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Arabidopsis miR319a/b/c primary transcripts are unusual due to the presence of a long
stem and loop structure containing functional miR319a/b/c molecules. In our experiments
carried out using high throughput sequencing (HTS), we have shown that additional micro-
RNAs (miRNAs), miR319a.2/b.2/c.2 are generated from the upper part of the same hairpin
structure. We have also found cognate miRNAa.2∗/b.2∗/c.2∗ to be present in the HTS
results with a considerably lower number of reads. Northern hybridization revealed that
miR319b.2 is mainly expressed in 35-day-old plant rosette leaves, as well as in stem and
inflorescences of 42- and 53-day-old plants. Moreover, it carries multiple signatures of a
functional miRNA, including as follows: (i) its biogenesis is HYL1-dependent; (ii) it is incor-
porated in a substantial amount into RISC complexes containing AGO1, AGO2, or AGO4
protein; (iii) 24 nt-long species of miR319b.2 have been found in inflorescences to be more
abundant than 21 nt miR319b.2 species; (iv) it is present in various ratios to miR319b during
plant development, which suggests the existence of a regulatory mechanism respon-
sible for its biogenesis/processing; (v) there is an observed cross-species conservation
of the miR319a/b/c stem nucleotide sequence extending beyond mature miRNA region;
and (vi) all evidence suggests that intron-containing RAP2.12 mRNA isoform is the target
for miR319b.2. All these features prompt us to claim miR319b.2 as a functional miRNA
molecule.
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INTRODUCTION
MicroRNAs (miRNAs) represent a class of endogenous, 21–24 nt-
long regulatory RNA molecules (Llave et al., 2002; Reinhart et al.,
2002; Palatnik et al., 2003). They are involved in the regula-
tion of gene expression by targeting the cognate mRNA mol-
ecules for cleavage, or by inhibiting their translation. In Ara-
bidopsis thaliana plants, the mature miRNAs are generated from
the fold-back hairpin-like structure of nuclear-localized MIR
gene transcripts termed pri-miRNAs. At least eight proteins are
involved in plant miRNA precursor’s maturation process: type-
III ribonuclease DICER-LIKE 1 (DCL1), dsRNA binding protein
HYPONASTIC LEAVES 1 (HYL1, DRB1), zinc-finger protein
SERRATE (SE), forkhead-associated (FHA) domain-containing
protein DAWDLE (DDL), CAP BINDING PROTEIN 20 (CBP20),
CAP BINDING PROTEIN 80 (CBP80/ABH1), methyltransferase
HUA ENHANCER 1 (HEN1), and HASTY – an ortholog of ani-
mal Exportin 5 (Park et al., 2002, 2005; Han et al., 2004; Kurihara
and Watanabe, 2004; Vazquez et al., 2004; Lobbes et al., 2006; Yang
et al., 2006b,a; Kim et al., 2008; Laubinger et al., 2008; Yu et al.,
2008; Huang et al., 2009).

Plant miR159 and miR319 genes are highly conserved and their
representatives can be found in a variety of plants from mosses
to flowering plants (Kozomara and Griffiths-Jones, 2011). It is
postulated that miR159 and miR319 evolved from a common

ancestor and share sequence identity in 17 out of 21 nt (Kozomara
and Griffiths-Jones, 2011; Li et al., 2011). However, due to
sequence specificity and temporal and special expression pat-
terns in Arabidopsis plants, they have distinct targets; miR159
downregulates the expression of MYB, while miR319 downreg-
ulates the expression of TCP transcription factor, respectively.
The miR159 is involved in flowering, male fertility, and ABA-
dependent seed germination processes, while miR319 plays a role
in leaf and flower development; thus, both are critical for plant
development, growth, morphogenesis, and reproduction (Palat-
nik et al., 2007; Reyes and Chua, 2007; Nag et al., 2009). Both
MIR159 and MIR319 families contain three genes: MIR159a/b/c,
and MIR319a/b/c, respectively. A unique future of MIR159 and
MIR319 genes is the presence of a long stem and loop struc-
ture. The base-proximal segment of miR159/319 stem and loop
precursors is conserved, while the loop-proximal part is con-
served to a lesser extent (Bologna et al., 2009). The biogenesis
pathway of both miRNAs is unusual since it is a loop-to-base
processing mechanism that begins with the cleavage of the loop,
instead of the usual cut at the base of the stem-loop structure.
Moreover, in several cases, additional small RNAs generated from
miRNA 319a/b/c precursors were observed. It is possible that
a non-canonical mechanism of the miRNA159/319 maturation
potentially generates additional sRNAs from pri-miRNA159/319
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hairpins. These additional sRNAs may be non-functional inter-
mediates generated during the miRNA biogenesis pathway or
functional, regulatory RNA molecules (Addo-Quaye et al., 2009;
Bologna et al., 2009). It was shown by Zhang et al. (2010) that addi-
tional sRNAs generated from miR159a, miR319a, and miR319b
precursors are stable in A. thaliana plants infected by various
Pseudomonas syringae strains. They have shown that miR319b.2
is the main sRNA molecule derived from pri-miRNA319b. In this
paper, we show that miR319b.2 sRNA is also present at a relatively
high level in Arabidopsis stems and inflorescences in non-infected
plants. Moreover, our analysis shows that these additional small
RNAs exhibit many futures similar to functional miRNA mole-
cules, namely, they are associated with AGO proteins, and our
results point to an intron-containing RAP2.12 mRNA isoform as
a target of these miRNAs.

