Tris Buffered Saline with Tween-
20 (TBS-T) (150 mM NaCl, 20 mM Tris-HCl (pH 7.6), 0.1%
Tween-20) for 100 min and incubated with primary antibodies
(diluted 1:1000 to 1:2000 with 5% skim milk in TBS-T) for 1 h
at room temperature. The filters were then washed, incubated
for 1 h at room temperature with the secondary antibody (sheep
anti-mouse or donkey anti-rabbit) conjugated with horseradish
peroxidase (Amersham Biosciences, Piscataway, NJ), and washed
with TBS-T. Immunoblotted bands were detected by using the
ECL system (Amersham Biosciences, Piscataway, NJ) with the
same exposure time for all uses of a particular antibody.

RESULTS
MODEL CALIBRATION; THE FIRST ROUND OF PARAMETER FITTING TO
EXPERIMENTAL DATA
We performed model calibration with the generalized least
squares method using multi-start solver, which mimics Monte-
Carlo sampling of the initial parameter guesses.

For this study, we used the protein amount of cyclin D and
cyclin E at each phase in the cell cycle. Additionally, we used the
protein amount of total Rb (Supplemental Figure 1). The param-
eter fitting was performed for 12 parameters of 3 reaction species
(cyclin D, cyclin E, and total Rb in nuclei; equals the sum of hypo-
and hyper-phosphorylated Rb).

We chose part of the parameters for optimization because
(1) in Yao’s original paper, they indicated that a part of the model
parameters comes from experiments, so we decided to keep the
original values, and (2) the other 12 parameters were estimated
via numerical tests. We used these parameters for the fitting to
our experimental data. And (3), the aim of using only a part of
the parameters for fitting was to reduce error in the process of
parameter estimation.

The original parameter set is shown in Table 1, middle col-
umn, and the results of optimization of the parameter values are
shown in Table 1, right-most column. The time-course of each
molecule with the original (A) and new parameter sets after the
first round of parameter fitting (B) are shown in Figure 2. The
optimized parameter produced closer curves to experimental data
than the simulation results with the original parameter set. Now
we performed local and global sensitivity analyses to test if these
12 parameters changed the sensitivity of the model to estimate
how this parameter fitting affected the sensitivity of the model.

LOCAL SENSITIVITY ANALYSIS (LSA)
We performed LSA with published parameter values (Figure 3A,
blue line) and with the 1st set of optimized parameters
(Figure 3A, red line), and calculated the ratio between default and
optimized in order to visualize the changes in local sensitivity of
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Table 1 | The original and 1st sets after parameter optimization.

Parameter Original parameter 1st set of optimized

names values parameter values

dMC 0.70 −
dE 0.25 −
dCD 1.5 −
dCE 1.5 −
dR 0.06 −
dRE 0.03 −
kP1 18 −
kP2 18 −
kDP 3.6 −
KM 0.15 −
KCD 0.92 −
KRP 0.01 −
kRE 180 8.1647
kkE 0.4 19.977
kkM 1 0.081606
kCDS 0.45 4.9113
kR 0.18 0.013629
KS 0.50 0.53629
kkCE 0.35 1.1414
KE 0.15 19.996
KCE 0.92 18.890
dRP 0.06 0.0039885
kkCD 0.03 0.20762
kb 0.003 0.0000090144

A minus sign means the same value as the original.

parameters (Figure 3B). LSA was performed for all 24 parameters
in the model. The sensitivity analyses showed that the parame-
ter optimization of the time-course data induced less sensitivity
except for the parameters related to metabolism of transcription
factors c-Myc (dM, kM, and kkM) and E2F (dE).

GLOBAL SENSITIVITY ANALYSIS (GSA) OF OBSERVABLES
Next, we performed GSA with the original and optimized param-
eters. We compared the sensitivities of 12 identified parameters
and newly optimized parameters (Figure 4).

