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The number of plant mitochondrial genomes sequenced exceeds two dozen. However, for
a detailed comparative study of different phylogenetic branches more plant mitochondrial
genomes should be sequenced. This article presents sequencing data and comparative
analysis of mitochondrial DNA (mtDNA) of the legume Vicia faba. The size of the V. faba
circular mitochondrial master chromosome of cultivar Broad Windsor was estimated as
588,000 bp with a genome complexity of 387,745 bp and 52 conservative mitochondrial
genes; 32 of them encoding proteins, 3 rRNA, and 17 tRNA genes. Six tRNA genes were
highly homologous to chloroplast genome sequences. In addition to the 52 conservative
genes, 114 unique open reading frames (ORFs) were found, 36 without significant homol-
ogy to any known proteins and 29 with homology to the Medicago truncatula nuclear
genome and to other plant mitochondrial ORFs, 49 ORFs were not homologous to M.
truncatula but possessed sequences with significant homology to other plant mitochon-
drial or nuclear ORFs. In general, the unique ORFs revealed very low homology to known
closely related legumes, but several sequence homologies were found between V. faba,
Beta vulgaris, Nicotiana tabacum, Vitis vinifera, and even the monocots Oryza sativa and
Zea mays. Most likely these ORFs arose independently during angiosperm evolution (Kubo
and Mikami, 2007; Kubo and Newton, 2008). Computational analysis revealed in total about
45% of V. faba mtDNA sequence being homologous to the Medicago truncatula nuclear
genome (more than to any sequenced plant mitochondrial genome), and 35% of this homol-
ogy ranging from a few dozen to 12,806 bp are located on chromosome 1. Apparently,
mitochondrial rrn5, rrn18, rps10, ATP synthase subunit alpha, cox2, and tRNA sequences
are part of transcribed nuclear mosaic ORFs.
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INTRODUCTION
The number of plant mitochondrial genomes being sequenced
exceeds two dozen. Sequencing data analysis was well presented
in different reviews (Kubo and Mikami, 2007; Kubo and New-
ton, 2008; Kitazaki and Kubo, 2010; Maréchal and Brisson, 2010;
Woloszynska, 2010). The published data indicate that flowering
plants contain the largest mitochondrial genomes reported so
far, consisting of heterogeneous populations of mainly linear and
sometimes circular DNA molecules. Interestingly, size and organi-
zation of these molecules differ not only among closely related
plant species but even among lines of the same species (Ben-
dich, 1993; Oldenburg and Bendich, 1996; Kubo and Mikami,
2007; Kubo and Newton, 2008). Sequences of plant mitochon-
drial genomes in most cases are organized as large circular
molecules called “master chromosome,” usually containing sev-
eral large (>500 bp) direct and a few inverted repeats. It has
been suggested that mitochondrial DNA (mtDNA) is replicated
in a recombination-dependent manner (Oldenburg and Ben-
dich, 1996; Backert and Börner, 2000; Kubo and Newton, 2008).
Intra- and inter-molecular recombination between large repeats
can cause different isomeric forms or subgenomic versions of a
master chromosome (Kubo and Mikami, 2007; Kubo and New-
ton, 2008; Kitazaki and Kubo, 2010; Maréchal and Brisson, 2010;
Woloszynska, 2010; Chang et al., 2013). However, mitochondrial

heteroplasmy is mainly determined by homologous recombina-
tions between short repeats (<500 bp) (Vitart et al., 1992; Hart-
mann et al., 1994; Kanazawa et al., 1994; Bellaoui et al., 1998;
Janska et al., 1998; Arrieta-Montiel et al., 2001; Albert et al., 2003;
Woloszynska and Trojanowski, 2009; Alverson et al., 2011).

Differences in master chromosome size are due to unique
sequences present in one and absent in another species’ mtDNA,
or to repeat sequences or large duplications (mostly >1000 bp)
representing up to 35% of the total genome size. For exam-
ple, mitochondrial genome sizes of Zea mays lines range from
535,825 to 739,046 bp, while genome complexities range from
506,760 to 537,180 bp (Allen et al., 2007). Even unique sequences
of mitochondrial genomes may differ intraspecifically by up to 7%.

Recombination between short repeats can lead to gain or loss
of sequences. Sequence gain might come from chloroplast or
nuclear genomes of the same plant, sometimes from mitochon-
drial plasmid DNA (Kubo et al., 2000; Kubo and Newton, 2008;
McDermott et al., 2008; Kitazaki and Kubo, 2010) or even from
viruses (Marienfeld et al., 1997; Goremykin et al., 2009), fungi, bac-
teria, or other plants. Sequence loss from mitochondrial genomes
can be compensated by transfer to the nuclear genome (Kubo and
Newton, 2008; Kitazaki and Kubo, 2010; Alverson et al., 2011).