MATERIALS AND METHODS
PLANT MATERIAL AND GROWTH CONDITIONS
Arabidopsis thaliana (L.) Heynh, Col-0 wild type plants, homozy-
gous se-1 plants (NASC, N3257), homozygous T-DNA inser-
tion line hyl1-2 (SALK_064863), homozygous line ΔmiR319b
(SALK_037093), and miR319boe (SALK_059451) were grown
in conditions as described in (Szarzynska et al., 2009). Plants
for developmental and organ specific northern blot analyses
and developmental quantitative real-time PCR profiling of pri-
miRNAs from MIR319 family were grown in the hydroponic
growing system for A. thaliana (Araponics SA, Liege, Belgium).

RNA ISOLATION
For northern blot analyses, total RNA was isolated from 14-day-
old seedlings, 20- day-old plants, and from organs (roots, rosette
leaves, stems, and inflorescences) collected in 35, 42, and 53 days
after sowing (DAS), using the method described in (Pant et al.,
2009). For quantitative real-time PCR analyses, total RNA was
isolated as described in (Szarzynska et al., 2009).

DEEP SEQUENCING OF RNA AND BIOINFORMATIC ANALYSES
Total RNA isolated from the wild type A. thaliana Col-0 35-day-old
rosette leaves (plants were grown in soil) was used for a small RNA
library construction. The small RNA libraries were generated and
sequenced by Illumina (Fasteris SA, Plan-les-Ouates, Switzerland
and British Columbia Cancer Agency, Vancouver, BC, Canada).
Adaptor sequences were identified and trimmed from each read
using a customized Perl script. Reads in which the adaptor could
not be identified were discarded. Two independent rounds of
sequencing resulted in a total of more than five million unique,
quality-filtered, and adaptor-trimmed reads. As expected for a
sRNA sequencing procedure, the size distribution of the short
sequences revealed the presence of dominating classes of 24 and
21 nt reads. The maximum read count in our sample was 657050.
A BWA program was used to align the trimmed reads to the set of
pri-miRNAs and miRNA genes (Li and Durbin, 2010). For each
library, we counted the number of trimmed reads within the 18–
24 nt range. Reads with counts of less than 5 were discarded giving
final number of 41829 and 167616 sequences for two separate
replicas.

Counts for the sequences which were mapping to the pri-
miRNA were normalized by the total number of 18–24 nt trimmed

reads in the library and presented in the form of “reads per mil-
lion (RPM)”. Trimmed reads that were <18 nt or >24 nt were not
considered in this analysis. Three libraries were downloaded from
the GEO database: GSM253622, GSM253623, and GSM253624,
representing the sequences immunopurified with AGO1, AGO2,
and AGO4 complexes, respectively. The reads were mapped to
pri-miRNA with the BWA program.

The data discussed in this publication have been deposited in
NCBI’s Gene Expression Omnibus and are accessible through GEO
Series accession number GSE353351.

NORTHERN BLOT ANALYSES
RNA (30–50 μg) was fractionated on a 15–17% denaturing
(7 M urea, Sigma, Deisenhofen, Germany) polyacrylamide gel
(PAGE), transferred to a Hybond-NX membrane (Amersham
Biosciences-GE Healthcare,Little Chalfont,UK) by capillary trans-
fer, using 20xSSC buffer, and fixed by UV-crosslinking. Pre-
hybridization was carried out at 42˚C for 2 × 30 min, using Per-
fectHyb Hybridization Buffer (Sigma, Deisenhofen, Germany).
Probes were labeled with γ32P ATP (6000 Ci/mmol; NEN-
PerkinElmer Life and Analytical Sciences, Waltham, MA, USA),
using T4 polynucleotide kinase (Roche,Mannheim,Germany) and
purified on Illustra Micro Spin G-25 Columns (GE Healthcare).
Hybridization was performed overnight at 42˚C. Lengths of RNA
molecules were estimated using 32P-labeled Decade Marker Sys-
tem (Ambion). Oligonucleotides complementary to miR159/319
and miR319b.2 (see Table A1 in Appendix) were used as probes. A
probe complementary to U6 snRNA was used as a loading control.