The result showed that the optimized parameters were less
sensitive, except for one parameter related to c-Myc activity.
These two kinds of parameter sensitivity analyses suggested a spe-
cific role for the transcription factors compared with the other
reaction species in the model, the cyclins.

Next, we performed bifurcation analyses with the original
parameter set and the 1st optimization parameter set to investi-
gate the effect of parameter fitting to the model behaviors.

FIRST BIFURCATION ANALYSIS
We performed bifurcation analyses to investigate how parame-
ter optimization using time-course data changed the dynamical
characteristics of the model. The result with the original parame-
ter set showed two bifurcation points, the so-called saddle nodes
where the stable and unstable (blue and red, respectively) meet
(Figure 5A). Bistability and hysteresis can be recognized in the
model behaviors. On the other hand, the 1st set of optimized
parameters showed transcritical bifurcation, i.e., a stable steady
state becomes unstable and vice versa (Figure 5B). This means

that the bimodality had been lost after the parameter opti-
mization. This result further suggests that the key molecules to
overcome the R-point, which are components of the model, seem
to accumulate in the cell, and theoretically, cells that can no
longer stop the accumulation by optimizing the parameter val-
ues convert to a malignant condition. Even if such conditions
could actually be induced in a malignant cell, the cell line we
used maintains contact inhibition and does not proliferate in an
anchorage-independent manner.

Next, we performed a second parameter optimization by
reconsidering the optimization target based on the results of our
own sensitivity analyses and knowledge about in vivo biochemical
reactions, and examined whether the newly optimized parameter
set would rescue the model bimodality.

New biochemical insights were found by Aoki et al. (2011),
where they showed that in the in vivo phosphorylation process,
a target molecule that has two possible phosphorylation residues
must have a different phosphorylation process than that in vitro.
Based on this knowledge, we selected the parameters kP1 and
kP2, which relate to Rb phosphorylation. At the same time, we
excluded 4 parameters (KCE, kkCD, kRE, and KS) because of
their low sensitivities in the results of both LSA and GSA. We
aimed by this exclusion to produce a parameter set that had less
sensitivity.

NEW ROUNDS OF PARAMETER OPTIMIZATION AND SENSITIVITY
ANALYSES
We included the results of sensitivity analyses and performed a
2nd parameter optimization. The optimized parameters are indi-
cated in Table 2, and the fitting results are shown in Figure 6. We
performed sensitivity analyses with these 2nd sets of optimization
parameters (Figure 7). Both LSA and GSA showed less sensitivity
in total than the 1st set of optimized parameters. We used this 2nd
set of optimized parameters for further bifurcation analyses.

SECOND BIFURCATION ANALYSIS
We performed a second bifurcation analysis with the newly opti-
mized set of parameters (Figure 8). The 2nd set of optimized
parameters showed bistability with a narrower range of hystere-
sis (Figure 8B). This result suggests that the sensitivity changed
less than the original, but the model behavior changed to be more
sensitive to the change of the extracellular stimulus level (S).

To investigate the bistable properties of the optimized model
in more detail, we performed a two-parameter space analysis
(Figures 8C–K). These results showed that the Rb and c-Myc
active-inactive state changes could happen with relatively small
amounts of extracellular stimuli (Figures 8C,E,I). These changes
may affect the behavior of the two key cyclins, cyclin D and
cyclin E. CyclinD is independent from the activity of E2F, and
cyclin E is dependent on the activity of E2F. Cyclin D is required
in an earlier stage of the cell cycle than cyclin E. Together, these
results suggest that by fitting the model to a malignant cell, the
model behaves such that cyclin D levels can easily accumulate
with a small amount of extracellular stimuli, but once cyclin E
starts to accumulate, there is no mechanism to stop the cell cycle.
This could mean that the R-point does not work properly in the
cell line we used.
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FIGURE 2 | Time-course of concentrations of proteins in the model. The
x-axis indicates the Time [min], the y-axis indicates the concentration of the
species [nM]. The upper left panel shows Cyclin D (line: simulation result,
cross: experimental result), upper right panel shows Cyclin E (line: simulation
result, cross: experimental result), lower panel shows phosphorylated (brown
line), dephosphorylated (green line) and their sum (black line) of simulation
data, with experimental result (black cross). The three species were fitted to