Plant mitochondrial heteroplasmy covers a significant part
of the mitochondrial genome. Less than 20% of the genome is
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represented by known protein, rRNA and tRNA encoding genes.
The coding parts of these sequences are highly conserved. Lists
of tRNA were found different for various plants, but every tRNA
sequence is conserved and might have a mitochondrial or chloro-
plast origin (Marienfeld et al., 1997; Kubo and Newton, 2008;
Kitazaki and Kubo, 2010; Alverson et al., 2011). In addition to
known genes, every plant mitochondrial genome has an additional
10% or more of putative open reading frames (ORF). Some of
these frames are conserved across several plant species, while oth-
ers can be unique. Recombination events between short repeats
in there majority do not alter the known coding sequences and
ORFs. However, cases of altered ORFs or coding sequences were
found (Marienfeld et al., 1997; Kubo and Newton, 2008; Kitazaki
and Kubo, 2010; Alverson et al., 2011), some of these cause cyto-
plasmic male sterility (CMS). The mechanisms of CMS differ and
are specific for each case (Allen et al., 2007; Kubo and Newton,
2008; Kitazaki and Kubo, 2010).

The study of plant mitochondrial genomes revealed important
information regarding the evolution of these genomes (Kitazaki
and Kubo, 2010) and of entire eukaryotic systems as well. Every
plant mtDNA has some sequences in common with that of all other
plants, as well as species- or group-specific sequences. Closely
related plants usually share significant portions of mitochondrial
sequences, but in some cases their mitochondrial sequences differ
remarkably. More sequencing data are needed to supply sufficient
information for a detailed comparative study of different phylo-
genetic groups of plants. Here sequencing data and comparative
analysis are provided for the mitochondrial genome of the legume
V. faba.

MATERIALS AND METHODS
MITOCHONDRIAL DNA ISOLATION, LIBRARY CONSTRUCTION, GENOME
SEQUENCING, AND ASSEMBLY
Mitochondria were isolated from 6 to 7 days, dark grown, etiolated
seedlings of V. faba cultivar Broad Windsor (Territorial Seed Com-
pany, Cottage Grove, OR, USA) using DNAse I protocol. Purified
mitochondria were lyzed and mtDNA was isolated as reported
(Synenki et al., 1978). Three libraries were constructed:

1. mtDNA was digested by BamHI and cloned in BamHI digested
pUC19 plasmid vector.

2. mtDNA was digested by ApoI and cloned in EcoRI digested
pUC19 plasmid vector.

3. A third library was generated by Genomex Biotechnology
Company (Genomex appears to be a trading name of Ampli-
con Express, http://www.amplicon-express.com); mtDNA was
mechanically nicked and 25–45 kb DNA fragments were cloned
into the fosmid vector pEpiFOS-5. This library contains ∼1500
clones with an average insert size of 35 kb.

About 400 BamHI fragments were sequenced from both strands
with sequence overlap of at least 100 bp for each primer.“Difficult”
sequences with compression or large number of homonucleotide
stretches were sequenced a few more times using different primers
for both strands until the sequence became clear. For sequenc-
ing an Applied Biosystems four-capillary sequencing machine
3130 Genetic Analyzer with 55 cm column and corresponding

sequencing kits was used. Among 400 sequenced fragments were
119 unique BamHI fragments.

From the ApoI library we isolated 1050 clones; 158 of these
were selected containing at least one BamHI recognition site
(∼30% of them contained inserts with two or three BamHI sites).
These clones were thoroughly sequenced. Most of them over-
lapped partially or fully with already sequenced BamHI fragments
and revealed the arrangement of these fragments. ApoI library
sequencing led to additional 11 BamHI fragments.

Finally, 234 long fosmid clones ranging from 25 to 45 kb with
average around 35 kb were sequenced. For direct sequencing of
these fragments at a good quality, the PCR program was: 95˚C for
5 min, followed by 50 cycles of 95˚C for 30 s, 55˚C for 10 s, 60˚C
for 4 min, and hold at 4˚C.

For most of the sequencing cycles, primers known from
BamHI and ApoI library sequencing were used, but at times new
primers corresponding to new BamHI fragments were applied. By
sequencing these fosmid DNA fragments 33 new unique BamHI
fragments mainly representing recombinant versions of known
fragments were found.

In total∼9× 106 bp of V. faba mtDNA were sequenced cor-
responding a 15-fold coverage of the master chromosome. Of
163 unique BamHI fragments 144 could be included into the
master chromosome sequence. Nineteen other fragments were
recombinant versions between some of the 144 BamHI fragments
belonging to the master chromosome. Computer alignment of
all BamHI fragments and 234 fosmid DNA inserts allowed the
construction of a 588,000 kb circular master chromosome that
contained all unique sequences of V. faba mtDNA and was submit-
ted to the GenBank database with accession number KC189947.
Computation analysis was conducted using NCBI tools.