SEMIQUANTITATIVE ANALYSIS OF pri-miRNA319b EXPRESSION
The concentration of cDNA from the wild type, miR319boe and
ΔmiR319b mutant plants was normalized against the β-actin as
described in (Szarzynska et al., 2009). The PCR products were elec-
trophoresed on 1.2% agarose gels in 1 × TBE buffer (for primer
sequences see Table A1 in Appendix).

QUANTITATIVE REAL-TIME PCR PROFILING OF pri-miRNAs AND
RAP2.12 mRNA
Real-time PCR analyses were carried out using methodology
described in (Szarzynska et al., 2009). Log10 were calculated from
the fold change of particular pri-miRNAs or RAP2.12 mRNA to
PP2A transcript (At1g69960).

5′-RACE EXPERIMENTS
5′-RACE experiments were performed using SMARTer RACE
cDNA Amplification Kit (Clontech, Mountain View, CA, USA),
according to the manufacturer’s protocol. All primers used in the
experiments are listed in Table A1.

RESULTS
DEEP SEQUENCING REVEALS THE PRESENCE OF ADDITIONAL SMALL
RNAs GENERATED FROM pri-miRNA319 PRECURSORS
We carried out SOLEXA sequencing reactions of RNA enriched
with small RNAs isolated from 35-day-old A. thaliana rosette

1http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE35335

Frontiers in Plant Science | Plant Genetics and Genomics March 2012 | Volume 3 | Article 46 | 2

http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc\protect \kern +.1667em\relax $=$\protect \kern +.1667em\relax GSE35335
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Sobkowiak et al. Additional miRNAs from miR319a/b/c pri-miRNAs

leaves. As already reported by Bologna et al. (2009) and Zhang
et al. (2010), we also found extra sRNA species generated
from the same stem and loop structure where miRNA 319a/b/c
and miRNAa∗/b∗/c∗ are embedded. They are located in the
loop-proximal part of the stem and loop precursor structure
(Figure 1). These most abundant species were named miRNA
319a.2/319b.2/319c.2, respectively. We also found sRNA species
that can be regarded as miRNA∗ to miRNA 319a.2/b.2. Table 1
shows normalized counts for the reads of the miRNAs derived
from 319a/b/c precursors found in SOLEXA deep sequencing
results. File A1 in Appendix contains the full list of all match-
ing sRNAs, which originate from pri-miR319a/b/c. Analysis of
these data clearly shows that the number of reads for miR319b.2
is the highest, even exceeding the number of the reads obtained
for miR319a/b, miR319a, and miR319b are identical in sequence;
therefore, it is not feasible to distinguish the number of reads
derived from each locus separately.

QUANTITATIVE REAL-TIME PCR PROFILING OF pri-miRNAs FROM
MIR319 FAMILY AT DIFFERENT DEVELOPMENTAL STAGES IN WILD
TYPE A. THALIANA PLANTS
The small number of reads for miR319c, miR319c.2, and
miR319a.2 obtained in the SOLEXA experiments induced us to
evaluate the expression profiles of all MIR319 family members in
various developmental stages and organs studied.

We designed primers to specifically amplify each of the partic-
ular MIR319 gene family transcripts, and using real-time PCR,
we carried out pri-miR319a/b/c expression profiling. Figure 2
shows the obtained results. All family members show differences
at the transcript level during plant development. For instance,
pri-miR319c expression decreases, while pri-miR319a and pri-
miR319b increase in roots of 42-day-old plants as compared to
their level in 35- and 53-day-old plants, respectively. We were not
able to detect pri-miR319a in rosette leaves of 42- and 53-day-
old plants, while at the same time, we observed the expression of
two other family members with the highest level of pri-miR319c.
The levels of all pri-miRs319 differ in rosette leaves of 35-day-
old plants. Pri-miR319b and pri-miR319c are almost to the same
level. However, our high throughput sequencing (HTS) results do
not show the same amount of mature miR319a/b and miR319c in
rosette leaves of the 35-day-old plants. It indicates that the level of

pri-miR does not necessarily mirror the level of mature miRNA.
Generally, the highest expression of all MIR319 family genes occurs
in stems and inflorescences. Our real-time PCR data shows that
pri-miR319b from the MIR319 family is the dominating transcript
present in the majority of tissues studied.