the experimental data. Simulation results were produced with the default set
(A) and the 1st set of optimized parameter values (B). Parameters chosen for
optimization were those, which have not been estimated experimentally, so
that the resulting simulation fits the qualitative behavior of the system. The
parameters are: “kRE,” “kkE,” “kkM,” “kCDS,” “kR,” “KS,” “kkCE,” “KE,”
“KCE,” “degRP,” “kkCD,” and “kb.” Optimized parameters are shown in
Table 1, right-most column. The objective value for the fit in (B) is 1.18.
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FIGURE 3 | Comparison of local parameter rank of the original

parameter set with the 1st set of optimized parameters. (A) The graph
shows the rdmsqr of the original and 1st set of 24 optimized parameters.
The blue line indicates the result of local sensitivity analysis with the
original parameter set, and the red line indicates the result with the
optimized parameter set. (B) Visualization of the changes in local

sensitivity with the original and the 1st set of optimized parameters for
the model. The ratio of each parameter sensitivity is indicated. The largest
changes happened with parameters related to Rb protein metabolism,
which is an inhibitor of the transcription factor E2F, or the metabolism of
the transcription factors themselves, c-Myc and E2F, except kCE (the
parameter relating to cyclin E concentration).

This raises the question as to why the model behaved more sen-
sitively after parameter optimization of the growth factor stim-
uli than in the original condition. Nevertheless, the parameters
were optimized into less sensitive conditions. We designed and
performed another parameter optimization to check if this alter-
nation of model behavior was correlated with the sensitivity.

BISTABILITY INDEPENDENT OF GLOBAL SENSITIVITY
We performed another parameter optimization in order to
address parameter sensitivity and whether the bimodality of this
model has causality. We optimized low sensitive parameters based
on the sensitivity analyses results of the original parameter set
(Supplemental Figure 3; dM, KM, kkM, dE, kRE, kR, dR, degRP,
dCE, KCE, kkCE, kkCD, kCDS, KS). Figure 9 shows the time-
course of 3 fitted species, and the optimized parameter values are
listed in Table 3. The third optimization process allowed to make
objective value smaller than the first round result (objective value
of the first round parameter fitting: 1.18; objective value of the

third round parameter fitting: 0.67). Even the fitting of siumu-
lated curves to the experimental data were improved, the results of
LSA indicated that we could not increase sensitivity at any param-
eter among the 24 (Figure 10A). On the other hand, GSA results
showed that some parameters are more sensitive compared to the
original parameters (3 parameters among 9 comparable param-
eters), and the 1st set of optimized parameters (7 parameters
among 8 parameters) (Figure 10B). We performed bifurcation
analyses with this parameter set; however, we did not see bista-
bility of this model with the third set of optimized parameters.
This result suggests that model bistability does not depend on the
global sensitivity of parameters.

DISCUSSION
We showed our results of model fitting to sparse time-course data.
Generally, even if the data can cover only some of the variables,
parameter optimization can change the model behavior to be dif-
ferent than the original. In our case, the original model indicated a
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FIGURE 4 | Comparison of global parameter rank of the original parameter set with the 1st optimized parameter set. The blue line indicates the result
of local sensitivity analysis with the original parameter set, and the red line indicates the result with the 1st optimized parameter set. (optimized → opmitized).

FIGURE 5 | The first bifurcation analyses with original parameter set (A) and optimized parameter set (B). The original parameter set produced
bimodality and showed a wide range of hysteresis. By optimizing parameters to a malignant cell condition, the model has lost bimodality (B).

healthy proliferating mechanism in that case R-point should work
strictly. On the other hand, cancer cells are believed not to have
proper R-point mechanisms; as a result, a cell can overcome the
R-point with a small amount of growth factors. Our results show
that at least some cancer cell-like properties can be produced
via parameter optimization to time-course data of malignant cell
lines (Figure 8).