RESULTS AND DISCUSSION
VICIA FABA MITOCHONDRIAL DNA SEQUENCING DATA COMPARED TO
SEQUENCES EARLIER REPORTED
Comparative analysis of our data and results previously published
by Wahleithner and Wolstenholme (1988b), MacFarlane et al.
(1990a,b), and Wahleithner et al. (1990), as expected, showed very
high similarity. Few single nucleotide substitutions were found
mainly in non-coding regions. Protein sequences of cob (392aa),
atp9 (both 88 and 74aa), cox3 (265aa), and nad1 (325aa) were
100% identical. The atp6 protein (291aa) sequences had just one
amino acid difference – isoleucine versus leucine.

A difference was found between rps14 coding sequences (100
amino acid length). In our version, it was glycine in position
85 instead of serine reported by Wahleithner and Wolstenholme
(1988b). Multiple alignments between ribosomal protein S14
sequence and protein database showed that glycine is a standard
amino acid on this position. The V. faba sequence is identical to
rps14 of Pisum sativum (Hoffmann et al., 1999). The minor differ-
ences between known rps14 of different plant mitochondria never
concerned glycine in this position.

Significant differences of mtDNA sequences between cultivar
Broad Windsor and another cultivar of V. faba were found as
reported (Scheepers et al., 1997) around ORF143 near exon c of
the nad5 gene. Actually, the Broad Windsor mitochondrial genome
lacks a full size ORF143. Instead, it has ORF295 and ORF245.
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Amino acid sequences for nad5 protein exons c, d, and e related
are identical.

THE MASTER CHROMOSOME STRUCTURE
Computer alignment of all V. faba mitochondrial BamHI frag-
ments and 234 mtDNA fragments (25–45 kb) cloned in fosmids
allowed to construct a 588,000 kb circular master chromosome
with 45.04% GC content (Figure 1). V. faba shared about 40%
similarity with mtDNA of the legumes Lotus japonicus, Millettia
pinnata (Kazakoff et al., 2012), Glycine max (Chang et al., 2013),
and Vigna radiata (Alverson et al., 2011). For all other known plant
mitochondrial genomes homology was 25% and lower. Eleven
large (>500 bp) repeats were found in the master chromosome:
eight direct and three inverted ones. The largest repeat comprises
66,893/66,897 bp, the smallest 1,675 bp. Large repeats were highly
similar (99%) or identical. Ten repeats have two, and one (the

smallest) has three copies. The total size of large repeats covers
200,255 bp or 34% of the whole master chromosome size. The
contribution of short (<500 bp) repeats has not been calculated
but should not change significantly the complexity of the V. faba
mitochondrial genome of 387,745 bp.

Three types of protein or putative polypeptide related
sequences were found in Vicia faba mtDNA:

1. Conservative sequences, common to all other plants.
2. Aberrant putative ORFs unique to the specific plant or to a

small group of plants.
3. Short fragments of known polypeptides which are not orga-

nized into ORF.

Thirty five mitochondrial genes encoding conserved proteins,
3 ribosomal RNAs and 17 tRNA genes were found. The V. faba

FIGURE 1 |The circular map of Vicia faba mitochondrial genome. Clockwise and counter-clockwise strands are drawn on the inside and outside of the outer
circle, respectively. GC content is shown in the inner circle. The map was drawn by using OGDRAW (Bock et al., 2007).
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master chromosome contained all nine nad genes of Complex I,
the cob gene of Complex III, three cox genes of Complex IV, five
atp genes of Complex V, four ccm genes of cytochrome c biogene-
sis, and 7 out of 16 possible ribosomal protein genes. For sdh3 and
sdh4 genes of Complex II and for rps7 only fragments encoding
the corresponding polypeptide sequences were found. For sdh3
and sdh4 these fragments appeared as parts of unknown ORFs.

Amino acid sequence alignment revealed an 110aa rps7-related
mitochondrial polypeptide for Pisum sativum and Lotus japoni-
cus. In V. faba it was divided by a stop codon instead of serine
in position 73 into two polypeptides of 72 and 37aa which were
not organized into ORF. The genes nad9, atp6, atp9, ccmC, rpl16,
rps3, and tatC were duplicated. Gene nad5 exons D and E were
also duplicated. The gene nad7 with all five exons was triplicated.
Additionally, exon 5 of nad7 was copied to other locations.

Comparative analysis between the master chromosome and
minicircles (Wahleithner and Wolstenholme, 1987) did not reveal
any significant sequence homology longer than a few dozen
nucleotides. The origin and direction of replication for V. faba
mitochondrial plasmids determined by Wahleithner and Wol-
stenholme (1988a) were aligned with the master chromosome
sequence. Few dozens of 10–13 bp sequences, homologous to the
core motif AGGAA, with few nucleotides flanking this motif were
found on the master chromosome.

