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The goal of multiscale modeling in biology is to use structurally based physico-chemical

models to integrate across temporal and spatial scales of biology and thereby

improve mechanistic understanding of, for example, how a single mutation can alter

organism-scale phenotypes. This approach may also inform therapeutic strategies or

identify candidate drug targets that might otherwise have been overlooked. However, in

many cases, it remains unclear how best to synthesize information obtained from various

scales and analysis approaches, such as atomistic molecular models, Markov state

models (MSM), subcellular network models, and whole cell models. In this paper, we use

protein kinase A (PKA) activation as a case study to explore how computational methods

that model different physical scales can complement each other and integrate into

an improved multiscale representation of the biological mechanisms. Using measured

crystal structures, we show how molecular dynamics (MD) simulations coupled with

atomic-scale MSMs can provide conformations for Brownian dynamics (BD) simulations

to feed transitional states and kinetic parameters into protein-scale MSMs. We discuss

how milestoning can give reaction probabilities and forward-rate constants of cAMP

association events by seamlessly integrating MD and BD simulation scales. These

rate constants coupled with MSMs provide a robust representation of the free energy

landscape, enabling access to kinetic, and thermodynamic parameters unavailable from

current experimental data. These approaches have helped to illuminate the cooperative

nature of PKA activation in response to distinct cAMP binding events. Collectively,

this approach exemplifies a general strategy for multiscale model development that is

applicable to a wide range of biological problems.

Keywords: protein kinase A, multiscale model, molecular dynamics, Brownian dynamics, Markov state model

Introduction

The goal of multiscale modeling is to understand how the hierarchy of biological structures
integrates to produce biochemical, cellular and physiological functions. At the single cell scale,
signaling networks are analyzed using system analysis methods to provide mechanistic they are

Abbreviations: PKA, Protein Kinase A; MD, Molecular Dynamics; MSM, Markov state model; BD, Brownian Dynamics.
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insights into the functional interactions between proteins and
second messengers. Network models of cell signaling have
recently been developed for neurons (Cowan et al., 2012),
myocytes (Bondarenko, 2014), and pancreatic beta cells (Wang
et al., 2012), to name a few. These cell-scale network models are
helpful to understanding normal cell physiology, pathobiology,
and therapeutic mechanisms. Interest in the phenomenological
effects of protein mutations (Kirchner et al., 2012; Cong
et al., 2013) are driving the development of new methods
to incorporate atomic and molecular-scale models and data
into whole cell simulations. To this end, advances in atomic-
scale modeling, particularly molecular dynamics (MD) and
Brownian dynamics (BD) simulations, have provided insights
into the effects of mutations on protein folding and protein-
protein interactions (Kozack and Subramaniam, 1993; Cregut
and Serrano, 1999; De Rienzo et al., 2001; Koukos and Glykos,
2014). However, bridging these scales and disciplines to create
models that can predict the effect of a point mutation or post-
translational modification on cellular phenotypes remains a
daunting task. Frequently, even nomenclature does not readily
transcend disciplines, making interdisciplinary collaborations
across scales more difficult. Furthermore, understanding the
limitations of models and methods at each scale to avoid error
propagation is essential to obtaining physiologically meaningful
solutions. In this article, we describe atomic and protein-scale
Markov state modeling (MSM), as well as milestoning, which
allow us to bridge atomic-scale molecular models to cell-scale
signaling networks (Figure 1).

Over the past decade, the availability of high-resolution
protein structures and the capabilities of atomistic molecular
modeling techniques has improved dramatically. MD and
atomic-scale MSMs use atomic-resolution structural data to
model the position of atoms in a protein and calculate the forces
between them. This is helpful in predicting functional states and
rates of conformational change. However, these methods cannot

FIGURE 1 | Bridging gaps through multiscale modeling. Simulation and

modeling methods are limited in the spatial and temporal scales that can be

represented. Arrows show the information that can be fed from one simulation

regime to another.

easily calculate the rates of interactions betweenmolecules, which
are needed for higher scale reaction network models.

Advances in BD simulations and milestoning have provided
tools that are specialized in calculating diffusion-limited
association rate constants. Previously, the data used for
parameterization of the transitions in protein-scale MSM came
almost exclusively from in vitro experiments where conditions
are controlled to limit the number of potential states. These
data included phosphorylation rates, kon/koff of binding events,
and ion channel transitions (Clancy and Rudy, 1999; Campbell
et al., 2010; Boras et al., 2014). However, many molecular
events occur at time-scales that cannot be easily accessed by
experiments (Zhou and Bates, 2013). Fortunately, computational
simulations have provided alternative methods for determining
parameters for whole-cell models. BD simulations rely on
simplifying assumptions that allow simulations of microscopic
events that span larger systems and timescales thanmore detailed
methods, such as MD, allow. BD can be used to determine
association rate constants (kon) for diffusion-limited protein-
protein and protein-small molecule interactions. It specifically
examines how electrostatic and steric properties of molecules
affect molecular encounter rates. Combining this information
with in vitro experiments and MD-derived states will enable
a new generation of protein-scale MSMs to be developed for
incorporation into whole cell models.

As an example problem necessitating the integration of
approaches across a broad range of spatial and temporal scales,
we focus here on protein kinase A (PKA), which is activated
by cAMP and is a key regulator of many cellular processes. In
cardiac myocytes, for example, PKA is a critical regulator of
intracellular calcium handling cycling, and its dysregulation is
well known to be a contributing factor in heart failure (Bers,
2001). The PKA holoenzyme consists of two regulatory (R)
subunits and two catalytic (C) subunits. Each R subunit has
two cAMP-binding domains (CBD), a DD-docking domain, and
a disordered linker region containing the inhibitory sequence
that interacts with the C subunit. PKA is activated upon cAMP
binding to the CBDs on the R subunit inducing release of the
C subunit. Over the last 15 years, several whole-cell models
of ventricular myocytes that incorporate calcium release and
beta-adrenergic stimulation through a simplified PKA activation
mechanismwere developed (Saucerman et al., 2003; Bondarenko,
2014). More recently, a mechanistic protein-scale MSM of PKA
holoenzyme activation was developed (Boras et al., 2014). Still,
incorporating an improved PKA MSM into existing whole
cell models will provide a more physiological testing of PKA
activation as well as the capability to predict the effects of PKA
mutations on the whole cell scale.

