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Models of myriad forms are rapidly becoming central to biology. These range from statis-
tical models that are fundamental to the interpretation of experimental results to ordinary
differential equation models that attempt to describe the results in a mechanistic format.
Models will be more and more essential to biologists but this growing importance requires
all model users to become more sophisticated about what is in a model and how that limits
the usability of the model. This review attempts to relay the potential pitfalls that can lie
within a model.
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INTRODUCTION
Biology has long aspired to be an absolute hard science where
observations can be both described and predicted with mathe-
matical precision using algorithms or models. With the rapidly
increasing power and decreasing cost of computational capacity,
this drive toward models and their use is rapidly being pushed into
nearly every part of biology with significant benefit to our under-
standing of the underlying biology (Yuh et al., 1998; Locke et al.,
2005; Jonsson et al., 2006; Millar et al., 2006). Thus, modeling is
an important aspect of biology that will only become more critical
to the successful progress of biological sciences. However, as with
every new method that requires a significant increase in specialized
knowledge, complications with the use, and application of mod-
els can potentially hinder or mislead biological understanding.
Largely these problems arise because every model is a reductionist
description or analysis of empirical data, which requires assump-
tions to be made at the beginning of the modeling process. If the
general user or reader does not fully know these assumptions and
what they mean in a biological context, it is possible for inaccurate
models to permeate and bias entire research fields. This review is
meant to look at the specific applications of models in the typi-
cal biologist’s research program and how some of the underlying
assumptions may be influencing the obtained results or even pre-
venting results from coming to light. A broader knowledge of these
potential impacts is necessary to enable models both computa-
tional and statistical to obtain their proper place in the biologist’s
experimental toolkit.

MODEL ASSUMPTIONS AND INFERENTIAL INFLUENCE
A nearly universal type of model that research labs use on a daily
basis that is not often recognized are statistical models. When using
these statistical models, especially for the analysis of genomic data
such as transcriptomic or metabolomic, the majority of biological
users largely use preformed computational package that contain

built in statistical models to test their data (Basten et al., 1999; Gen-
tleman et al., 2004). In this process, the typical biological user does
not manipulate the structure of the model, which in this case is the
specific terms and relationships among terms within the algorithm
and often does not even investigate the specific settings or explore
underlying assumptions. However, these statistical settings have a
dramatic ability to alter the result that is generated by the compu-
tational package, which may be inaccurate if the statistical setting
does not reflect the biological expectation. I will go through sev-
eral examples of how common statistical model assumptions can
influence the inference that the outcome may provide.

INDEPENDENCE AND MULTIPLE CORRECTIONS
A key procedure in all genomics analysis is to conduct a statistically
appropriate adjustment of the P value to account for the fact that
most genomics tests have a high number of repeated tests (Ben-
jamini and Hochberg, 1995; Doerge and Churchill, 1996; Doerge,
2002; Storey, 2002). The goal of this approach is to account for
the fact that if a researcher conducts 10,000 tests, for instance
10,000 transcripts between two conditions, they will expect 500 of
these to be significant by random chance using a significance level
(α) of 0.05. However, this test presumes that the 10,000 tests are
independent. In contrast, the biology of gene expression regula-
tory networks suggests that they are typically hierarchical. As such,
10,000 transcripts are in all likelihood not independent tests and
we currently do not know how many independent events these
transcripts actually represent. In this setting, conducting a false
discovery rate (FDR) at an a priori defined value of 0.05 may in
fact be so overly conservative that all true positive results may
be removed of their significance. For instance, in an analysis of
expression changes in response to the introduction of a biosyn-
thetic enzyme, AOP2, the only components identified were other
genes within the biosynthetic pathway (Wentzell et al.,2007). How-
ever, an ensuing deeper analysis of the same array data showed
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that just below the significance threshold was a signature indi-
cating that this gene also altered the circadian clocks oscillation
(Kerwin et al., 2011). This threshold effect hiding is also apparent
with this gene where an expression QTL analysis using a conser-
vative significance threshold did not identify this locus as having
global impacts whereas the more specific and thus more liberal
analysis showed that this AOP2 QTL did impact the majority of
oscillatory genes (West et al., 2007; Kerwin et al., 2011). As such,
FDRs should be considered as tools within data analysis that are
necessary but should not be forced into a fixed value. Instead, the
researcher should query the data at multiple levels to ascertain the
most appropriate FDR given their ability to biologically validate
the results.

RANDOM ERROR
Another key assumption of nearly all genomics papers utilizing sta-
tistics is contained in the following statement “The model tested
is y i = μ + P i + εi, the error, εi, is assumed to be normally dis-
tributed with mean 0 and variance σ2

ε ” (Kliebenstein et al., 2006).
In this statement the variance due to stochastic error within the
system is assumed to be random with a normal distribution. How-
ever, it is rapidly being found in prokaryotes that εi is not purely
random and is in fact controlled by genetic variation that is likely
to be present within a genomic experiment (Veening et al., 2008).
Additionally, results are starting to show that εi is also genetically
controlled within eukaryotes (Jarosz and Lindquist,2010; Jimenez-
Gomez et al., 2011; Makumburage and Stapleton, 2011). Thus, it is
likely that the assumption of stochastic noise being a random error
with a particular variance is not an appropriate model in genomic
experiments and that the researcher should investigate the ability
to utilize a random error model in each and every instance. Future
work will be required to develop new approaches that can simul-
taneously account for genetic control over both the average and
variance of a phenotype.