Six of the tRNA genes (Table 1) were highly homologous to
chloroplast genome sequences.

RETROTRANSPOSON-RELATED SEQUENCES OF V. FABA
MITOCHONDRIAL DNA
All three classes of nuclear retrotransposon-related sequences were
found within the V. faba mitochondrial genome; the Ty1/copia
subclass, a non-LTR retroelement reverse transcriptase and an
ORF with notable homology to the RNase H and reverse transcrip-
tase domains of the Ty3/gypsy superfamily. These sequences were
represented by relatively short ORFs (encoding less than 200aa)
with high similarity to large nuclear ORFs (>1000aa), similar as
described previously (Knoop et al., 1996).

MITOVIRUS RELATED SEQUENCES
The open reading frame ORF128, in position 4678–5064 of V.
faba mtDNA revealed high similarity to the RNA-dependent RNA
polymerase region of virus pfam05919 belonging to Mitoviruses
of the family Narnaviridae. Mitoviruses are simple viruses that
invade fungal mitochondria without forming true capsids (Cole
et al., 2000). Their genomes consist of one gene encoding RNA-
dependent RNA polymerase. ORFs representing part of mitoviral
RNA polymerase were found in mitochondrial genomes of Ara-
bidopsis thaliana (Marienfeld et al., 1997; Hong et al., 1998),
Brassica napus (Tuomivirta and Hantula, 2005), and Vitis vinifera
(Goremykin et al., 2009). A small part of mitovirus related
sequences was reported previously for V. faba mtDNA (Marienfeld
et al., 1997).

OPEN READING FRAMES OF V. FABA MITOCHONDRIAL DNA
The total number of genes encoding conservative proteins, rRNAs,
and tRNAs was 52. In addition, we found 114 unnamed ORF,
in there majority more than 100aa long. NCBI BLAST analysis
revealed three groups of ORFs:

Table 1 | tRNA genes found in the mtDNA of Vicia faba.

Amino acid Codon tRNA Anticodon

Trp UGG cp-trnW** CCA

His CAC cp-trnH GUG

Ala GCU cp-trnA x2 UGC

Ile* AUG cp-trnM CAU

Gln CAA mt-trnQ UUG

Tyr UAC mt-trnY GUA

Lys AAA mt-trnK x2 UUU

Gly GGC mt-trnG GCC

Asn AAC cp-trnN GUU

Asp GAC cp-trnD GUC

Cys UGC mt-trnC GCA

Met AUG mt-trnM CAU

fMet AUG mt-trnM x2 CAU

Pro CCA mt-trnP UGG

Phe UUC mt-trnF GAA

Ser AGC mt-trnS GCU

Glu GAA mt-trnE UUC

*Suggesting that methionine anticodon is post-transcriptionally modified to pro-

vide tRNA with isoleucine activity (Michaud et al., 2011).

**cp-tRNA on this table means that we found similar sequences in other plant

chloroplast genome. Some of them are not 100% identical to corresponding

chloroplast tRNA (see Section Results).

1. 36 ORFs with no significant homology to any known proteins
2. 29 ORFs with significant homology to Medicago truncatula

nuclear genome. Some of them were also homologous to other
plant mitochondrial ORFs

3. 49 ORFs with significant homology to other plant mitochon-
drial or nuclear ORFs.

Some ORFs from groups 2 and 3 might represent novel alter-
native splicing variants formed by exonization of non-coding
DNA sequences (Chen et al., 2012). Other ORFs consisted in
part of known conservative protein encoded by non-mosaic genes
together with parts of unknown sequences as part of ORFs from
V. faba, or from other plant mitochondria.

V. FABA ORFs WITH SIGNIFICANT HOMOLOGY TO OTHER PLANT
MITOCHONDRIAL ORFs
NCBI BLAST analysis of unique mtORFs of V. faba revealed very
low similarity to those of known closely related legumes. Three
different V. faba ORFs showed homology to parts of Millettia
pinnata sdh3, one to the ORF90 of Lotus japonicus and none
to Vigna radiata. Nevertheless, a several sequence homologies
were found between V. faba, Beta vulgaris, Nicotiana tabacum,
Vitis vinifera, and even the monocots Oryza sativa, Zea mays
(Table 2).

V. faba ORF143 was reported by Scheepers et al. (1997). Both
Ad/N and Ad/447 line mitochondria possessed ORF143 but it was
not found in Broad Windsor. Instead we found two longer ORF295
and ORF245. In the case of ORF295, the first 28 amino acids are
highly homologous to the first 28 amino acids of nad3. The cen-
tral part of ORF245 has a high homology, with the central part
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Table 2 | ORF comparison between Vicia faba and some other plant mitochondrial genomes.