In this review, we highlight some of the tools and techniques
used to develop integrative models that span scales from
the molecule to the cell, including: MD, atomic MSM, BD,
milestoning models, protein MSM, and whole cell modeling. We
provide the nomenclature necessary to bridge these scales and
discuss the limitations of these approaches as well as ways to
minimize error propagation. Finally, we show the role of MD and
BD simulations have played in the development of a protein scale
MSM of PKA RIα and discuss the role this new protein-scale
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MSM of PKA will play in existing whole cell models of cardiac
function and disease states.

Nomenclature

This paper deals primarily with Markovian models, or models
that are only dependent on the current state of the model and not
the history of the states it has visited. Both MSM and milestoning
models operate under a Markovian assumption. Also, for this
paper we use “atomistic” or “atomic-scale” to describe any
model that treats atoms explicitly. This generally includes MD,
MSM, BD, and milestoning. These models stand in contrast to
“protein-scale” Markov models and cell-systems models which
primarily focus on protein and cell function and general protein-
protein and small molecule-protein binding events. Even though
atomistic MSM and protein MSM are both Markovian models,
they serve distinct purposes.

Accessing the Conformational Ensembles
of Proteins

A protein’s function is governed by its conformational ensemble,
which can be modulated though mutations and intermolecular
interactions (Tsai et al., 1999; Henzler-Wildman and Kern, 2007;
Boehr et al., 2009; Teilum et al., 2011; Marsh et al., 2012; Motlagh
et al., 2014). Therefore, to build multiscale models starting at
the atomic scale, one needs to elucidate the key conformational
states of a protein and the dynamics of those states from atomistic
data associated with those states. This can be achieved through
exploration and characterization of the protein’s conformational
ensemble. In this section, we review computational methods for
modeling the conformational ensembles of proteins important in
cell signaling. We begin with an overview of molecular dynamics
simulation methods and conclude with a discussion on the use of
MSM to determine the conformational ensemblemore efficiently.

Molecular Mechanics and Molecular Dynamics
Simulations
Atomistic models of conformational ensembles can be
computationally generated from molecular mechanics
simulations. These simulations require two components: a
force field that describes how the atoms interact with each
other and a method for exploring the conformational ensemble
(Karplus and McCammon, 2002; Adcock and McCammon,
2006).

To simplify the complex quantum mechanical interactions
between atoms, molecular mechanics simulations use empirical
force fields to describe the interactions between atoms. These
force fields are described in terms of classical mechanics (Wang
et al., 2001; Ponder and Case, 2003; Adcock and McCammon,
2006). For example, each atom of a system is described as
a charged particle in space. Bonding interactions between
atoms are described as springs using Hooke’s law. Nonbinding
interactions between atoms are described as Columbic and van
der Waals interactions. Commonly used force fields include
CHARMM (Brooks et al., 2009), AMBER (Cornell et al., 1995),

OPLS (Kaminski et al., 2001), and GROMOS (Oostenbrink et al.,
2004). While a discussion on force field selection is beyond
the scope of this review, it is important to understand the
assumptions and performance bias of a force field used in any
simulation (Guvench and Mackerell, 2008; Vitalini et al., 2015).

The motion of the atoms resulting from the force field
determines the conformational ensemble of the system. The
motions of these particles are generally simulated either with
Monte Carlo techniques that randomly sample conformational
space, or throughMD simulations, where Langevin’s or Newton’s
laws of motion are solved over time (Karplus and McCammon,
2002; Adcock and McCammon, 2006). While MD is more
computationally expensive than MC, it retains the temporal
relationship between conformations, which is advantageous
when quantification of kinetic parameters is desired. PopularMD
programs include AMBER (Pearlman et al., 1995), CHARMM
(Brooks et al., 2009), GROMOS (Christen et al., 2005), and
NAMD (Phillips et al., 2005).

Theoretically, MD simulations can sample the entire
conformational ensemble of a system given infinite simulation
time. While certain specialized supercomputers have been built
to sample into the millisecond range (Shaw et al., 2010), with
current commodity-level resources, MD simulations can only
continuously sample a system for a few microseconds at most,
which is insufficient to effectively sample most ensembles,
including the CBD. However, with the increasing performance of
supercomputers, GPU-accelerated MD simulations (Götz et al.,
2012; Pierce et al., 2012; Salomon-Ferrer et al., 2013), and the
use of highly distributed computing (Pande et al., 2003; Kohlhoff
et al., 2014), multiple parallel MD simulations can achieve
total non-continuous sampling time approaching the high-
microsecond to low-millisecond range. MSMs can subsequently
be used to stitch together the many short-timescale simulations
into one cohesive framework that allows the extrapolation of
longer-timescale data. This MSM framework was used for the
CBD system discussed below.

Atomic-scale Markov State Models of a
Conformational Ensemble
An atomic-scale MSM describes the conformational ensemble
of a protein as the probability of transitioning between discrete
collections of conformational states at a fixed time (Pande et al.,
2010; Chodera and Noé, 2014). This can be visualized as a
bidirectional graph, (see Figure 2), where each node represents
a cluster of similar conformations. The probability of transition
between states is indicated by the thickness of the connecting
lines in Figure 2. If the conformational states and the transitions
can be accurately determined, then the MSM describes the
thermodynamics and the kinetics of the system’s conformational
ensemble. Thus, one can derive the key parameters required for
higher scale models with a MSM (Prinz et al., 2011a).

Atomic-scale MSMs of the conformational ensemble of a
protein are built from MD simulations. Each conformation
sampled during the simulation is assigned to a discrete
conformational state, usually by clustering. Then the transitions
between the discrete states are determined from the MD
trajectory by counting the transitions. The transition counts
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FIGURE 2 | Protein Kinase A cyclic nucleotide binding domain Markov

state model. This figure shows a graph repensantion the transtions between

metastable states of the CBD with cAMP bound. Each node repesents the

conformational state. The edges the transition between the node with their

thickness being proportional to the probiblity of transtion.

are then used to generate a transition probability matrix, the
mathematical representation of the MSM (Pande et al., 2010;
Prinz et al., 2011a,b; Chodera and Noé, 2014). The transition
probability matrix can be analyzed to determine the equilibrium
population of each confrontational state, to identify metastable
conformational states, to understand the principal motions of
the protein, and to study the mechanisms of conformational will
change (Pande et al., 2010; Prinz et al., 2011a,b; Chodera andNoé,
2014).