NORMALIZATION AND BIOLOGY
When scientists generate large genomics datasets there is often
a desire to standardize this data using proper statistical theory
prior to any data analysis or modeling approach. These include
normalization of the data to force it into a normal distribution
and the elimination of >3σ outliers. Typically this normaliza-
tion takes the form of a log 2 transformation but there are other
approaches, all with similar intentions to force biological data
into a proper statistical framework of the generalized linear model
(GLM). However, the pushing of biological data into a statistical
framework, while statistically proper, may not be fundamentally
proper biology. As mentioned above, the routine transformation
of transcript data into log 2 values is a simple example of this
type of assumption concerning biological relationships (Doerge,
2002). If a researcher normalizes data such as that for glucosino-
late concentration, metabolite concentration or disease resistance
within Arabidopsis by log 2 to increase its normality, then this
will eliminate the ability to observe biologically validated epistatic
interactions (Wentzell et al., 2007; Rowe and Kliebenstein, 2008;
Rowe et al., 2008). This is a result of the fact that epistatic interac-
tions inherently cause deviations from normality. While log 2 or
other methods nicely transform data into a normal distribution for

statistical purposes, the transformation also imparts an implica-
tion that the organism measures its transcripts on a log basis rather
than an absolute basis because we are now testing for significance
on the log basis. This may or may not accurately reflect the rela-
tionship of expression kinetics as chemistry has nicely shown that
enzymatic reactions adhere to absolute concentrations of protein,
substrate, and product according to Michaelis–Menten relation-
ships. It is possible that the log 2 transformations of expression
data may not be reflective of biological relationships.

All of these observations lead to a significant issue with most
normalization approaches because they are conducted blindly
prior to conducting any investigation of the data (Doerge, 2002;
Fiehn et al., 2005). This could have serious consequences on the
results obtained. For instance, if there is some form of genetic
interaction in a large genomic dataset that generates a synthetic
phenotype not previously seen it is likely to result in genotypes
that appear to be >3σ outliers for a range of phenotypes (Bomblies
et al., 2007; Rowe and Kliebenstein, 2008; Rowe et al., 2008; Bikard
et al., 2009). If these values are removed before actual data analy-
sis, then these unique and novel interactions would be deleted.
As such, it is critical to query the data prior to imposing a spe-
cific model of how the data should be distributed to ensure that
the observed biology agrees with the statistical model that is being
imposed. More frequent use of non-parametric or distribution free
models may be a solution, but these models also incorporate bio-
logical assumptions based upon the statistical model assumptions.
Alternatively new statistical models may need to be developed with
biological systems explicitly in mind.

RANDOM STOCHASTIC MODELS AND WHEN IS BIOLOGY
REAL
Occasionally genomics data is tested with random models to see
if an observation can be explained by random chance. However,
there is the possibility that biology and random models can lead
to the same observation and that in these cases it becomes difficult
to state with precision what is occurring based on the modeling.
An example of this is the analysis of quantitative genetic variation
of various genomics traits, such as metabolomics and transcrip-
tomics,across defined genotype populations. In these experiments,
researchers measure thousands to tens of thousands of traits across
tens or hundreds of genotypes. The biological data lead to a view
that there are regions of the genome that control a majority of
observed phenotypes (transcripts, metabolites, etc.), QTL hotspots
(Brem et al., 2002; Schadt et al., 2003; Monks et al., 2004; Brem
and Kruglyak, 2005; Keurentjes et al., 2006; West et al., 2007; Rowe
et al., 2008).

In contrast to the biology, a complication of these massive
genomics datasets is that there is dramatically more traits mea-
sured (i.e., individual transcripts or metabolites) than there are
independent genotypes causing an imbalanced matrix. This gen-
erates a situation where there is inherently a covariance matrix
between transcripts or metabolites due to the limited genotype
sampling. This matrix imbalance is properly of statistical concern
and several modeling efforts have shown that if you recreate a ran-
dom covariance matrix with properties similar to that found in
biological data that you can create similar patterns of hotspots as
seen in biological data (Breitling et al., 2008; Kang et al., 2008).
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This has led to a number of literature conversations suggesting
that because a random model with purely statistical abstractions
can recreate biology that the researcher must presume that the
biology is be caused by random chance and thereby hotspots do
not really exist (Breitling et al., 2008; Kang et al., 2008; Klieben-
stein, 2009; Montgomery and Dermitzakis, 2009; Verdugo et al.,
2010).