MIR319b OVEREXPRESSION AND NULL MUTANTS SHOW PHENOTYPIC
DIFFERENCES IN COMPARISON TO WILD TYPE PLANTS
We identified a null-insertional T-DNA Arabidopsis mutant in
the MIR319b locus (SALK_037093; ΔmiR319b), and a MIR319b
overexpression mutant (Salk_059451; miR319boe) within SALK
collection. Both of them showed phenotypic differences when
compared to wild type plants (Figure 3A). To our surprise, both
mutants exhibited growth retardation. However, the retardation
is more profound in the case of the overexpression mutant. Also,
the shape of rosette leaves is changed when compared to wild
type plants. Leaves of the null mutant plant are narrower, their
margins are rolled inwards, while the morphological changes in
the case of the plant overexpressing MIR319b are more profound,
showing a more compact rosette of arrow-shaped leaves, leaf ser-
rated margin, its blade sharply pointed at the tip, and a strong leaf
curvature when compared to wt plants. We did not observe any dif-
ferences in flower shape and structure. In general, the phenotype
of the miR319boe mutant resembles strongly the phenotype of
MIR-JAW (MIR319a) overexpressing mutant described by Weigel
et al. (2000). RT-PCR reaction carried out using RNA isolated
from 42-day-old stems for MIR319b transcript detection revealed
the increased level of primary transcript in the miR319boe mutant
and the lack of transcript in the case of ΔmiR319b mutant plants
(Figure 3B). Northern hybridization shows the lack of miR319b.2
in the null mutant plants and increased levels of miR319a/b/c and
miR319b.2 in the miR319boe mutant, as compared to wild plants.
The very faint hybridization signal observed in the case of the
ΔmiR319b mutant, when the radioactive probe for miR319b.2 was
used, derives probably from the weak expression of miR319a.2 that
may weakly cross-hybridize (there are two mismatches between
miR319a.2 and miR319b.2, Figures 3C,D). Since there are 4 nt
mismatches between miR319b.2/miR319c.2 and five between
miR319a.2/miR319c.2, we anticipate it to be unlikely that the
probe for miR319b.2 detection is cross-hybridizing with the
miR319c.2. Northern hybridization results are in agreement with

FIGURE 1 | Stem and loop structures of Arabidopsis pre-miR319 precursors. Sequences of miR319a, b, and c are in green, sequences representing
miRNA319a.2, b.2, and c.2 are in red, and star sequences are in black circles, respectively.
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Table 1 | Number of representative reads for specific miR319 species

and additional miRNAs generated from their precursors.

Micro RNA species Counts (RPM)

miR319a/b1 157

miR319a* 0

miR319a.2 13

miR319a.2* 6

miR319b/a1 157

miR319b* 171

miR319b.2 889

miR319b.2* 16

miR319c 53

miR319c* 0

miR319c.2 13

miR319c.2* 0

The RPM counts were rounded to the nearest integer value.
1miR 319a and miR 319b are identical in sequence; therefore, it is not possible to

distinguish the number of reads derived from each locus separately.

the expression profile of pri-miR319a/b/c described in previous
chapter (see Figure 2). All these observations, together with the
deep sequencing data, suggest that miR319b.2 represents a stable
molecule being a product of pre-miR319b processing.

miRNA 319b.2 DERIVED FROM pri-miR319b HAS PROPERTIES OF
FUNCTIONAL microRNA
The inspection of the GEO database of the HTS results for AGO1,
AGO2, and AGO4 immunoprecipitates for miR319a/b, miR319c,
and miR319a.2/b.2/c.2 revealed the highest number of reads for
miRNA 319a/b and miR319b.2 as RNA species incorporated into
RISC complexes. This suggests a functional role for miR319b.22.
Table 2 shows the numbers of particular miRNAs and miRNAs
from the miR319 family found in AGO1, AGO2, and AGO4
immunoprecipitates. Zhang et al. (2010) have recently shown
the presence of miR319a.2, as well as miR319b.2, in small RNA
libraries from Arabidopsis infected with various P. syringae pv.
tomato (Pst) DC3000 strains, which again strengthens the idea
that these miRNAs may be functional.

We studied the presence of miR319b.2 in plants by carry-
ing out northern hybridization for miR159/319 and miR319b.2
in selected developmental stages and organs (see Figure 4).
Because of high similarity between miR159 and miR319 fam-
ilies that share sequence identity of 17 out 21 nt, both species
hybridize to miR319a/b probe. Since in the ΔmiR319b mutant
background only a very faint hybridization signal for miR319a.2
was observed (Figure 3), we omitted MIR319a and MIR319c
expression in miR319b/miR319b.2 ratio calculations. Analysis of
hybridization signals shows that miR159/319b and miR319b.2
are detectable predominantly in rosette leaves, stems, and inflo-
rescences (Figures 4C–E). The ratio of hybridization signals for
miR319b to miR319b.2 in stems shows a non-equimolar abun-
dance of both micro RNAs, with three times higher abundance

2http://www.ncbi.nlm.nih.gov/geo/

of miR319b in 35-day-old and 42-day-old plants. However, in
53-day-old stems this ratio is changed and shows only 1.7 higher
expression of miR319b in comparison to miR319b.2. Interestingly,
the amount of miR319b.2 in 35-day-old rosette leaves exceeds the
amount of miR319b (Figure 4C). It is in agreement with our
HTS data that shows a substantially higher number of miR319b.2
reads than that of miR 319a/b. Changes in stechiometry between
miR319b and miR319b.2, and the higher amount of the miR319b.2
in comparison to miR319b in 35-day-old rosette leaves supports
our idea of a possible functional and regulatory role of miR319b.2.