Because a MSM depends on the probabilities of transitions
between discrete conformational states, the conformational
ensemble of the protein can be sampled more efficiently than
with traditional MD. To effectively sample the conformational
ensemble of a protein at equilibrium using traditional MD
simulations requires running the simulation long enough to
explore the conformational ensemble multiple times. However,
when building a MSM the MD simulations can be focused on
the transitions between states avoiding spending time sampling
stable conformations and improving the sampling of rare events.
For example, a hypothetical transition between active and
inactive states can be determined frommultiple short simulations
that explore the intervening conformations without requiring
a single simulation to bridge the two states. Additionally, once
a preliminary MSM is build poorly sampled transition can be
additionally sampled to improve the quality of overall MSM.

Detailed methods for building MSMs for MD simulations
have already been described (Sjoberg et al., 2010; Prinz et al.,
2011b). Here we highlight key considerations for building aMSM
that will be integrated with higher-scale models with examples
from a recently developed MSM of the cyclic-nucleotide binding
domain of the R subunit of PKA (Malmstrom et al., 2015). The
overall process of building a MSM is as follows: (1) defining the

conformational space; (2) initial molecular dynamics sampling;
(3) iterative refinement of the MSM; and finally (4) selection of
the final model for analysis.

The goal of our study was to determine the kinetics of
the conformational ensemble of the CBD with and without
cAMP bound. We defined the conformational space as the
atomic coordinates of the alpha carbons in a protein, dividing
the conformational states discrete into stats using RMSD-
based clustering. We started sampling the CBD in either a
crystallographic predetermined active or inactive state with and
without cAMP bound. Building the final MSMs required over
70µs of total sampling time comprised of both long-timescale
initial sampling and iterative adaptive sampling to refine the
models (Malmstrom et al., 2015).

Throughout the sampling and refinement process, the quality
of a MSM is judged using implied timescale plots (Pande et al.,
2010; Prinz et al., 2011b). Data points of the plot are constructed
with eigenvalues of the transition probability matrix populated at
different lag times, or times between events. The plots indicate
at what lag times the models are Markovian and if the models
are consistently capturing the principal conformational changes
of the system. Additionally, a Chapman-Kolmogorov-test is used
to validate the consistency of a MSM with molecular dynamics
simulations (Prinz et al., 2011b). Using these two metrics, a
final model is selected, the statistics of which are sampled at a
specific lag time, which represents the fastest transition within the
conformational ensemble that is alsoMarkovian. This finalmodel
can then be used to derive the parameters for the multiscale
model.

As described before, a MSM consists of the equilibrium
probabilities for each conformational state. These probabilities
are used to derive thermodynamic properties. Spectroscopic
analysis can be used to identify metastable states within the
conformational ensemble that can be used to build coarse-
grained models of the system (Prinz et al., 2011a; Malmstrom
et al., 2014). Transition path theory (Vanden-Eijnden and Tal,
2005) can be employed to approximate the kinetics of transitions
between states. These rates become the parameters to feed into
the multiscale model. For the CBD model we were able to obtain
the rates of transitions between the active and inactive states
and show how cAMP modulates the conformational ensemble,
changing the function of the CBD. These rates have been an
important benchmark in understanding the dynamics of the
CBD, and form the foundation for examining the total R subunit
and its interactions with the C subunit.

While the use of MSMs provides to conformational
ensembles, there are still several important considerations
and limitations to this method that should be considered in
context of integrating them into a multiscale model. First,
because conformational space is discretized, all kinetic rates are
artificially fast (Prinz et al., 2011a,b), and should be considered
an upper bound, especially when applied to high scale models.
Second, a recent study indicates that modern force fields used
in MD simulations produce varying transition kinetics (Vitalini
et al., 2015). Therefore, the same force field should be used for
all models of a system, and the limitations of the force fields
should be understood. Thirdly, while the MSM is somewhat
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robust to errors in clustering, give a sufficiently fine division of
conformational space (i.e., a lot of clusters) (Prinz et al., 2011b),
the MSM is still dependent on the starting conformation used to
initialize the simulations and the limitations of MD. Therefore, it
is possible to not have included important conformational states
leading to an incomplete model of the conformational landscape
and incorrect predictions. However, limitations can be overcome
using enhanced sampling methods (Bernardi et al., 2015) and
from understanding acquired in the large-scale models. Finally,
the MSMs are computationally demanding. This cost limits
their usefulness in multiscale models, as a significant amount
of time can be required to describe only one state in a higher
scale model. Other sampling methods may be sufficient to obtain
parameters for larger models. For example, if the opening and
closing of a flap on a protein is the only permutation of interest,
elastic network models are more computationally efficient in
estimating those rates than MSM.

Investigating Intermolecular Interactions

As we extend into larger spatial scales of modeling, the focus
of our discussion shifts from intramolecular investigations with
MD to the study of intermolecular encounters using BD. BD
simulations are used to estimate the rate constants of second-
order association events between two molecules. The output
of these simulations provides kinetic on-rates used directly in
higher levels of modeling. The application of BD simulations
has extended beyond bi-molecular encounters in simulations
of molecular crowding (McGuffee and Elcock, 2010) in cellular
environments. In this section, we discuss the methodology and
limitations of BD simulations, what can be gained from their use,
and a brief overview of their application to multiscale modeling.