Vicia

faba

Vitis

vinifera

Beta

vulgaris

Nicotiana

tabacum

Arabidopsis

thaliana

Oryza

sativa

Zea

mays

Lotus

japonicus

Millettia

pinnata

Vigna

radiata

Vicia

faba

ORF295 - ORF187 ORF171 ORF118 ORF288 ORF179 - sdh3 - ORF143*

ORF324 ORF307

ORF297 ORF216

ORF256 ORF297

ORF99

ORF237

ORF145 - ORF134c - - - - - - -

ORF245 - ORF169 - ORF313 - - - - -

ORF215

ORF101 - - - ORF145 - - - - -

ORF102 ORF104 - ORF103 - - ORF105 - - -

ORF107 - ORF124 ORF125d - - - - - -

ORF68 sdh4 - ORF125e - - - - - -

ORF221 - - - - - - - - - ORF128**

ORF90 - - - - - - ORF90 - -

ORF245 - ORF187 ORF171 ORF118 ORF288 ORF179 - - - ORF143*

ORF324 ORF307

ORF297 ORF216

ORF256 ORF297

ORF99

ORF237

ORF103 - - - - - - - sdh3 - ORF128**

ORF126 - - ORF177 - - - - - -

ORF184 ORF185 + ORF125f - - - - - -

ORF101 - - - ORF145b - - - - -

ORF177 - ORF310 - - - - - - -

ORF270

ORF170

ORF110 - ORF124 ORF125d - - - - - -

ORF167 psbA ORF227 ORF274 - - - - - -

ORF224 ORF315

ORF198

ORF109 RNApol ORF598 - - - ORF417 - - -

ORF1014

ORF301 psbA ORF227 ORF274 - - - - sdh3 -

ORF315

ORF142 - - ORF101b - - - - - -

ORF115 - ORF125b - - - - - - -

ORF321 - - - ORF161 - - - - -

ORF143* was reported by Scheepers et al. (1997). It was not found in mtDNA of Vicia faba cultivar Broad Windsor.

ORF128** was reported by MacFarlane et al. (1990b). It is incomplete ORF. We found that in one version it was ORF129, a part of sub genomic linkage group. On

the other hand, ORF129 is a part of ORF221 which was found in master chromosome.
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of ORF295 but both N and C ends of these ORFs are different.
Note that both Beta vulgaris and Oryza sativa mitochondria also
possess multiple ORFs, partially homologous to V. faba ORF295,
ORF245, and ORF143 (Table 2). We also found that some of
our unique ORFs were homologous to ORFs in mitochondrial
genomes of Daucus carota, Citrullus lanatus, Lupinus luteus, Bras-
sica napus, Boea hygrometrica, Phoenix dactylifera, Glycine max,
Phaseolus vulgaris.

CHLOROPLAST-SPECIFIC INSERTIONS IN VICIA FABA MITOCHONDRIAL
DNA
The chloroplast genome of V. faba has not yet been sequenced.
Therefore, chloroplast sequences of Medicago truncatula,

Arabidopsis thaliana, and Glycine max were used to find
chloroplast-derived insertions in V. faba mtDNA. Analysis of M.
truncatula chloroplast-specific (cp) sequences revealed 10 frag-
ments (four of them duplicated) in V. faba mtDNA, ranging from
77 to 1389 nt with similarity of 74–97%. The sequences homol-
ogous to cpDNA comprise 1.1% of V. faba mtDNA. Six of the
10 cpDNA fragments contained tRNA genes (tRNAAla, tRNATrp,
tRNAAsn, tRNAAsp, tRNAHis, and tRNAMet). The chloroplast-
encoded tRNAAla gene contained one intron. Both exons of
tRNAAla, as well as the tRNATrp gene sequence,were 100% homolo-
gous to V. faba mtDNA. For four other cp-tRNA genes the identity
was <100%. Almost all of these sequences were also found within
the M. truncatula nuclear DNA. In addition to the tRNA genes, cp,

A

B

C

D

FIGURE 2 | Protein alignment between M. truncatula nuclear putative
ORF1152 and Vicia faba mitochondrial ORF135 and gene rps10. (A)
Amino acid sequence of M. truncatula chromosome 1 putative ORF1152
(NCBI BLAST). (B) Red colored sequence which is a part of mitochondrial

ORF135. (C,D) Blue colored parts of the sequence which is a Vicia faba
CDS of rps10 gene. (C) An exon 1 sequence and (D) is an exon 2
sequence. Underlined is a sequence of nuclear alternative gene encoding
putative rps10 (159aa).