In 42-day-old and 53-day-old inflorescences we observed (in
addition to 21 nt long miR319b.2) 24 nt-long species, which
constitute the main hybridization band (Figures 4D,E). The 24
nt-long miRNA species have already been reported and represent
the products of DCL3 activity (Vazquez et al., 2008; Zhou et al.,
2010). Moreover, it was shown by Vazquez et al. (2008), that 24
nt-long miRNA species are present predominantly in the inflores-
cences. The observed 24 nt length of miR319b.2 in inflorescences
emphasizes its miRNA-like biogenesis and characteristics specific
of miRNA species.

It was shown that the biogenesis of the miR319b is HYL1-
dependent (Feijie and Yuke, 2007; Szarzynska et al., 2009). There-
fore, we tested whether the amount of mature miR319b.2 also
depended on the activity of the HYL1 protein. Figure 4F shows
that, indeed, the accumulation of miR319b.2 is decreased in the
hyl1-2 mutant, and the same was observed for the miR159/319.
Thus we concluded that the biogenesis of both miR319b.2 and
miR319b is HYL1-dependent.

RAP2.12 mRNA AS A TARGET FOR miR319b.2
A bioinformatic search of putative miR319b.2 targets pointed to
five mRNAs (see Table A2 in Appendix). One of them was the
At1g53910 gene encoding RAP2.12, a member of the ERF (eth-
ylene response factor) subfamily B-2 of ERF/AP2 transcription
factors family. Figure 5 shows the structure of RAP2.12 gene and
its two mRNA isoforms. There are two alternatively spliced mRNA
isoforms. One of them is fully spliced, while the other retains a
second intron, which is located within the 3′-UTR. As shown in
Figures 6A,B, real-time PCR measurements revealed an approxi-
mately ninefold higher amount of RAP2.12 mRNA isoform con-
taining intron in comparison to the one that is fully spliced;
both in 42-day-old wild type plant stems and inflorescences
(Figures 6A,B). Only RAP2.12 mRNA isoform containing intron
can be targeted by miR319b.2 within 3′-UTR region (Figure 5B).
In the NEOMORPH database3, there are RAP2.12 mRNA frag-
ments which are cut exactly at the putative slicing site, which is
located in the middle of the intron. However, using the 5′-RACE
approach we were not able to prove experimentally that RAP2.12
mRNA intron-containing isoform is cleaved by miR319b.2-guided
RISC complex at the exactly predicted site. Our 5′-RACE results
show mRNA fragments cut close, and always downstream from
the putative slicing site (Figure 5B). We decided to compare the
amount of putative 3′-intron-containing RAP2.12 mRNA isoform
cleavage product in wt plants, miR319boe, and ΔmiR319b mutant

3http://neomorph.salk.edu/aj/pages/smRNAome.html
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FIGURE 2 | Quantitative real-time PCR profiling of pri-miRNAs from

MIR319 family in different developmental stages in wild type

A. thaliana plants (14-, 20-, 35-, 42-, and 53-day-old plants). (A–C)

Expression patterns of pri-miR319a, pri-miR319b, and pri-miR319c,
respectively. *Not detected, ∧ log10 calculated from the fold change of
particular pri-miRNAs standardized to the PP2A transcript level
(At1g69960). Because the expression of pri-miR319a/b/c is in most cases

lower than the level of PP2A transcript, the graph was rescaled according
to the following formula: abs(xmax-x), where abs denotes absolute value,
xmax represents the lowest integer value of relative expression level in the
original graph and x represents actual expression level for a given
pri-miRNA in the particular developmental stage. Real-time PCR for all
pri-miR319 was carried out in three biological replicates. Thin black lines
represent SD.

plants. Agarose gel electrophoresis of 5′-RACE product revealed
almost no product in the ΔmiR319b mutant background, while

it was present in higher amounts in the miR319boe mutant back-
ground as compared with the wild type plants (Figure 5C). Apart
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FIGURE 3 |The phenotypes of 42-day-old A. thaliana wild type,

ΔmiR319b (Salk_037093), and miR319boe (Salk_059451) mutant plant

(A). RT-PCR profiling of the pri-miR319b level. (B) The upper panel shows
the increased level of primary transcript in the miR319boe mutant and the
lower panel – the lack of transcript in the case of ΔmiR319b mutant plants.
Northern blot hybridization (C,D) of miR319 and miR319b.2 in the wild type,
miR319boe and ΔmiR319b mutant plants. RNA was isolated from stems
[left panel (C)] and inflorescenses [right panel (D)]. For better visualization
of miR319b.2 hybridization signals, these blots were longer exposed than in
the case of miR319b.