We tested if the bistability of the model is correlated with
the sensitivity of the parameters, because we aimed to reduce
the parameter sensitivities by optimization to make the model
behavior robust against parameter changes; however, the range
of hysteresis had been reduced via parameter optimization, and
as a result, the bistability of the model became unstable with a
small change of extracellular stimuli (S, Figure 8). Our results
did not suggest that the bistability of this model is dependent on
the parameter sensitivity. Moreover, our results, which suggest the
significance of the transcription factors and different behaviors of
cyclin D and cyclin E, may indicate that the bistability of the cell

cycle machinery could depend more on the strict context of the
activation processes of these molecules.

The choices of the parameters for the second optimization
were based on the results and the hypothesis by Aoki et al.
(2011). Our idea is if we accept their hypothesis, the reason
why in vivo specific double phosphorylation process happens is
intracellular crowding. And it is independent from the specific
molecular binding such as anchorage protein for MAPK. Then,
the hypothesis should stand generally for in vivo double phos-
phorylation of single substrate. Therefore, we re-optimized the
parameters of double phosphorylation processes of Rb. On the
other hand, Rb protein has many other phosphorylation sites
(Rubin et al., 1998). More than 10 phosphorylation sites of this
protein had been counted. The parameter values may be differ-
ent for each reaction of phosphorylation. However, we possibly
estimate the difference would not affect to the critical behaviors
of the model, such as bistability, etc. Because we have assumed
that the multi-phosphorylation step of single substrate is a linear
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system, instead of a system, which shows switch-like, non-linear
behavior, based on the results of Aoki’s 2012 (Aoki et al., 2011).
In this case, we may contract these multiple reactions into shorter
steps as follows. When the first phosphorylation step shows lin-
ear process, and double phosphorylation also, and further, too,
these reaction schemes are characteristically the same with a
signal cascade which simply activates the next reaction species

Table 2 | Optimization results.

Parameter names 2nd optimization results of parameter values

kkE 7.9962E + 01

kkM 1.0234E + 00

kCDS 4.9260E + 00

kR 1.2490E − 02

kkCE 9.3132E − 01

KE 1.5554E + 02

degRP 3.8691E − 03

kb 1.3559E − 05

kP1 2.1629E + 01

kP2 4.4433E − 02

Newly optimized 1: normal bounds; newly optimized 2: the values are those

estimated with smaller bounds (increasingly enlarged where necessary) used

for estimation; newly optimized 3: “Km” included.

sequentially. We may describe this type of signal cascade with
the first species and the last species with single activation reac-
tion. Multiple-phosphorylation case is the same the sequentially
activating cascade if the systems is essentially linear. We may
describe the whole reaction process with the first site and the last
site, and it seems double-phosphorylation reaction. We cannot
eliminate the possibility that the reaction step includes actually
multi-phosphorylaitons over two, then the parameter value may
be multiplied into some other value. However, the change will
not make strong impact to the bistable behavior of the entire
model.

There could be another reason why the model property
changes via parameter optimization, which is a more specific
condition. One possible reason for the change of bifurcation
behavior and its consequences is the difference of cell synchro-
nization method of the fitting materials. By comparison with
Yao’s Supplemental Figure 2, however, the synchronization level
of our sample seems the same or better than that of their cells
(Supplemental Figure 1); therefore, this may not be the rea-
son for that weak bistability is produced. This means that we
may not simply conclude that the cellular synchronization con-
dition affected the behavior of the optimized model. On the other
hand, the timing of synchronization seems different between Yao’s
experimental data and ours, and this could affect the bistable
property. The cells we used showed quicker cell cycle than the
case of Yao’s experiments. This is consistent with the results