The common view when biology and random models yield the
same observation is that the scientist is supposed to assume that
the observation is due to stochastic random noise within the data
and not from biological causality. However in the case of QTL
hotspots, numerous hotspots have been cloned in Arabidopsis and
yeast and the underlying causal genes validated as causing the sig-
nificant genome wide events. They include genes that encode for
enzymes, transcription factors, and almost any gene that a mol-
ecular biologist could logically predict to alter the expression of
networks or pathways of genes (Brem et al., 2005; Keurentjes et al.,
2007; Wentzell et al., 2007; Jiménez-Gómez et al., 2011; Kerwin
et al., 2011). The biological validation of causality showed that the
mathematical random model which could recreate biology was
not true and did not provide biologically relevant insight.

The above observations show that it may not be a universally
applicable approach to presume that when a random stochas-
tic null model recreates biological observations that the biology
is inherently random or stochastic. In both of the above exam-
ples, proper statistically theory led to models that could explain
(hotspots and epistasis) by random fluctuations in mathematical
equations yet in both instances, the biology could be linked to
specific causal genes showing that they were not random events.
This potential for null models to be dramatically overly cautious
in attempting to describe what is or is not real suggests that the
broader research community needs to re-evaluate other similar
instances where random models caused people to stop studying
interesting biology.

COMPETING MODELS AND BIOLOGICAL TESTING
Occasionally research fields will delve so deep into modeling that it
is possible to lose a connection with the actual biology. This is most
easily visible in fields where there are two competing models that
can both give decent approximations of the biological phenomena
being investigated. A prime example of this is the field of quanti-
tative genetics and population biology where there is a long term
debate about genetic variation and if it is predominantly additive
or epistatic (Turelli, 1988; Falconer and Mackay, 1996; Mackay,
2001; Carlborg and Haley, 2004; Carlborg et al., 2006; Gjuvsland
et al., 2007; Hill et al., 2008). Both sides of the argument can
identify models and corroborating data that prove one side and
counter the other side’s modeling approaches. This then has left
the field largely in a state of stasis with little movement toward an
answer. Because this has largely become a debate of models, there
has been an apparent loss of recognition that the only way to test
which of two nearly equivalent models is correct is via a biolog-
ical analysis. Identifying this biological test of the models would
require a coordinated analysis by both sides of the argument to
test the two models, additive and epistatic, over a broad range of
diverse biological assumptions to identify when the two models
would in fact give different answers when given the same sets of

input. This would then identify the precise biological experiment
or experiments required to settle the argument of models. As more
biological research fields begin to move into modeling it is impor-
tant to ensure that all models are validated using an independent
biological experiment. However, it is critical that this experiment
is not simply designed to validate an aspect of the model being
described, more importantly this experiment should be explicitly
designed to test where two models disagree. Only in this instance
is it possible to state that a model and its assumptions and conclu-
sions can be truly tested and validated. Without these explicit tests
between models rather than validation of single models, biologi-
cal fields can become balkanized and inert while arguing between
models.

MODEL CONSTRAINTS AND PREDICTING THE
UNPREDICTABLE
A final complication of model reliance may come from the shear
fact that models are by definition a reductionist description of
what we currently know. These models while being limited to
the experimental tests that we have currently conducted do have
the ability to begin to expand into previously unidentified mecha-
nisms and occasionally untested conditions and thereby illuminate
biology that had not previously been observed (Jönsson et al.,2005;
Locke et al., 2005; Jonsson et al., 2006; Millar et al., 2006; Saithong
et al., 2010a,b). However, these new model-based predictions are
inherently within the parameter space of all previously conducted
experiments and it is not clear if they are truly unique observa-
tions or simply ones that the biologists had not yet formalized in
a manuscript. While these new observations and predictions are
useful and important, it is the unpredicted and as of yet completely
unknown biology that is truly the most important to access in the
future. Because models are based on human understanding of a
scientific field, our base assumptions inherently shape the models
that are developed and could thereby constrain our ability to find
new biology that does not agree with these assumptions, such as
the central dogma prior to the discovery of regulatory RNA. Thus,
while it is important to work toward a model-based predictive
nature of biology, it is critical to have an equal if not larger efforts
directed to identifying new biology that was never previously con-
sidered either due to flawed assumptions or never looking (Fan
et al., 2011; Kerwin et al., 2011).

CONCLUSION
The development and application of models are a fundamental
component of systems and computational biology that necessary
to enable a deeper understanding of ever growing datasets. With
this potential great benefit, there is also a risk that an overly strong,
focused, and specific push to modeling runs the risk of encapsulat-
ing biological nature at its current state without fully enabling the
incorporation of new and unexpected knowledge. To prevent this
possibility, it is critical that the users of models and the readers of
their papers develop a more sophisticated understanding of how
models and their built in assumptions can influence a research
result or field. Further, I would argue that it is these assumptions
that are as important to test as the actual model outcome because
both are inherently making statements about the biology, which
is the ultimate goal. It is only with this detailed and universal
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understanding of the assumptions within models that we will
begin to truly display potential and power of models in increased
understanding and rate of discovery in biological systems.
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