Brownian Dynamics Simulations
In BD, molecular diffusion is modeled using the theory of
Brownian motion; where internal dynamics of each molecule are
frozen, constraining the molecules into rigid bodies that are free
to diffuse and tumble in solution, but may not change shape.
Popular programs used to carry out BD simulations include
BrownDye (Huber and McCammon, 2010), SDA (Gabdoulline
and Wade, 1997, 1998), ReaDDy (Geyer, 2011; Schöneberg and
Noé, 2013), Brownmove (Geyer, 2011), and BD_BOX (Dlugosz
et al., 2011). Similar to MD, one must choose a force field for
BD simulations of the molecular system: AMBER (Dickson et al.,
2014), CHARMM (Klauda et al., 2010), GROMOS (Oostenbrink
et al., 2004), etc. However, the only force field quantities utilized
in BD simulations are the partial charges and Van derWaals radii
of each of the atoms of the biomolecule. In conjunction, these
properties can be used to obtain the electrostatic potential from
software that can solve the Poisson–Boltzmann (PB) equation.
The electrostatic potentials of the biomolecules determine the
long-range forces that the molecules impose on each other. Thus,
electrostatics function as one of themost important determinants
of the outcomes of BD simulations. Popular software packages
that solve the PB equation include APBS (Baker et al., 2001;
Holst, 2001) and DelPhi (Honig and Nicholls, 1995; Rocchia
et al., 2002). Rigorous derivations and discussions of the form

and proper usage of the PB equation can be found in the literature
(Leach, 2001; Fogolari et al., 2002; Gu and Bourne, 2009).

In BD simulations, the solvent is modeled as a continuum;
that is, there are no water molecules or dissolved ions modeled
in atomic form in the simulation. Instead, the solvent is
modeled as a field that surrounds the biomolecules and can
have varying degrees of physical realism. This significantly
reduces the computational power necessary for BD simulations
in comparison to explicit solvent MD. The user typically specifies
parameters that control solvent dielectric, hydrodynamics,
desolvation, and ion screening, all which affect the realism of the
solvent model and the computational cost of the simulation.

In addition to the long-range forces imposed by inter-
molecular electrostatics, a stochastically determined force is also
imposed on the molecules in a BD simulation. This stochastic
force is directed randomly with a magnitude sampled from a
Gaussian distribution centered at zero whose variance depends
on the simulation time-step and the molecule’s diffusivity
properties. The stochastic force is intended to approximate the
random “kicks” that would be caused by the solvent, but are
otherwise absent in the continuum model.

Finally, the simulation must ensure that the Van der Waals
radii of the atoms of different molecules do not overlap; a
phenomenon known as a steric clash. Often, simulation steps
that result in a steric clash are discarded and recomputed.
Alternatively, many BD programs can impose a Lennard-Jones
force at close molecular proximity to prevent a steric clash
(Elcock, 2004; Huber and McCammon, 2010). BD simulation
and the theory behind it compose a rich and expansive field, and
many sources exist to allow the interested reader to improve his
or her knowledge and technique (Ermak and Mccammon, 1978;
Allen and Tildesley, 1987; Gabdoulline and Wade, 1996; Elcock
et al., 2001; Gabdoulline and Wade, 2002; Madura et al., 2002;
Elcock, 2004).

Considerations for Brownian Dynamics
Simulations
A key starting point for BD simulations is the selection of the
encounter complex, which describes the atomic interactions that
define a reaction between molecules. Ideally, crystal structures
will inform this step. If crystal structures of the encounter
complex do not exist, molecular docking programs can serve
as a substitute. In the case of PKA, two crystallized structures
of the regulatory subunit of protein kinase A RIα show very
different conformations when bound to either cAMP (Su et al.,
1995) or the catalytic subunit (Kim et al., 2007) To test the effects
of structure on cAMP association with BD methods, one can
use the crystal structure conformations of the regulatory subunit
in separate BD simulations. Alternatively, the two different
conformations can be used as starting points of separate MD
simulations. A number of structures in the conformational
ensemble will be generated and can serve as structures for
separate BD simulations.

At the start of a simulation, the ligand is placed at a
distance b from the receptor, at a location known as the b
surface, which is defined as the distance where forces between
the two molecules are centrosymmetric. Simulations terminate
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either upon the molecules reaching the predefined bimolecular
encounter complex (a binding event), or when the molecules
separate beyond a greater intermolecular distance q. The distance
q, the radius of the q surface, is typically 10–50 nm larger than
the distance b (Gabdoulline and Wade, 1998). The probability of
association vs. escape is then used to calculate the association rate
constant (kon). This schematic, including the surfaces at the b and
q distances, are depicted using PKA as the receptor and cAMP as
the ligand (Figure 3). BD can be used to model the association
of cAMP with PKA, and predict features of the binding event,
including the route of approach, the encounter complex, and the
rate constant of association.

A second important factor in BD simulations is the structure
of the molecules used in the simulations. Recall that BD
simulations use a rigid-body approximation of molecules,
meaning that the conformation of the molecule will not change
throughout the simulation as it does in MD. Typically, crystal
structure conformations are used. Another attractive possibility
is the use of conformations generated by MD as starting
points for BD simulations. Using this method, the user can

select meta-stable or even rare conformations of a protein
generated in MD simulations and compare the association
rates and probabilities with respect to structural changes in
the protein. MD trajectories can also be used to generate
ensemble-averaged electrostatics (Votapka et al., 2013) where
the simulated molecular motions are combined to form an
electrostatic potential that includes the dynamic properties of
the molecule. This effectively leads to a more holistic, dynamic
representation of the electrostatic potential, effectively mediating
some of the limitations of the rigid-body approximation of the
simulations.

Solutions to the Poisson-Boltzmann equation include
variations in the dipole moment and especially the charge
density, with respect to how the solute affects the solvent,
but also how the solvent affects itself. So while common
implementations of the Poisson-Boltzmann equation solvers do
not include many features of true aqueous solvents, it at least
does assume that certain aspects of the solvent are heterogeneous.
In addition, BD simulations themselves often model such things
as hydrodynamics and desolvation forces, which are intended

FIGURE 3 | Brownian dynamics simulation method. BD simulations begin by placing molecules at a distance b from one another, shown here as a b-surface

around PKA. When molecules diffuse toward the encounter complex (gold) a “reaction” (green arrow) occurs. Alternatively, molecules can “escape” (red arrow) by

diffusing past a distance equal to q, shown here as the q-surface.
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to approximate additional solvent features such as inertia and
entropy at a surface, respectively.