FIGURE 6 | Time-course of protein concentrations in the model. The x-axis
indicates the Time [min], the y-axis indicates the concentration of the species
[nM]. The upper left panel shows Cyclin D (line: simulation result, cross:
experimental result), upper right panel shows Cyclin E (line: simulation result,

cross: experimental result), lower panel shows phosphorylated (brown line),
dephosphorylated (green line) and their sum (black line) of simulation results,
with experimental result (black cross). The fitting to the experimental data was
repeated for the three species after the 1st set of parameter optimization.
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FIGURE 7 | The results of LSA (A,B), and GSA (C) with the 2nd set of optimized parameters. All the parameters show less sensitivity than the original or
the 1st set of optimized parameters.
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FIGURE 8 | Bifurcation analyses with the 2nd set of optimized parameters. (A,B) the results of bifurcation analysis with the original parameter set and the
2nd optimized set. (C–K) Two parameter space analyses. All x-axes indicate S values. The y-axis of each graph indicates (C) degRP.
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FIGURE 9 | Time-course of protein concentrations in the model. The
fitting to the experimental data was performed for the 3 species. The x-axis
indicates the Time [min], the y-axis indicates the concentration of the species
[nM]. The upper left panel shows Cyclin D (line: simulation result, cross:
experimental result), upper right panel shows Cyclin E (line: simulation result,

cross: experimental result), lower panel shows phosphorylated (brown line),
dephosphorylated (green line) and their sum (black line) of the simulation
results with experimental result (black cross). The objective value has
decreased for this estimation round and is equal 0.67, which is visible in the
improved fit of cyclin D.

Table 3 | Results of the third optimization.

Parameter names 3rd optimization results of parameter values

kRE 135.66

kCDS 4.9954

kR 0.015991

KS 2.8508

kkCE 1.6526

KCE 3.8474

kkCD 4.8351

KM 0.99638

kkM 0.017103

degM 0.01248

degE 0.18258

degR 0.071878

degCE 4.8474

degRP 0.005211

of bifurcation analyses, which showed the smaller jump and
hysteresis from a state to the other, which means overcoming cell
cycle checkpoint, in this case R-point, and moving to the next
phase, in the words of cell cycle. The loose restriction at R-point
could results short cycle of cellular proliferation.

We had found there exist three different types of parame-
ter conditions in the correlation with the model bistability; one

is the original (default) condition by Yao’s work. The condition
produces clear bistability. The second condition is the 2nd round
parameter set in this paper or the parameter set for Supplemental
Figure 4, which can produce narrow range of bistability. The last is
which produced the best fitting results to our time-course data of
Cyclin D (3rd round of this paper) or E (Supplemental Figure 5),
however the both of these parameter sets could not produce
bistability. Among our limited results, the following 4 parame-
ters showed straightforward trends as the condition to reproduce
bistability of the model. kRE contributes bistability when it takes
only the value 180 ∼ 194, both less or larger than it cannot pro-
duce bistability. As same as the case of kRE, kCDS can take less
value than 4.926, kkCE can take less value than 1.1414, KCE can
take less value than 1.0793 to reproduce bistability of the model.
These parameters affect almost all of the time course of molecular
concentration except c-Myc ([MC]). This may happen accord-
ing to the characteristics of our material cells, Rat fibroblast 3Y1.
This cell line does not express c-Myc before receiving the deple-
tion signal of growth factor in culturing medium (Tsuneoka et al.,
2003). We need to investigate both the theoretical properties of
the model and biological data to make them consistent with each
other.