Frontiers in Plant Science | Plant Genetics and Genomics May 2013 | Volume 4 | Article 128 | 6

http://www.frontiersin.org/Plant_Genetics_and_Genomics
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Negruk Vicia faba mitochondrial genome sequence

and mtDNA share homologous sequences encoding fragments of
16S and 23S ribosomal RNA as well as fragments of proteins rpl12
and ycf68.

SEQUENCE HOMOLOGY BETWEEN VICIA FABA MITOCHONDRIAL DNA
AND MEDICAGO TRUNCATULA NUCLEAR GENOME
Homology analysis between V. faba mtDNA and the nuclear
genome of A. thaliana using NCBI BLAST search revealed about
20% of homologous mtDNA. For the related legume Glycine max,
the homology was slightly higher (∼27%).

A high level of co-linearity was found earlier between the
nuclear linkage groups of the legumes V. faba and M. truncatula,
despite the large differences in genome size (Ellwood et al., 2008;
Young et al., 2011; Alghamdi et al., 2012). Chromosome map-
ping demonstrated an evidence of shared macrosynteny between
V. faba and M. truncatula nuclear genomes (Ellwood et al., 2008).
The nuclear genome of M. truncatula has recently been sequenced
(Young et al., 2011). So, it was logical to look at possible simi-
larities between V. faba and M. truncatula on the nucleotide and
amino acid sequence level. NCBI BLAST search revealed about

A

B 

C 

FIGURE 3 | Continued

www.frontiersin.org May 2013 | Volume 4 | Article 128 | 7

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Negruk Vicia faba mitochondrial genome sequence