Despite their ability to calculate association rate constants
with respect to steric and electrostatic properties of molecules,
BD simulations have limitations that users should know and
recognize. First, the results of BD simulations depend on the
encounter complex criteria. Such criteria must usually be tested
and optimized in order to reproduce a reasonable association rate
constant. Incorrectly chosen encounter criteria can significantly
limit the accuracy of the simulation outcomes. Second, the rigid-
body approximation of molecules in BD can only represent one
part of the binding process: the diffusion—meaning that the
rate constant calculated by simulations is that of association
and not actual binding. Nevertheless, alternative methods that
combine intermolecular investigations of BDwith intramolecular
dynamics of MD are being developed that promise kinetic rate
estimations through simulation (Votapka and Amaro, 2015).
These developments represent an approach toward spanning
the MD and BD simulation regimes into a unified multiscale
framework.

To our knowledge, no systematic method yet exists for
estimating the true amount of error propagated by the
assumptions inherent in BD. However, general consensus agrees
that BD performs relatively well if the rate constants of an
event it is estimating can be classified as a diffusion-limited
process; that is, a process whose time to completion is primarily
limited by particle diffusion. In the case of binding, the range of
diffusion-limited rate constants is considered to include values of
approximately 108–109 M−1s−1(Bar-Even et al., 2011).

Schemes do exist to approximate the precision of a kon based
on the statistical sampling of a binding probability vs. escape.
Specifically, the uncertainty of the rate constant of binding
is proportional to the inverse square root of the number of
trajectories in BD simulations that have completed in a binding
event. Since millions or even billions of BD trajectories can
usually be completed at relatively little computational cost, it is
typically not difficult to obtain relatively high precision of a rate
constant using BD. However, while the estimated rate constant
may be precise, it still may be inaccurate if the rigid molecules,
implicit continuum solvent, or some other approximation
assumed by BD do not adequately model the system. Comparison
to experimental rate constants of the simulated ligand-receptor
system, or perhaps of similar systems, can give an indication of
the discrepancy between the “true” value, and the value obtained
using BD.

Unifying MD and BD Simulations through
Milestoning
The possibility of combining the speed of rigid-body BD
simulations with the flexibility of all-atom MD simulations to
predict kinetic and thermodynamic quantities of interest is an
attractive option. Ensembles of conformations or trajectories can
be sampled from each simulationmethod, and statistics involving
the probability and timescales of transitions between predefined
states from the simulations can be combined using MSMs or the
theory of milestoning (Faradjian and Elber, 2004) to model the
details of intermolecular interactions.

Milestoning is a technique that is similar to the theory used in
MSMs and can serve as an alternative approach to investigating
biomolecular events, such as conformational sampling (West
et al., 2007; Mugnai and Elber, 2015), diffusion (Mugnai and
Elber, 2015), and membrane permeation (Cardenas et al., 2012),
among others. Milestoning retrieves the kinetics as well as the
thermodynamics of chemical processes (Vanden-Eijnden et al.,
2008; Májek and Elber, 2010; Kirmizialtin and Elber, 2011), and
can make use of extensive parallelization. Although similar to
MSMs, milestoningmodels have a number of key differences, and
may or may not be well suited to address a particular biophysical
question. Unlike MSM states that are volumes in phase space
where the system exists until it crosses into another, milestones
are surfaces in phase space that the system traverses, and where
the system’s current “state” is the surface that the system has most
recently crossed.

To give an example, we examine the hypothetical case where
the kon of binding between PKA and cAMP can be predicted. In
this milestoning model, we define a set of concentric spheres of
different radii, all centered on the binding site of PKA (Figure 4).
These concentric spheres define the milestones. MD simulations
are started from conformations where cAMP is located on each
spherical milestone, and each simulation is similarly terminated
once cAMP diffuses to another surface. Thus, to the milestoning
model, whichever simulation method is used to populate the
transition kernels and incubation time vectors with statistics is of
no consequence. The most appropriate simulation method can
be chosen when cAMP is started on a particular surface.

Unlike MSMs, milestoning transitions may only occur to
states that are adjacent in the positional or conformational space
and lag times (or incubation times) can vary between inter-state
transitions. Therefore, milestoning may be a desirable technique
in situations where the system crossing surfaces would more
appropriately represent transitions than the system traversing
regions of space. For instance, because current implementations
of BD simulations make extensive use of surfaces, such as the
surfaces at the b and q distances and the encounter surfaces,
milestoning is a natural choice to utilize transition statistics
obtained in BD simulations. MD simulations modeling a binding
event can make use of either milestoning models or MSMs,
but when a combination with BD is desired, milestoning offers
a promising framework to combine statistics from the two
simulation methods.

Milestoning theory can be used to investigate a wide diversity
of biophysical scenarios, and has been applied in a variety
of contexts (Faradjian and Elber, 2004; Elber, 2007; West
et al., 2007; Elber and West, 2010; Cardenas et al., 2012).
In some physical situations, implementations of milestoning
outperformed MSMs in resemblance to experimental results
(Vanden-Eijnden et al., 2008). The application of milestoning
to intermolecular interactions is still a recent development, and
many possible improvements may enhance the efficiency and
accuracy of the estimation of binding rate constants. Examples
of these include further discretizing the system into grid-
like milestones, rotational milestones, or milestones that can
represent internal degrees of freedom. Extensive derivations
and discussions of milestoning theory are discussed elsewhere
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FIGURE 4 | Milestoning applied to unite MD and BD. MD and BD Simulations are run to populate transition times and probilities in a milestoning model of cAMP

binding to PKA. BD simulations are used to model an encounter event, and subsequent MD simulations model the details of the actual binding or reaction event.

(Faradjian and Elber, 2004; Vanden-Eijnden et al., 2008; Májek
and Elber, 2010; Kirmizialtin and Elber, 2011).

From Atomistic to Protein-scale Models

Bridging the gap from atomic simulations to whole cell models
is challenging. Protein-scale MSMs connect the atomistic scale
to cell or tissue phenomena by reducing the complexity of
molecular models. This enables simulations on larger time and
spatial scales, while maintaining structural details required for
protein function. These models simulate biological phenomena
relevant to a whole-cell model, including ionic currents, fraction
phosphorylated, or percent activation, and the output can be
compared to in vivo experiments.

