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may be disorganized in mutant cells. Earlier dissection of spe-
cific roles of proteins of interest in mitosis was often aided by 
microinjections of antibodies, which was aimed for blocking the 
functions of target proteins (Scholey, 1998). Alternatively, gene 
expression could be transiently brought down by approaches like 
RNA interference in cultured cells or early developing embryos of 
animals (Srayko et al., 2005; Goshima et al., 2007). In addition, 
spindles can be assembled in vitro using the oocyte/egg extract of 
the frog Xenopus (Gard and Kirschner, 1987; Heald et al., 1996). In 
this in vitro system, depletion of individual factors by antibodies 
would allow one to investigate their functions in mitosis (Wang 
and Zheng, 2011).

In flowering plants, it is technically challenging to establish a sys-
tem like the Xenopus egg extract due to difficulties in protein prepa-
ration. Microinjection also relies on precise instrumentation and 
sophisticated skills. Nevertheless, microinjection of fluorescently 
labeled proteins and antibodies has been achieved in the stamen 
hair cells of the spiderwort Tradescantia virginiana (Zhang et al., 
1990; Vos et al., 2000). Unfortunately, not much if any is known 
about the genetic makeup of spiderwort. Tobacco BY-2 cells also 
have been an extremely valuable system for studies of MTs and cell 
division in plants (Nagata and Kumagai, 1999). However, the com-
plex tobacco genome has not been fully sequenced and annotated so 
that biochemical results often are not met with genetic dissections. 
In contrast, the completed Arabidopsis thaliana and rice genomes 
have allowed us to closely examine genes encoding tubulins and 
proteins that interact with MTs (Guo et al., 2009). However, to 
date we only know functions of a handful of proteins that regulate 
MT organization in plant cells partly due to limited availability of 
homozygous mutants for corresponding genes.

Higher plant cells lack structurally defined microtubule- organizing 
centers (MTOCs) like the centrosome present in cells of animals, 
most algae, and basal land plants. Consequently, mitosis is executed 
by acentrosomal spindles. In fact, the absence of the centrosome 
is accompanied by great plasticity of the spindle morphology 
observed in various somatic and reproductive cells in different 
plant species (Palevitz, 1993). Following mitosis, cytokinesis is 
brought about by the phragmoplast, an evolutionary landmark 
first appeared in advanced green algae (Pickett-Heaps, 1975; 
Graham et al., 2000), which gives rise to the cell plate resulted 
from the fusion of Golgi-derived vesicles. Plant cytokinesis is pri-
marily dependent on microtubules (MTs), unlike that in animal 
and fungal cells which employ the actomyosin contractile ring 
(Guertin et al., 2002). Studies of mitosis and cytokinesis in animals 
have been motivated by their direct implications in understanding 
causes of diseases like cancers and developing therapeutic strate-
gies. While some aspects of mitosis and cytokinesis are expected 
to be conserved in plant and animal cells (Lloyd and Chan, 2006), 
one should not anticipate that results of animal cell-based work 
would allow us to elucidate all molecular mechanisms that regulate 
plant cell division.

Successful cell division is the fundamental basis of growth 
and reproduction among all organisms. Thus, serious distur-
bance of cell division would result in lethality. Critical functions 
of MT-associated factors often can be revealed by phenotypic 
analysis of loss-of-function mutations that may provide clues 
about their specific roles in mitosis and cytokinesis. Perplexingly, 
sporophytic lethal mutations could not be brought to the homozy-
gous status in somatic cells so that it becomes challenging to 
perform cytological experiments in order to elucidate how MTs 
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When a loss-of-function mutation is created for an essential 
gene, it is ideally kept in the heterozygote state and hoped to be 
transmitted through sexual reproduction. One would expect that 
fundamental architecture of the mitotic and meiotic spindles is 
at least similar if not identical. When a heterozygous plant carry 
out meiosis, a lethal mutation may be lost after the wild type and 
mutant alleles are separated into two different nuclei if they are 
separated in two cells. The model plant A. thaliana allows us to 
overcome this potential obstacle. In many plants like lily, when the 
microsporocyte/microspore mother cell undergoes meiosis, suc-
cessive cytokinesis takes place after each round of nuclear division. 
In A. thaliana, however, the nuclear division of meiosis I is not 
followed by cytokinesis (McCormick, 1993). Instead, simultane-
ous cytokinesis takes place at the end of meiosis II to produce 
four microspores (Yang et al., 2003). When a heterozygous plant 
produces microspores, the mutant allele (a) would be included 
in two of the four microspores, while the other two contain the 
wild type allele (A) (Figure 1A). Under such a circumstance, viable 
microspores carrying the mutations would be produced by the 
heterozygous parent. Thus, meiosis of the heterozygous diploid 
microsporocyte would result in two wild type haploid microspores 
and two mutant ones, and all microspores inherit the cytoplasm 
of the heterozygous parent.