Table 2 | Detection of miR319 a/b/c and additional sRNAs from

miR319a/b/c precursors within AGO1, AGO2, and AGO4

immunoprecipitates.

miRNA AGO1 AGO2 AGO4

miR319a/b 705 80 167

miR319a.2 0 0 92 (23 nt)

miR319b.2 206 75 206 (23 nt)

miR319c 16 0 32

miR319c.2 42 0 1

from the 5′-RACE slicing product of the expected length, we also
observed degradation products (marked with a star in Figure 5C)
that are present only in wt and miR139boe mutant lines.

The real-time PCR was performed using primers flanking
the predicted slicing site for five putative miR319b.2 targets in
wt plants and hyl1-2, se-1, miR319boe, and ΔmiR319b mutants,
respectively. The experiments were done for 42-day-old plants
and RNA was isolated from stems and inflorescences. Only
in the case of RAP2.12 we observed the expected results. For
the intron-retaining mRNA isoform, the level in hyl1-2, se-1,
and ΔmiR319b mutants was increased, while in the miR319boe
mutant – decreased, when compared to Arabidopsis wt plants
(Figures 6A,B). In parallel experiments, no significant changes
were observed in case of the fully spliced RAP2.12 mRNA isoform

(Figures 6A,B). All these results indicate that RAP2.12 may be
a target for miR319b.2 in stem and inflorescences of A. thaliana
plants.

DISCUSSION
Recent bioinformatic analyses of eukaryotic transcriptome
sequences generated using new generation sequencing (NGS)
approaches revealed the presence of multiple types of small RNA
species with known and unknown functions (Sobala and Hut-
vagner, 2011). Studies carried out on Arabidopsis transcriptome
revealed the presence of a new class 19 nt-long small RNAs corre-
sponding to the 5′ end of the specific tRNA species. These small
RNAs accumulate to high levels in phosphate-starved roots. How-
ever, their biological function is still not clear (Hsieh et al., 2010).
In addition, it was found that small RNAs with evolutionary con-
servation of size and position are derived from the vast majority of
snoRNA loci in Arabidopsis, as well as in other species. These sno-
derived RNAs (sdRNAs) are associated with Arabidopsis AGO7. It
is postulated that there is an interplay between the RNA silencing
and snoRNA-mediated RNA processing and RNA-directed regu-
latory system (Taft et al., 2009). In humans, many small RNAs
derived mainly from 3′-ends of intron sequences and 3′-UTRs
were reported. They were found to be associated with AGO1/2.
Valen et al. (2011) revealed that these sRNAs are the products of
non-canonical miRNA biogenesis pathways. Finally, it was shown
that viral infection by rice stripe virus (RSV) induces expression
of novel-phased miRNAs and the accumulation of miRNA∗s from
rice conserved cellular miRNA precursors (Du et al., 2011). All
of these data show that we experience the genesis of the still-
expanding realm of small regulatory RNAs deriving from the
known, canonical RNA species.

Our studies regarding miR319b.2 indicate that new, functional
sRNA molecules are generated from already known, conservative
Arabidopsis miRNA genes. As mentioned previously, Zhang et al.
(2010) have shown the presence of miR319a.2 and miR319b.2
in small RNA libraries from Arabidopsis infected with various
P. syringae pv. tomato (Pst) DC3000 strains. However, our results
show that it is mainly miR319b.2, which is expressed during plant
development in non-stressed conditions. We cannot rule out the
possibility that miR319a.2 and miR319c.2 are generated at higher
levels in other developmental stages than the ones we studied,
or in a plants response to stress conditions. In this paper, we
show that miR319b.2 derived from pri-miR319b has properties
of many functional miRNAs, such as: (i) its biogenesis is HYL1-
dependent; (ii) it is incorporated in a substantial amount into
RISC complexes containing AGO1, AGO2, or AGO4 proteins; (iii)
24 nt-long species of miR319b.2 have been found in inflores-
cences, where they are more abundant than 21 nt-long miR319b.2
species (Vazquez et al., 2008; Hu et al., 2011); (iv) it is present
in various ratios to miR319b during plant development, which
suggests the existence of a regulatory mechanism responsible for
its biogenesis/processing; (v) there is cross-species conservation
of the miR319a/b/c stem nucleotide sequence extending beyond
the mature miRNA region. This conservation is clearly visible in
the regions where miR319a.2/b.2/c.2 are located. Although this
conservation is not as pronounced as in the case of the mature
miR319a/b/c sequences, one can observe a clustering of these
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FIGURE 4 | Detection of the mature miR319 and miR319b.2 in the wild

type A. thaliana plants. Northern hybridization was performed with total
RNA enriched for small RNAs from 14-day-old seedlings (A), 20-day-old
rosette leaves (B), 35-day-old plants (roots, rosette leaves, and stems) (C),
42-day-old (D), and 53-day-old plants (E) (roots, rosette leaves, stems, and
inflorescences) using the probe for miR319a/b and miR319b.2. Biogenesis of
miR319b.2 is HYL1-dependent (F). In (F), hybridization was carried out using