Protein-scale MSMs have been used to represent protein
interactions since the early-1990’s (Edeson et al., 1990). Several
papers have been written on the development of protein-scale
MSM, particularly of ion channels (Edeson et al., 1990; Giugliano,
2000; Gurkiewicz et al., 2011; Lampert and Korngreen, 2014). Ion
channel MSMs have been made possible by the detailed statistical
data that comes from single channel patch clamp recordings (Qin
et al., 1996). These models have started to replace traditional
phenomenological Hodgkin-Huxley style models of ion channel
kinetics in whole cell action potential models (Rudy and Silva,
2006). They have been most useful when there is a need to model
the effects of specific channel modifications, such as drug binding
(Clancy et al., 2007), gene mutation (Rudy and Silva, 2006), or
post-translational modifications (Yang and Saucerman, 2012).

But the use of protein-scale MSMs is not limited to those systems
where dynamic biophysical recordings are available; instead,
these models can be built from BD and MD simulations.

Protein-scale MSM
The first step in model development is to determine the overall
structure of the model. Unlike atomic-scale MSMs, protein-
scale MSMs do not represent every conformation of atoms as
a state; instead, each state represents an ensemble of related
atomic conformations that comprise a functional structure.
This significantly limits the number of degrees of freedom
and decreases the computational power needed, which enables
multiple protein-scale MSMs to be combined into system-scale
models. However, because these models are a simplification of
the total potential states, the choice of which states are relevant
becomes essential to making a useful model of a protein.

Functional State Discovery through MD Simulations
Frequently, several different states are captured by molecular-
scale experiments, including X-ray crystallography and mass
spectrometry. These experimental approaches can provide data
on particular stable conformations (e.g., active or inactive states);
however, due to the static nature of these tools, significantly less
information is known about the transitions between states. For
example, there are published structures of the R subunit of PKA
bound either to cAMP or to the C subunit, but little is known
about the transition between these end states. MD simulations
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can suggest intermediate states for incorporation into protein-
scale MSMs. Similarly, atomic-scale MSMs provide insights into
which states are populated and the rates of transitions between
conformations.

Using BD Simulation to Inform Kinetics
For small molecule-protein interactions and protein-protein
interactions, BD and experimental data can serve complementary
roles in determining kinetics. Dissociation-rates are typically
slower than association rates and are therefore easier to measure
experimentally using techniques such as surface plasmon
resonance (Herberg et al., 1996). Additionally, most dissociation
events are limited by conformational changes and not by
diffusion—the latter of which BD is designed to model. For
these same problems, MD simulations would be required to
run for inaccessibly long periods of time (ms to s) to register
release events. Association-rates, on the other hand, tend to be
orders of magnitude faster and therefore are harder to measure
experimentally. BD simulations are ideal for measuring fast
interaction rates on the ns to µs time scales, many of which are
limited by diffusion. In combination with equilibrium data, these
techniques can be used synergistically to determine rates for small
molecule-protein and protein-protein interactions. By basing the
ensemble of states of the model on MD simulations, and the
kinetic interactions on BD simulations, it is possible to predict
the effect of a mutation on protein function and, by extension, on
the whole cell.

Testing with Empirical Data
Data from experiments, MD simulations, and BD simulations
can be integrated into a simplified protein-scale MSM with
states and interactions relevant to protein function. Frequently,
these combined methods will suggest several possible functional
state ensembles. Competing models are generated, with different
states or different relationships between the states. Subsequently,
the resulting models are tested to determine their ability to fit
relevant experimental data (Boras et al., 2014). For protein-scale
MSMs, the data used for fitting most often comes from in vitro
experiments. Ideally, the data used to differentiate between
competing models is collected under conditions that are most
relevant to a whole cell. For example, in the PKA-RIα model
developed by Boras et al. (2014) all of the data used for fitting
was collected in the presence of excess Mg2+ and ATP, both
of which have been shown to affect PKA activation (Neitzel
et al., 1991). These conditions are similar to what is found in
a cell; however, recently published data has also highlighted the
role of ADP in PKA activation (Khavrutskii et al., 2009), which
could affect the role of PKA in metabolism but is absent in the
current MSM.

The accuracy of each theoretical model is determined using
an error function based on the weighted sum of squares
difference between the model’s predictions and the available
experimental data. Minimizing this error function optimizes
unknown parameters. If the MSM are nested (all possible states
in a model with fewer degrees of freedom can be represented in
the model with more degrees of freedom) then a statistical F-test
can be performed to determine if the added degrees of freedom

significantly improve the fit (Anderson and Conder, 2011). This
ensures that MSMs do not become needlessly complex without
an improvement in the accuracy of the model’s predictions.

Frequently, data acquired with mutant proteins that cannot
reach specific states is used to differentiate competing models.
The MSMs are altered slightly by removing those states, without
refitting any parameters, and the output is compared against the
experimental results (Boras et al., 2014). For example Clancy
et al. used MSM of a cardiac sodium channel to show that a
mutation in its C terminus can lead to long-QT syndrome, which
causes life-threatening arrhythmias (Clancy and Rudy, 2002).
This highlights how protein-scale MSM based on atomistic data
can predict the effect a mutation will have on the whole cell and
eventually on the organ scale as well.

To mitigate error propagation when the protein-scale MSM
is added to whole cell models, a sensitivity analysis can be
performed to test the robustness of the solution (Campbell et al.,
2010). In this process each rate is perturbed to determine its
effect on the desired output of the model. States can also be
removed to see how essential they are to the final result. The
objective is to quantify how much the final result relies on any
individual rate or state and compare that to the uncertainty in the
experimental measurements. This technique can also highlight
which states predicted from atomic scale modeling would have
the greatest effect if mutated or pharmaceutically targeted. This
is especially useful in quantifying the potential effect of rare
conformations. Due to sampling bias theymay not be captured in
MD simulations but by adding them to the model their potential
effect can be determined even if precise kinetic parameters are
not known.