In a life cycle exhibiting alternation of generations, the haploid 
microspore undergoes mitosis to produce the microgametophyte. 
In angiosperms, the microspore undergoes an asymmetrical cell 
division (pollen mitosis I) to produce two cells of different fates, 
concomitantly the pollen grain/young microgametophyte is being 

developed (Abrash and Bergmann, 2009; Borg and Twell, 2010). A 
smaller lens-shaped cell is the generative cell which divides to form 
two sperm cells via one round of mitosis (pollen mitosis II), and the 
larger cell is the vegetative cell which will produce the pollen tube 
upon pollen germination. The asymmetrical pollen mitosis I is pre-
ceded by migration of the microspore nucleus toward the cell cortex 
(McCormick, 1993). This mitotic event, as in other reproductive 
cells, does not present a preprophase band (PPB) MT array. Upon 
the breakdown of the nuclear envelope, chromosomes are attached 
to the mitotic spindle which is placed asymmetrically in the cyto-
plasm (Figure 1B). In addition, the spindle itself is asymmetrical 
as shown by two unequal half spindles (Terasaka and Niitsu, 1990; 
Zonia et al., 1999; Oh et al., 2010c). The peripheral spindle pole is 
typically wide and nearly in contact with the plasma membrane. 
In dividing microspores of orchids, an MT array named generative 
pole MT system (GPMS) was observed between the plasma mem-
brane and the prophase microspore nucleus prior to the assembly 
of the spindle (Brown and Lemmon, 1991). However, this MT array 
was not observed in dividing microspores expressing a green fluo-
rescent protein (GFP)-tubulin marker in A. thaliana and tobacco 
(Oh et al., 2010a,c). Instead a perinuclear MT network extends 
to the cell cortex (Oh et al., 2010c). This MT network and the 
GPMS may contribute to establishing the peripheral half spindle. 
Conversely, the interior pole of the spindle is more or less focused, 
pointing at the center of the cytoplasm (Figure 1B). In somatic 
cells, the formation of the mitotic spindle is often linked to or 
influenced by the PPB (Ambrose and Cyr, 2008). It is known that 
plant and animal cells employ more than one pathway to establish 
the bipolar spindle MT array (Lloyd and Chan, 2006). Hence, pollen 
mitosis I could serve as an excellent model for investigating PPB-
independent mechanisms underlying spindle formation. The fact 
that the spindle of pollen mitosis I is relative short (∼5 μm) and 
asymmetrically positioned is also intriguing in regarding to how 
the length of the mitotic spindle is regulated, a question often asked 
by animal cell biologists (Goshima and Scholey, 2010).