RNA isolated from the stems of 42-day-old plants. The ratio between 319b
and 319b.2 signals is indicated in (C–E), and between miR319b or miR319b.2
in wild type and hyl1-2 mutant plants in (F). For better visualization of
miR319b.2 hybridization signals, these blots were longer exposed than in the
case of miR319b. The probe for U6 snRNA was used as RNA loading control.
(G) Shows nucleotide sequences of miR319a/b/c, and miR319a.2/b.2/c.2,
respectively.

sequences within the main taxonomic groups (dicots, monocots,
lower plants; Li et al., 2011).

Previously, using in silico approach, Zhang et al. (2010) pre-
dicted eight putative targets for miR319b.2. Our bioinformatic
analyses found four additional presumed targets. The five best
predictions were evaluated experimentally. Among these, RAP2.12
mRNA is one of the most likely. Target sequences matching the
miR319b.2, miR319a.2, and putative miR319c.2 sequences was
found in the RAP2.12 intron that is retained in the mature mRNA
in the course of alternative splicing. Analyses of NEOMORPH
database show that the RAP2.12 mRNA fragments are cleaved
exactly at the predicted site in at least two independent experi-
ments. However, the 5′-RACE for RAP2.12 cleavage site was not
conclusive and we were not able to confirm experimentally that
the 3′-mRNA slice product cleaved exactly in the predicted slic-
ing site. Instead, the 3′-products located 20–60 nt downstream
from the predicted slice site were observed. It is likely that sliced
mRNA 3′-product is unstable and undergoes rapid degradation in

tissues and organs studied. This supposition is in agreement with
our results of slicing site detection using the 5′-RACE approach
shown in Figure 5C. In addition to the 5′-RACE product of the
expected length, we also observed shorter products derived from
the intron region.

Assuming that the intron-containing RAP2.12 isoform is a tar-
get of miR319b.2, we predicted that its expression would change
in the miRNA biogenesis mutants, miR319boe, and ΔmiR319b
mutant plants when compared to wt plants. In the case of fully
spliced RAP2.12 isoform, we did not expect any changes. qPCR
analyses of the RAP2.12 two isoforms in the wt, hyl1-2, se-1,
miR319boe, and ΔmiR319b mutant plants confirmed in general
our predictions. No fluctuations were noted in the fully spliced
RAP2.12 mRNA isoform level in any mutant background stud-
ied, while the level of the intron-containing RAP2.12 isoform
was higher in the miRNA biogenesis mutant plants and in the
ΔmiR319b mutant, and lower in the miR319boe mutant plants
when compared to wt plants. However, we expected the expression
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FIGURE 5 |The structure of RAP2.12 gene (A) and its two mRNA

isoforms (B). The predicted slicing site within intron-retaining mRNA
isoform is marked and enlarged. Black arrows point to predicted slicing
site and identified products of 5′-RACE carried out for RAP2.12 slicing
products. (C) The agarose gel showing the 3′-RAP2.12 intron-containing

mRNA isoform cleavage products in wt plants, miR319boe, and
ΔmiR319b mutant plants. Arrow points to the expected length of
5′-RACE product, star depicts degradation products obtained during
5′-RACE. In each line, five 5′-RACE reaction products were pooled
together and loaded on gel.

FIGURE 6 | Real-time PCR analyses performed for two RAP2.12 mRNA

isoforms in 42-day-old plants. Fully spliced isoform (black bars) was
amplified using primers flanking exon–exon junction and the intron-retaining
isoform (gray bars) was amplified with primers flanking predicted slicing site

(A, B). Relative expression level of both mRNA isoforms of wild type and
mutant hyl1-2, se-1, miR319boe, and ΔmiR319b plants, were analyzed in
stems and inflorescences, respectively. C t values for all mRNA transcripts
were normalized against the PP2A (At1g69960) C t value.
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of intron-retained RAP2.12 isoform in the ΔmiR319b mutant
plants to be higher than in the wild type plants and at least the same
as is in the case of hyl1-2 or se-1 mutants. The level of the RAP2.12
intron-retained isoform is higher than that in the wild type plants,
but it does not reach the level of this isoform observed for miRNA
biogenesis mutants. We anticipate that the low levels of miR319a.2
and miR319c.2 still present in the ΔmiR319b mutant plants may
be responsible for targeting the RAP2.12 intron-retained isoform
and down-regulating its expression, in comparison to hyl1-2 or
se-1 mutants in which the biogenesis of all of these miRNAs is
affected. This prediction is also supported by the very weak pres-
ence of the slicing product in the ΔmiR319b mutant plants that
can be the result of miR319a.2 and/or miR319c.2 activities.