Applying to MD and BD Modeling to Protein
Scale PKA-RIα MSM
These techniques have been applied to the development of a
novel PKA protein scale MSM (Boras et al., 2014) (Figure 5).
First, the effects of cAMP binding on CBD-A of the regulatory
subunit of PKA were examined (Malmstrom et al., 2015). Using
extensive all atom molecular dynamics simulations integrated
with atomic-MSM, the conformation of the CBD with and
without cAMP bound was determined. Conformational selection
was identified as the general mechanism of allostery within a
single CBD, which transitions between an active and an inactive
conformation whether or not cAMP is bound. cAMP was found
to regulate the function of the CBD by deepening the free energy
landscape and selecting conformational states that favor the
active conformation. Interestingly, cAMPmodifies the transition
rate between the active and inactive conformation and not
the transition between the inactive and active conformations.
Additionally, the roles of each of the signaling motifs in the CBD
were elucidated.

Based on these findings and crystal structure data, five nested
protein scale MSM were considered. Each model was structured
to test competing theories of PKA R2C2 activation based on
MD simulations. The crystal structures suggested that a model
that treated each R-C heterodimer as independent would be
insufficient to fit the data, due to the compactness of the R2C2

holoenzyme. Atomistic MSM predicted that a conformational
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FIGURE 5 | The Markov State Model of PKA-RIα R2C2 holoenzyme. A representation of MSM states for the activation of PKA-RIα R2C2 holoenzyme by cAMP

first published in JBC (Boras et al., 2014). The red arrows represent the dominant pathway during activation. The two R- and C-subunits are identical but for simplicity

of naming the first R-subunit to bind C-subunit is named R, while the first R-subunit to bind cAMP is R′.

selection mechanism would most accurately fit the data for
isolated CBDs. The models were developed in the Virtual Cell
computational environment (Moraru et al., 2008) before being
translated into MATLAB to take advantage of optimization
programs (Marsden et al., 2008).The models were fitted to kinase
activity and cAMP binding data under physiological conditions
(Christensen et al., 2003). Additionally, the various models were
then compared to mutant PKA experimental data with either
an inhibited CBD-A or CBD-B binding site. One model was
shown to fit the wild type and predict the experimental results
better than any other. This model validated the atomistic MSM
by showing that CBD-B binding leads to release of the C-subunit
prior to CBD-A binding similar to a conformational selection
mechanism and created a thermodynamic protein-scale MSM of
PKA activation.

However, since the fitting data, as well as the mutant data,
were collected at long enough intervals that an assumption
of thermodynamic equilibrium was valid, the resulting MSM
could only reproduce equilibrium behavior. From a cellular
perspective, PKA’s response to a stimulus over time is essential
to understanding PKA function. The single turnover rate in
response to a stimulus has been implicated in activation due
to A kinase anchoring proteins that bind PKA near one target
(Scott and Santana, 2010). Therefore, the addition of kinetic rates
would significantly increase the utility of the MSM a whole cell
model.

Owing to the fast rate of activation of PKA in the presence
of cAMP, the amount of experimental kinetic data on PKA
activation, particularly on-rates, is limited. This is a problem
ideally suited to solving using atomic simulations. The atomic
scale MSM suggested that cAMP binding only affects the rate of
transition from active to inactive states but not the reverse. BD
simulations can be combined with experimental data to suggest
binding and release rates for R-C and R-cAMP interactions. In
conjunction with in vitro experimental data this type of data will
allow the thermodynamic MSM to become a kinetic MSM better
suited to whole cell scale analysis of signaling network properties.

Integrating Protein Scale MSM into Whole
Cell Models

The potential of molecular and protein-scale models culminate
in whole-cell and tissue-scale models that can predict phenotypes
andmechanistically explain disease states. Thesemodels combine
several MSMs to predict cellular responses to either internal
or external stimuli by tracing behavior down to molecular
interactions. When developing these protein-scale MSMs, it is
best to keep in mind what broader biological function will be
modeled at a larger scale since this will determine not only what
states are relevant but also what type of model is best for a given
phenomena.
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Stochastic and Deterministic MSM in the Whole
Cell
Some cell functions are best simulated using a continuum of
species concentrations and smooth probability distributions,
while statistically rare events are better modeled when individual
molecules are tracked and the stochasticity of interactions is
accounted for. Correspondingly, protein-scale MSM can be
either stochastic or deterministic in nature. The stochastic
models, like the atomic-scaleMSMdescribed earlier, are based on
Monte Carlo simulations where the probability of transitioning
between states is dependent on the kinetics of the binding
and/or the conformational shift that each transition represents.
This is the most accurate representation, where each event is
dependent on the chance that two molecules will interact or that
a conformation will be sampled based on random motion.

Many biological processes, such as calcium sparks in cardiac
myocytes, can be explained with stochastic simulations. Calcium
sparks occur when calcium is released from the sarcoplasmic
reticulum via an isolated cluster of ryanodine receptor calcium
release channels in the absence of a depolarizing event. In other
words, a single cleft or a cluster of clefts acts differently than
the rest of the cell. Whole-cell deterministic models require that
every channel of a given type are identical and therefore every
channel could be fractionally open but no one channel could be
fully open while the others were fully closed without changing the
conditions. Therefore, to model phenomena like this, a stochastic
model is necessary. When translating these models up to the
whole cell, the stochastic models are ideal for agent based spatial
modeling tools, such as MCell (Kerr et al., 2008), where each
molecule is tracked and diffusion is represented by a random
walk; although, it is worth noting that a whole-cell model can
consist of a continuum diffusion approximation but still contain
stochastic protein-scale MSMs. Agent-based models are ideal for
small numbers of molecules or short time and spatial scales,
where tracking each molecule is computationally reasonable or
average approximations may be invalid.

Over a long enough time-scale or a large enough population
of molecules, the Monte Carlo simulation will approach the
deterministic solution. The deterministic solution is represented
by a system of ordinary differential equations, instead of being
represented by a transition matrix of probabilities. In these
models, the states of the MSM are frequently populated by
concentrations instead of a specific number of molecules.

Many biological processes can be represented
deterministically, most often when the system has a large
number of molecules, or covers a long time and spatial scales.
Models of the calcium concentration in a cell, for example, would
require a deterministic model because computationally there
are too many molecules to follow and the simulation becomes
intractable. However, even on a small scale a deterministic
approximation can be valid. For example, Hake et al. (2014)
showed that for a single dyadic cleft in a cardiac myocyte, the
random walk and the deterministic continuum approximation
gives the same result for a calcium induced calcium release event,
even though a continuum approximation of the calcium in the
cleft is unrealistic due to the scarcity of calcium ions. By treating
the continuum as deterministic but the protein-scale MSMs as

stochastic we can reproduce the stochastic sparks while limiting
the required computational power.