At late anaphase and telophase during pollen mitosis I, MTs 
are reorganized into the bipolar phragmoplast array between 
two reforming nuclei. Remarkably, the phragmoplast expands 
centrifugally in a curved fashion as if some guidance is provided 
(Figure 1B). Consequently, a curved cell plate is formed, separat-
ing the generative and vegetative cells. In the absence of the PPB, 
how does the phragmoplast know where to fuse at the parental 
plasma membrane? In other words, what is the positional signal to 
be recognized by the expanding phragmoplast? It was proposed that 
the cell is a domain of cytoplasm formed around the nucleus, and 
the cytoplasmic domain is established by nuclear position and the 
interaction between MTs radiating from the neighboring nuclear 
envelopes (Brown and Lemmon, 1992; Pickett-Heaps et al., 1999). 
Radial MTs were suggested to measure the cytoplasmic domain 
and trigger the centrifugal expansion of the phragmoplast (Brown 
and Lemmon, 1992). It has been known for decades that cell divi-
sion events like pollen mitosis I do not involve the PPB. Hence, 
PPB-independent mechanisms must regulate cell division plane 
determination in reproductive cells like the microspores.

Mutations in genes encoding proteins regulating MT organiza-
tion often are homozygous lethal as reported (Park et al., 1998; 
Nakamura and Hashimoto, 2009; Zeng et al., 2009). Developing 

Figure 1 | Diagrams depicting microsporocyte meiosis and pollen 
mitosis i in A. thaliana. (A) Sequential diagrams showing the spindle of 
meiosis I (left), two spindles of meiosis II (middle), and tetrad (right) containing 
two wild type microspores (highlighted as “A”) and two mutant ones 
(highlighted as “a”). The chromosomes carrying the mutation are shown in 
red. (B) Diagrams demonstrating pollen mitosis I with asymmetrically 
positioned spindle (left) and phragmoplast (middle). A curved cell plate (green 
line) is formed to result in a lens-shaped generative cell with densely packed 
chromatin and a larger vegetative cell with loosely packed chromatin (right).
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collapses and cytokinesis fails to take place (Pastuglia et al., 2006; 
Nakamura and Hashimoto, 2009). Earlier studies showed that 
γ-tubulin is broadly associated with spindle and phragmoplast 
MT arrays with biases toward MT minus ends (Liu et al., 1993, 
1995). How is γ-tubulin targeted to non-centrosomal sites for MT 
nucleation? In animal cells, the WD40 protein NEDD1/GCP-WD 
interacts with the γ-tubulin complex and directs it to MT nuclea-
tion sites (Lüders et al., 2006). A plant NEDD1 relative, albeit shar-
ing low sequence homology to its animal counterparts, definitely 
functions in MT organization during mitosis (Zeng et al., 2009). 
When a heterozygous nedd1 mutant was examined in A. thaliana, 
defective bipolar spindles were observed in mutant microspores 
during pollen mitosis I (Figure 2). Unlike short spindles placed near 
the cortex in the wild type cells, however, the mutant spindle typi-
cally lost length control and expanded across the cytoplasm in the 
dividing cell (Figure 2). The nedd1 mutation also caused collapsed 
phragmoplasts with random MT masses between two reforming 
nuclei that do not exhibit obvious bipolarity (Zeng et al., 2009). 
Although the nedd1 mutation can be transmitted through sexual 
reproduction, homozygous mutant seeds were never recovered. 
Thus, developing microgametophyte became an invaluable mate-
rial for investigating defects in MT organization upon the loss of 
proteins like NEDD1. Furthermore, different phenotypes in MT 
organization exhibited by the nedd1 and gem1 mutants allow us to 
distinguish the specific functions of these essential proteins. The 
work on NEDD1 also has instructed us that it is possible to isolate 
additional loss-of-function mutations that may affect fundamental 
MT nucleation activity in the spindle and phragmoplast. Recently, 
the eight-subunit augmin complex has been demonstrated to medi-
ate centrosome-independent but MT-dependent MT nucleation 
in animal cells (Goshima and Kimura, 2010). Augmin is believed 
to bridge the interaction between the γ-tubulin complex and MTs 
via the NEDD1 protein (Zhu et al., 2008). Plants produce a few 
proteins remotely related to augmin subunits. If they were essential 
for organizing the spindle and phragmoplast MT arrays, it would 
be difficult to isolate homozygous mutants for the correspond-
ing genes. Investigation of the functions of these putative augmin 
homologs would be greatly facilitated by examining mutant micro-
gametophytes produced by heterozygous parents once correspond-
ing mutant alleles are isolated.