The miR319a/b/c-targeting of the TCP transcription fac-
tors was shown in jasmonate biosynthesis, which is involved in
plant senescence (Schommer et al., 2008). RAP2.12 with one
alternatively spliced mRNA isoform is potentially targeted by

miR319b.2 and is also involved in plant senescence and plant
response to osmotic stress (Papdi et al., 2008). Thus, it is feasible
that both types of miRNAs: miR319a/b/c and miR319a.2/b.2/c.2
are involved in a similar physiological processes in plant
development.
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APPENDIX
List of all sRNA sequences which match the miR319 primary
transcripts

# pri-miR_id start:end_position strand raw_counts miR_id

ath-MIR319a 48:69 + 8 miR319a.2∗
ath-MIR319a 110:132 + 16 miR319a.2
ath-MIR319a 152:171 + 6
ath-MIR319a 154:169 + 5
ath-MIR319a 154:174 + 90 miR319a
ath-MIR319a 155:173 + 5

ath-MIR319b 3:21 + 5
ath-MIR319b 3:23 + 213 miR319b∗
ath-MIR319b 4:22 + 10
ath-MIR319b 4:23 + 35
ath-MIR319b 4:24 + 6
ath-MIR319b 48:69 + 8 miR319b.2∗
ath-MIR319b 108:122 + 8
ath-MIR319b 108:123 + 7
ath-MIR319b 108:124 + 10
ath-MIR319b 108:125 + 22
ath-MIR319b 108:126 + 21
ath-MIR319b 108:127 + 73
ath-MIR319b 108:128 + 538 miR319b.2
ath-MIR319b 108:129 + 132
ath-MIR319b 108:130 + 98
ath-MIR319b 108:131 + 11
ath-MIR319b 109:129 + 8
ath-MIR319b 152:167 + 5
ath-MIR319b 152:172 + 90 miR319b
ath-MIR319b 153:171 + 5

ath-MIR319c 126:146 + 16 miR319c.2
ath-MIR319c 170:185 + 5
ath-MIR319c 170:190 + 31 miR319c
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Table A1 | Olioguncleotide sequences used as primers or probes.

Oligonucleotide Sequence

miR159/319 probe 5′AGGGAGCTCCCTTCAGTCCAA3′

miR319b.2 probe 5′TTGTCTCTCGCATCATTCATT3′

U6 snRNA probe 5′TCATCCTTGCGCAGGGGCCA3′

pri-miR319bF 5′CAAATTGAGTCTTCACTTCTC3′

pri-miR319bR 5′CTTACATGAAATGCAAAAATG3′

RAP2.12 cleavage site F (intron-containing isoform F) 5′ATCCAGTTTCATGTAAATAAG3′

RAP2.12 cleavage site R (intron-containing isoform R) 5′ACCACAACCCCTAAAAATAAG3′

RAP2.12 spliced isoform F 5′CAGTTTCATGGAGTTCCTGT3′

RAP2.12 spliced isoform R 5′GAGAGGTTCAAACACATTATG3′

RAP2.12 5′RACE1st step 5′GATTTATTTGATTAAACAGATGAGAG3′

RAP2.12 5′RACE2nd step 5′AGGTTCAAACACATTATGACAAATG3′

Table A2 | Five protein-coding genes selected as putative targets for miR319b.2.

No. Target gene Function miR319b2/target complementarity

1. At1g72960 Root hair defective 3 GTP-binding (RHD3) family protein miR319b2 ACAGAGAGCGUAGUAAGUAA

:::::::::::::. :::::

Target UGUCUCUCGCAUCGAUCAUU

2. At3g06080 Unknown protein miR319b2 ACAGAGAGCGUAGUAAGUAA

:::.:.::::::::::::::

Target UGUUUUUCGCAUCAUUCAUU

3. At1g69530 A. thaliana EXPANSIN A1 miR319b2 AACAGAGAGCGUAGUAAGUAA

: ::::::::..:::::..:

Target UAGUCUCUCGUGUCAUUUGUA

4. At2g29120 GLUTAMATE RECEPTOR 2.7 miR319b2 AACAGAGAGCGUAGUAAGUAA

:::::::.::::: :: ::

Target CUGUCUCUUGCAUCUUUAUUU

5. At1g53910 RAP2.12 – member of the ERF (ethylene response factor) subfamily B-2 of

ERF/AP2 transcription factor family

miR319b2 AACAGAGAGCGUAGUAAGUAA

::.:: ::::::.:::.::

Target GAGUUUCCCGCAUCGUUCGUU
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