Advantages in Whole Cell Modeling
The potential of molecular and protein-scale models culminate
in whole-cell and tissue-scale models that can predict phenotypes
andmechanistically explain disease states. Thesemodels combine
several MSMs to predict cellular responses to either internal
or external stimuli by tracing behavior down to molecular
interactions. The power of building atomic-scale and protein-
scale MSMs for wild type and disease mutants comes from
their integration into whole cell models. At the whole cell scale,
differences in sub-cellular dynamics of protein mutations can be
studied comparatively with their wild-type counterparts. Several
disease states come from known protein mutations. For example,
in the case of PKA-RIα, 117 polymorphisms and mutations have
already been discovered (Horvath et al., 2010). Owing to the
complexity of signaling pathways, how these mutations affect cell
function is frequently unclear but by creating a whole cell model
from molecular mechanisms it is possible to predict how a given
mutation will lead to a particular a cellular phenotype.

Whole cell models based on atomic resolution information
have opened entirely new avenues of research into drug
discovery. In addition to suggesting which protein is a viable
target, mechanistic whole cell models can suggest which protein
conformation is most favorable and even the chemical shape of
a small molecule necessary to inhibit/promote activation. This
allows a scale of specificity that could decrease toxicity and limit
side effects.

Cardiac arrhythmias are a prime example of the potential
relevance of whole cell models. Currently, one of the most
commonly prescribed classes of drugs to treat arrhythmias are
beta-blockers. Beta blockers bind the beta adrenergic receptors
to inhibit epinephrine and norepinephrine binding to reduce the
chance of a second heart attack (Cruickshank, 2010). However,
this inhibits the entire beta-adrenergic pathway. By combining
this new PKA protein-scale MSM with previously published
adrenergic signaling models of the heart (Saucerman et al., 2003;
Bondarenko, 2014), it is possible to suggest drug targets and even
specific binding pockets to inhibit parts of the pathway while
limiting their effect on the rest of the cell.

Conclusions

For years, atomic-resolution protein structures have aided our
understanding of protein function not only through static
structures provided by NMR and crystallographic experiments,
but also through the prediction of dynamic properties with
MD simulations. MD has revealed ensembles of structures that
comprise the conformational landscape of a protein. Due to
computational limitations, classical MD simulations are only
able to generate microseconds (or less) of simulated time. This
significantly limits the extent of the protein conformational
ensemble sampled. However, information generated by MD
simulations can be integrated into atomic scale MSMs, which
are used to link states generated in a conformational ensemble
through a kinetic scheme. The outputs of structures from MD

Frontiers in Physiology | www.frontiersin.org 11 September 2015 | Volume 6 | Article 250

http://www.frontiersin.org/Physiology
http://www.frontiersin.org
http://www.frontiersin.org/Physiology/archive


Boras et al. Bridging scales through multiscale modeling

simulations are analyzed according to a chosen conformational
state description and are discretized into microstates. The MD
trajectory informs which transitory states are most favorable and
calculates the transition rates between these states to be used in
different scales of modeling.

MD simulations subsequently inform both the atomic scale
MSMs and BD simulations. BD simulations typically use
rigid-body representations; therefore selected conformations are
important for understanding the effect of different structures
on association probability. MD simulations provide relevant
conformations for BD by generating stable conformations. In
addition, ensemble-averaged electrostatics can be generated
from the MD trajectories, reflecting the dynamic properties
of a molecule in a static electrostatic potential map. Finally,
MD and BD simulations can be directly integrated through
milestoning to derive association rate constants (kon) of
diffusion-limited processes; a process that combines the two
distinct simulation regimes—utilizing the advantages and
minimizing the disadvantages of each. Such a scheme can
vastly expand the time and length scales accessible in the
simulation of multimolecular interactions between proteins and
small molecules and/or other proteins to be combined with
experimental data in protein-scale MSMs.

Protein-scale MSMs draw on every facet of the atomistic
models to bridge the atomic and cellular scales. MD simulations
and atomistic-scale MSMs suggest which ensemble of states will
reproduce a molecular function. BD simulations combined with
milestoning predict association rate constants that would be
difficult to experimentally reproduce. This information, when
combined with in vitro experimental data and statistical analysis
tools, leads to the development of protein-scale MSM’s for
incorporation into whole cell models. Whole cell models based
on atomic level details provide a new scale of specificity. The
ability to scale up the effects of a protein mutation on a cellular
level function is the ideal goal of a robust MSM of this kind.

As discussed throughout this paper, during the process of
multiscale modeling it is essential to consider error propagation,
or the effect of inaccuracies in small-scale models and the

translation of this error into higher levels. For example,
conditions such as molecular crowding in the cell likely affect
the energetic landscape of a protein, a phenomenon not explicitly
represented in an MD simulation. The limited sampling time
of MD simulations can bias the conformational landscape of
the protein, affecting the kinetic rates determined by the MSM.
Structures and kinetics abstracted from biased simulations can
further limit the accuracy of BD simulations and protein-scale
MSM, respectively. Furthermore, coarser-grained simulations
such as BD and protein-scale MSMs are not free of their own
inaccuracies. The sources of errors in many modeling methods
may or may not be easy to recognized and the best practices for
quantifying the errors is still an active area of research. Iterating
through the multiscale modeling process is extremely time
consuming, since frequently MSMs must be fully recreated when
new constrains are added. With ample computational resources,
a multiscale modeler can incorporate recursive feedback loops
from multiple scales to converge to a steady solution of the
represented system.

Building a multiscale model, despite inaccuracies, is extremely
useful. The findings of larger scale models can be used to
inform the finer scales, like the identification of unknown
conformational states in protein-small molecule energetic
landscape. Carefully considering the whole-cell constraints of a
given disease state or drug target before creating the initial model
can allow these multiscale models to be a powerful and efficient
tool for understanding the mechanisms behind some of the most
intriguing biological questions.
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