microgametophytes serve as excellent models for investigating 
defects in MT organization brought about by sporophytic lethal 
mutations. Among four products of meiosis by a heterozygous par-
ent, two wild type ones would serve as the positive control while the 
mutant spindle and phragmoplast are examined. If a gene is essen-
tial for mitosis or cytokinesis, one would expect that gametes could 
not be produced by developing gametophytes. Intriguingly, for rea-
sons unknown such mutations have been found to be transmitted 
through either male or female gametes or both with compromised 
transmission efficiency as reported (Zeng et al., 2009). This is some-
what surprising because proteins essential for cell division would be 
equally important for gametophyte and sporophyte development. 
The imperfect transmission efficiency is caused by partial failures 
in pollen mitosis I. If the mutant microspores completely failed to 
divide, the corresponding mutation could not have been inherited. 
The inheritance of the mutation through sexual reproduction sug-
gests that the mitotic phenotype exhibits incomplete penetrance. 
Such a phenomenon may be due to the presence of the cytoplasm 
derived from the heterozygous microsporocyte and megasporocyte. 
Because developing microgametophytes/pollen grains can be iso-
lated from immature anthers, they are amenable for examinations 
of defects in chromosome segregation, spindle formation, cell plate 
formation caused by sporophytic lethal mutations. In A. thaliana, 
immunolocalization of MTs in intact pollen grains was recently 
made possible (Lee et al., 2007). Moreover, a microgametophyte 
specific GFP-tubulin marker was introduced in tobacco and A. 
thaliana, so that transgenic microgametophytes are ready for the 
observation of MT arrays in live cells (Oh et al., 2010a,c).

In the past few years, the microgametophyte has been gradually 
employed for mutant-based analysis aimed at deciphering mecha-
nisms that regulate the organization of spindle and phragmoplast 
MT arrays. Earlier genetic studies isolated mutants such as scp 
and gem1 that exhibit aberrant microspore divisions (Chen and 
McCormick, 1996; Park et al., 1998). The gem1 mutant was found 
to be homozygous lethal because it caused failures in cytokinesis 
(Twell et al., 2002). Further phenotypic analysis employing the 
microspore/microgametophyte targeted GFP-tubulin reporter 
and RNA interference has greatly advanced our understanding 
the essential functions of the XMAP215/DIS1 ortholog MOR1/
GEM1 in organizing the spindle and phragmoplast MT arrays (Oh 
et al., 2010c). This study in tobacco revealed that the MOR1/GEM1 
ortholog TMBP200 was essential for pre-mitotic nuclear migra-
tion by regulating the stability and dynamicity of MTs. It further 
pinpointed its critical role of in spindle and phragmoplast orienta-
tion. In addition, multipolar spindles and branched phragmoplasts 
were induced upon down regulation of TMBP200 expression (Oh 
et al., 2010c). Consequently, pollen mitosis I was jeopardized with 
altered division planes and cell plates, resembling the phenotype 
exhibited by the gem1 mutant in A. thaliana (Park et al., 1998; Oh 
et al., 2010c). These phenotypes observed during pollen mitosis I 
could be extrapolated to mitosis in somatic cells.

For years, plant cell biologists have been attacking the question 
about how MTs are nucleated to give rise to the spindle and phrag-
moplast arrays (Murata and Hasebe, 2011). The γ-tubulin complex 
is known to be essential for MT nucleation among all eukaryotes 
(Job et al., 2003). In developing microgametophyte lacking γ-tubulin 
or the γ-tubulin complex protein 2 (GCP2), the spindle MT array 

Figure 2 | Mitotic spindles formed in wild type and nedd1 mutant 
microspores. (A) Anti-tubulin immunofluorescence shows a peripherally 
positioned spindle (green) with attached chromosomes (red) in a wild type 
cell. The autofluorescence of the pollen grain highlights its dimension. (B) The 
nedd1 microspore forms an elongated spindle. Scale bar, 5 μm.