Query  10    EHLPPPSYRGCWHGVSRGFFLESCHDRALDERALQAALPFFTHAILLDRAFAHCPRFPTA  69 

             EHLPPPSYRGCWHGVSRGFFLESCHDRALDERALQAALPFFTHAILLDRAFAHCPRFPTA 

Sbjct  928   EHLPPPSYRGCWHGVSRGFFLESCHDRALDERALQAALPFFTHAILLDRAFAHCPRFPTA  987 

Query  70    APRGSPGRVSVPVWLIIRKDQLSIIGLVSLYLTNYLILRRLIKQRFLAFFRIWPELFGRF  129 

             APRGSPGRVSVPVWLIIRKDQLSIIGLVSLYLTNYLILRRLIKQRFLAFFRIWPELFGRF 

Sbjct  988   APRGSPGRVSVPVWLIIRKDQLSIIGLVSLYLTNYLILRRLIKQRFLAFFRIWPELFGRF  1047 

Query  130   PRITHPFATLFSTVPTSWARQATFTLGASFPSAQLPENNVRLACVKHIASVPSEPGSNSS  189 

             PRITHPFATLFSTVPTSWARQATFTLGASFPSAQLPENNVRLACVKHIASVPSEPGSNSS 

Sbjct  1048  PRITHPFATLFSTVPTSWARQATFTLGASFPSAQLPENNVRLACVKHIASVPSEPGSNSS  1107 

Query  190   FEYDWALQW  198 

             FEYDWALQW 

Sbjct  1108  FEYDWALQW  1116 

E 

D

Query  7    FLTIAPCDAAEPWQLGFQDAATPMMQGIIDLHHDIFFFLILILVFVSRILVRALWHFHYQ  66 

             +T A  DAA+P QLGFQDAATPMMQGIIDLHHDIFFFLILILVFVSRILVRAL

Sbjct  598  LVTEASSDAADPLQLGFQDAATPMMQGIIDLHHDIFFFLILILVFVSRILVRAL------  651 

Query  67   KNPIPQRIVHGTTIEILRTIFPSIIPMFI  95 

                   IVHGTTIEILRTIFPSIIPMFI 

Sbjct  652  -------IVHGTTIEILRTIFPSIIPMFI  673 

F 

Query  7    FLTIAPCDAAEPWQLGFQDAATPMMQGIIDLHHDIFFFLILILVFVSRILVRALWHFHYQ  66 

             +T A  DAA+P QLGFQDAATPMMQGIIDLHHDIFFFLILILVFVSRILVRALW

Sbjct  616  LVTEASSDAADPLQLGFQDAATPMMQGIIDLHHDIFFFLILILVFVSRILVRALW-----  670 

Query  67   KNPIPQRIVHGTTIEILRTIFPSIIPMFIAIPSFALLYSMDEVVVDPAMTIKAIGHQWYR  126 

                   IVHGTTIEILRTIFPSIIPMFIAIPSFALLYSMDEVVVDPAMTIKAIGHQWYR 

Sbjct  671  -------IVHGTTIEILRTIFPSIIPMFIAIPSFALLYSMDEVVVDPAMTIKAIGHQWYR  723 

Query  127  TYEYSDYNSSDEQSLTFDSYTIPEDDLELGQSRLLEVDNRVVVPAKTHLRIIVTPADVPH  186 

            TYEYSDYNSSDEQSLTFDSYTIPEDDLELGQSRLLEVDNRVVVPAKTHLRIIVT ADVPH 

Sbjct  724  TYEYSDYNSSDEQSLTFDSYTIPEDDLELGQSRLLEVDNRVVVPAKTHLRIIVTSADVPH  783 

Query  187  SWAVPSLGVKCDAVPGRLNQISISVQREGVYYGQCSEICGTNHAFTPIVVEAVPSKDYGS  246 

            SWAVPSLGVKCDAVPGRLNQISISVQREGVYYGQCSEICGTNHAFTPIVVEAVPSKDYGS 

Sbjct  784  SWAVPSLGVKCDAVPGRLNQISISVQREGVYYGQCSEICGTNHAFTPIVVEAVPSKDYGS  843 

Query  247  RVSNQLIPQTGEA  259 

            RVSNQLIPQTGEA 

Sbjct  844  RVSNQLIPQTGEA  856 

FIGURE 3 | Protein alignment between M. truncatula nuclear putative
ORF1116 and ORF856 and Vicia faba mitochondrial genes atpA and cox2.
(A) Amino acid sequence of M. truncatula chromosome 1 putative ORF1116
and (B) ORF856 (NCBI BLAST). Red colored is a homologous sequence
between ORF1116 and ORF856. Black colored are different amino acids
within area of homology between ORF1116 and ORF856 (red colored).

Underlined is a perfect (99%) homology between Vicia faba mitochondrion
gene of ATP synthase F1 subunit 1 and ORF1116. (C) A blue colored
homology between mitochondrial ORF134 and ORF1116. (D) A green colored
homology between mitochondrial ORF198 and ORF1116. (E) Homology
between Vicia faba mitochondrion cox2 gene (259aa) and ORF1116. (F)
Homology between Vicia faba mitochondrion cox2 gene (259aa) and ORF856.

45% of V. faba mtDNA sequence being homologous to M. trun-
catula nuclear sequences. This is more homology than found with
any sequenced plant mitochondrial genome. Thirty five percent of
homologous sequences range from a few dozen to 12,806 bp and
are located on chromosome 1.

In this publication we present some data interesting in aspect
of sequence relationships between mitochondrial and nuclear
genomes. When we analyzed homology between these two

genomes in the area of mitochondrial 5S (rrn5), 18S (rrn18),
and rps10 genes we found significant (99%) DNA sequence
homology overlapping 5S, 18S, ORF134, ORF198, trnW-cp, and
about 8000 bp of following uninterrupted sequence homology
(positions, complement 320126–333187 bp). We found in this area
large ORF1152 annotated as putative ribosomal protein S10 in
Medicago truncatula chromosome 1 (Figure 2) (sequence encod-
ing this ORF overlapped genes of rrn5 and rrn18 ribosomal RNA
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with 99% homology as well as ORF135). It was a transcribed
mosaic gene with 18 exons. ORF1152 amino acid sequence was
fused with V. faba mtDNA gene of rps10 highly homologous to
mitochondrial genomes of many plants (position, complement
(383419–384753). Thus, we found a transcribed nuclear genome
sequence organized into ORF1152, which contained sequences of
rrn5 and rrn18, and fused with amino acid sequence covering
mitochondrial rps10 gene located 63000 bp apart. And it was not
just a single case. We found two more transcribed ORFs: ORF1116
and ORF856, in different positions of Medicago truncatula chro-
mosome 1 (Figure 3). First halves of these ORF are similar and
alternatively spliced. Second halves are different. Both of them are
fusions between ATP synthase subunit alpha and cox2 genes but
for ORF856 homology to cox2 gene was much more significant
(Figure 3). In addition to ATP synthase subunit alpha and cox2
genes two unnamed protein products ORF134 and ORF198 were
found in V. faba mtDNA. ORF134 and ORF198 were homolo-
gous to second half of ORF1116 but not to ORF856. At the same
time, ORF1152 and ORF1116 nucleotide sequences shared around
(99%) of 1700 bp complementary nucleotide sequence homology.

tRNA RELATED SEQUENCES IN MEDICAGO TRUNCATULA NUCLEAR
GENOME
Here we present data only for tRNAs found common for chloro-
plast and mitochondrial genomes. For mitochondrial tRNAAla, we
found homology with M. truncatula nuclear genome only for
exon 2 of tRNAAla. All other full size tRNA sequences common
both for chloroplast and mitochondrial genomes were found in
M. truncatula nuclear genome. Four copies of V. faba tRNATrp

sequence found in chromosome 1, and 1 copy in chromosome
3, 4, and 8 each. In chromosome 1, tRNATrp sequence was
found as a part of genes encoding ORF76 (2 copies in opposite
orientation), ORF321 and ORF329. All three genes were tran-
scribed and had mosaic structure. ORF76 had 2 exons, ORF321
and ORF329 had 6 exons each. For ORF76 and ORF321 posi-
tions of exon 1, following intron and exon 2 were the same.
In all three ORFs sequence complementary to tRNATrp gene
covered exon 1, starting from nucleotide 8 until the end, and
part of the following intron. For ORF76 and ORF321, tRNATrp

sequence was 100% homologous to mitochondrial and chloroplast

sequences. For ORF329, it was a one point mutation (Figure 4).
Amino acid sequence alignment showed that there is a difference
between amino acid sequences of ORF76 and ORF321 com-
pared to ORF329 which could be a result of alternative splicing
(Figure 4B).