These results indicate that even sparse and noisy experi-
mental data can be used to improve a mathematical model by
fitting to those data. In the case of Yao’s model and our exper-
iments, the parameter optimization allowed the model to adapt
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FIGURE 10 | LSA and GSA results of the third optimization of

parameters. (A) The results of LSA. There was no parameter that was more
sensitive than the original. (B) The results of GSA. KS, kkM, and kRE were
larger than the original parameter cases; and KS, KM, kkM, kRE, kCDS, kkCD,

and kCE were larger than the 1st set of optimized parameters. At the same
time, the following parameters were less sensitive than the original: kR,
kCDS, kkCE, kkCD, dRP, and KCE, or than the first set of optimized
parameters (dRP only).

to physiological (cancer cell) conditions, even though the exper-
imental data did not include enough information to identify the
whole the parameter set, but instead suggested one relevant set
of parameters to reduce the sensitivity against changes and to
maintain bistability.

When we need to identify the whole parameter set, we should
add more experimental data for other molecules, or perform
more optimization with a different set of initial conditions.
Partial evidence for the potential of changing initial conditions
was shown in our several rounds of parameter optimization
(Figures 2, 7, 9). We could produce better fitting to the exper-
imental data by performing several rounds of parameter opti-
mization; however, at the same time, the new parameter set
changed the model behavior fundamentally (Figures 5, 8), and

the possible causes may involve changes in the dynamics of
molecules that lack experimental evidence. This means that pro-
viding experimental data for those molecules which have not yet
provided experimental data for fitting would improve parameter
optimization.

In this study, we did not perform practical identifiability
analysis to consider if the model unknowns may be uniquely esti-
mated under given experimental conditions. The results from
practical identifiability may helpful to assess parameter esti-
mate reliability and to compare possible experimental designs.
Such analysis is especially important to improve experimental
design. To perform this analysis, we need to be careful with
noise. Fortunately, however, a lack of practical identifiability
is not critical for its solvability. Adequate global optimization
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solvers can be employed to deal with the presence of suboptimal
solutions.

In total, our results showed that optimizing parameters by
using experimental data is useful to get the model closer to
physiological conditions, even if experiments have not yet fully
shown the effect on the targeting system. At the same time,
we need enough resolution from experiments to provide good
identifiability for the model parameters.

In the future, we will perform Optimal Experimental Design
(OED) to determine a dynamic scheme of the measurements that
generates the richest information in order to estimate parameters
with greater precision. To provide measurements that maximize
the quantity and quality of the information provided by the
experiments while minimizing the experimental burden is the
desired goal to connect practical experimental information with
mathematical models of molecular mechanisms.
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APPENDIX
ODE EQUATIONS
The following is the full ODE system for the Yao 2008 model. S stands for the systems’ forcing function, in the form of the serum
concentrations, which here is a constant with values for the whole duration of the experiment/simulation of 0.5 and 3%.

d [MC]

dt
= kkM [S]

KS + [S]
− dMC [MC]

d[EF]
dt

= kkE [MC] [EF]
(KM + [MC])(KE + [EF])

+ kb
[MC]

KM + [MC] − dE [EF] − kRE [RB] [EF] + kP1 [CD] [RE]

KCD + [RE]
+ kP2 [CE] [RE]

KCE + [RE]

d[CD]
dt

= kkCD[MC]
KM + [MC] + kCD[S]

KS + [S] − dCD[CD]
d[CE]

dt
= kkCE[EF]

KE + [EF] − dCE[CE]
d[RB]

dt
= kR + kDP[RP]

KRP + [RP] − kRE [RB] [EF] − kP1 [CD] [RB]

KCD + [RB]
+ kP2 [CE] [RB]

KCE + [RB]
− dR[RB]

d[RP]
dt

= kP1 [CD] [RB]
KCD + [RB] + kP2 [CE] [RB]

KCE + [RB] − kDP [RP]

KRP + [RP]
+ kP1 [CD] [RE]

KCD + [RE]
+ kP2 [CE] [RE]

KCE + [RE]
− dRP[RP]

d[RE]
dt

= kRE [RB] [EF] − kP1 [CD] [RE]

KCD + [RE]
− kP2 [CE] [RE]

KCE + [RE]
− dRE[RE]
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