Liu et al. Learning mitosis from the Arabidopsis microgametophyte

www.frontiersin.org July 2011 | Volume 2 | Article 27 | 3

http://www.frontiersin.org/
http://www.frontiersin.org/plant_cell_biology/archive


RefeRences
Abrash, E. B., and Bergmann, D. C. (2009). 

Asymmetric cell divisions: a view 
from plant development. Dev. Cell 
16, 783–796.

Ambrose, J. C., and Cyr, R. (2008). Mitotic 
spindle organization by the prepro-
phase band. Mol. Plant 1, 950–960.

Borg, M., and Twell, D. (2010). Life after 
meiosis: patterning the angiosperm 
male gametophyte. Biochem. Soc. 
Trans. 38, 577–582.

Brown, R. C., and Lemmon, B. E. (1991). 
Pollen development in orchids 3. A 
novel generative pole microtubular 
system predicts unequal pollen mito-
sis. J. Cell Sci. 99, 273–281.

Brown, R. C., and Lemmon, B. E. (1992). 
Cytoplasmic domain: a model for 
spatial control of cytokinesis in repro-
ductive cells of plants. EMSA Bull. 22, 
48–53.

Chen, Y. C., and McCormick, S. (1996). 
Sidecar pollen, an Arabidopsis thaliana 
male gametophytic mutant with aber-
rant cell divisions during pollen devel-
opment. Development 122, 3243–3253.

Gard, D. L., and Kirschner, M. W. (1987). 
Microtubule assembly in cytoplasmic 
extracts of Xenopus oocytes and eggs. 
J. Cell Biol. 105, 2191–2201.

Goshima, G., and Kimura, A. (2010). New 
look inside the spindle: microtubule-
dependent microtubule generation 
within the spindle. Curr. Opin. Cell 
Biol. 22, 44–49.

Goshima, G., and Scholey, J. M. (2010). 
Control of mitotic spindle length. 
Annu. Rev. Cell Dev. Biol. 26, 21–57.

Goshima, G., Wollman, R., Goodwin, S. 
S., Zhang, N., Scholey, J. M., Vale, R. 
D., and Stuurman, N. (2007). Genes 
required for mitotic spindle assembly 
in Drosophila S2 cells. Science 316, 
417–421.

Graham, L. E., Cook, M. E., and Busse, J. S. 
(2000). The origin of plants: body plan 
changes contributing to a major evo-
lutionary radiation. Proc. Natl. Acad. 
Sci. U.S.A. 97, 4535–4540.

Guertin, D. A., Trautmann, S., and 
McCollum, D. (2002). Cytokinesis in 
eukaryotes. Microbiol. Mol. Biol. Rev. 
66, 155–178.

Guo, L., Ho, C.-M. K., Kong, Z., Lee, 
Y.-R. J., Qian, Q., and Liu, B. (2009). 
Evaluating the microtubule cytoskel-
eton and its interacting proteins in 
monocots by mining the rice genome. 
Ann. Bot. 103, 387–402.

Heald, R., Tournebize, R., Blank, T., 
Sandaltzopoulos, R., Becker, P., 
Hyman, A., and Karsenti, E. (1996). 
Self-organization of microtubules 
into bipolar spindles around artificial 
chromosomes in Xenopus egg extracts. 
Nature 382, 420–425.

Job, D., Valiron, O., and Oakley, B. (2003). 
Microtubule nucleation. Curr. Opin. 
Cell Biol. 15, 111–117.

Lee, Y. R. J., Li, Y., and Liu, B. (2007). Two 
Arabidopsis phragmoplast-associated 
kinesins play a critical role in cytokine-
sis during male gametogenesis. Plant 
Cell 19, 2595–2605.

Liu, B., Hotta, T., Ho, C.-M. K., and Lee, 
Y. R. J. (2011). “Microtubule organi-
zation in the phragmoplast,” in The 

Plant Cytoskeleton, ed. B. Liu (New 
York: Springer), 207–225.

Liu, B., Joshi, H. C., and Palevitz, B. A. 
(1995). Experimental manipulation of 
γ-tubulin distribution in Arabidopsis 
using anti-microtubule drugs. Cell 
Motil. Cytoskeleton 31, 113–129.