tRNATrp gene copies, as well as other four tRNA genes com-
mon for chloroplast and mitochondrial genomes, were located in
chromosomes 1 and 4. For tRNATrp it was also found in chromo-
somes 3 and 8, for tRNAAsp – in chromosome 5, for tRNAHis – in
chromosome 7, for tRNAMet – in chromosomes 3, 5, and 7, for
tRNAAsn – in chromosome 7.

It was reported earlier that tRNAs in addition to their tra-
ditionally known role in translation might be involved in the
regulation of transcript profiles (Irmer et al., 2010; Rogers et al.,
2012). Computation analysis of tRNA sequences found in V. faba
mitochondrion revealed that in the M. truncatula nuclear genome
these tRNA sequences can be found as a part of different ORFs.
Some of them were a part of exon or complementary to the part
of exon; others were on the exon-intron junction point or a part
of introns. All these sequences were part of transcripts, which sug-
gests some active role. This role may be different in each specific
case, but what attracted our attention is the fact that many of these
tRNA sequence copies (not all) in M. truncatula nuclear genome
were a part of some kind of transcribed ORF.

POSSIBLE SEQUENCE RELATIONSHIP BETWEEN PLANT
MITOCHONDRIAL AND NUCLEAR GENOMES
Summarizing data related to mitochondrial rrn5, rrn18, rps10,
ATP synthase subunit alpha, cox2, and tRNA sequences as a part
of nuclear transcribed ORFs led to the following conclusions:

1. V. faba mtDNA sequences can be organized into Medicago trun-
catula nuclear ORFs comprising various mitochondrial gene
fragments. We present in this article genes rps10, atpA and
cox2, ORF135, ORF134, and ORF198. But we found more such
examples.

2. These ORF sequences are transcribed and spliced in the nuclear
genome.

3. These ORFs may occur in nuclear genome in several versions
representing variants of the same gene as result of alternative
splicing or of recombination between ancestral ORFs.

A

ATGGAATCACGCTCTGTAGGATTTGAACCTACGACATCGGGTTTTGGAGACCCGCGTTCTACCGAACTGAACTAAGAGCGCTTTA  ORF76

ATGGAATCACGCTCTGTAGGATTTGAACCTACGACATCGGGTTTTGGAGACCCGCGTTCTACCGAACTGAACTAAGAGCGCTTTA  ORF321

ATGGAATCACGCTCTGTAGGATTTGAACCTACGACATCGGGTTTTGGAGACCCGCGTTCTACCGAACTGAACAAAGAGCGCTTTA  ORF329 

B

Query  1   MESRSVGFEPTTSGFGDP--------LLEEEPPKSGREAERASQPEQLLGKPAPHLTLFE  52 

           MESRSVGFEPTTSGFGDP        LLEEEPPKSGREAERASQPEQLLGKPAPHLTLFE 

Sbjct  1   MESRSVGFEPTTSGFGDPRSTELNKELLEEEPPKSGREAERASQPEQLLGKPAPHLTLFE  60 

FIGURE 4 | Nucleotide (A) and protein (B) alignment between M.
truncatula nuclear putative ORF76, ORF321, and ORF329 and Vicia faba
mitochondrial gene tRNATrp. (A) A nucleotide sequence of exon 1 (red color)
in putative ORF76, ORF321, and ORF329 (NCBI BLAST). Highlighted with

yellow is tRNATrp in complementary orientation. Black color is intron
sequence. Green color shows point mutation. (B) An alignment between
exon 1 (first 18 amino acids) and part of exon 2 sequences. Query is a
sequence of ORF76 or ORF321, Sbjct is a sequence of ORF329.
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4. Nuclear ORF genes comprise not only fragments of sequences
encoding V. faba mitochondrial proteins but also rrn5, rrn18,
or tRNA genes being analyzed in this work.

5. It is not clear whether rRNA or tRNA related sequences
are translated (not previously reported) but their transcripts
suggest a role in gene regulation.

6. We suggest that at least part of these ORFs could via gene dupli-
cation, recombination, and alternative splicing contribute to
evolutionary innovation of genomes (Chen et al., 2012).
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