Liu, B., Marc, J., Joshi, H. C., and Palevitz, 
B. A. (1993). A γ-tubulin-related pro-
tein associated with the microtubule 
arrays of higher plants in a cell cycle-
dependent manner. J. Cell Sci. 104, 
1217–1228.

Lloyd, C., and Chan, J. (2006). Not so 
divided: the common basis of plant 
and animal cell division. Nat. Rev. Mol. 
Cell Biol. 7, 147–152.

Lüders, J., Patel, U. K., and Stearns, T. 
(2006). GCP-WD is a γ-tubulin tar-
geting factor required for centrosomal 
and chromatin-mediated micro-
tubule nucleation. Nat. Cell Biol. 8, 
137–147.

Malcos, J. L., and Cyr, R. (2011). 
“Acentrosomal spindle formation 
through the heroic age of microscopy: 
past techniques, present thoughts, 
and future directions,” in The Plant 
Cytoskeleton, ed. B. Liu (New York: 
Springer), 187–205.

McCormick, S. (1993). Male gametophyte 
development. Plant Cell 5, 1265–1275.

Murata, T., and Hasebe, M. (2011). 
“Microtubule nucleation and organi-
zation in plant cells,” in The Plant 
Cytoskeleton, ed. B. Liu (New York: 
Springer), 81–94.

Nagata, T., and Kumagai, F. (1999). Plant 
cell biology through the window of the 

highly synchronized tobacco BY-2 cell 
line. Methods Cell Sci. 21, 123–127.

Nakamura, M., and Hashimoto, T. 
(2009). A mutation in the Arabidopsis 
γ-tubulin-containing complex causes 
helical growth and abnormal micro-
tubule branching. J. Cell Sci. 122, 
2208–2217.

Oh, S. A., Allen, T., and Twell, D. (2010a). 
A ticket for the live show: microtubules 
in male gametophyte development. 
Plant Signal. Behav. 5, 614–617.

Oh, S. A., Park, K., Twell, D., and Park, S. 
K. (2010b). The SIDECAR POLLEN 
gene encodes a microspore-specific 
LOB/AS2 domain protein required for 
the correct timing and orientation of 
asymmetric cell division. Plant J. 64, 
839–850.

Oh, S. A., Pal, M. D., Park, S. K., Johnson, 
J. A., and Twell, D. (2010c). The 
tobacco MAP215/Dis1-family pro-
tein TMBP200 is required for the 
functional organization of micro-
tubule arrays during male ger-
mline establishment. J. Exp. Bot. 61, 
969–981.

Oh, S. A., Johnson, A., Smertenko A, 
Rahman, D., Park, S. K., Hussey, P. J., 
and Twell, D. (2005). A divergent cellu-
lar role for the FUSED kinase family in 
the plant-specific cytokinetic phrag-
moplast. Curr. Biol. 15, 2107–2111.

Otegui, M., and Staehelin, L. A. (2000). 
Cytokinesis in flowering plants: more 
than one way to divide a cell. Curr. 
Opin. Plant Biol. 3, 493–502.

Palevitz, B. A. (1993). Morphological plas-
ticity of the mitotic apparatus in plants 

of the centrosome. Neither do we know how the phragmoplast 
MT array expands centrifugally during cytokinesis. Although 
mutations in genes encoding proteins fundamentally important 
for MT organization are likely homozygous lethal in sporophytes, 
they can be inherited in and transmitted through the micro-
gametophyte. Mutant microgametophytes become gateways to 
elucidating the functions of such proteins because of the acces-
sibility of the mutant cells. Once functions of more proteins 
are characterized, we expect that pieces of information would 
be integrated and a network connecting these proteins would 
be revealed. Ultimately, we would learn from the microgame-
tophyte regarding mechanisms that regulate nuclear migration, 
chromatin-dependent spindle formation, spindle pole formation, 
asymmetrical cell division, and cell division plane determination 
in angiosperms.
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