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Source-to-sink transport of sugar is one of the major determinants of plant growth and
relies on the efficient and controlled distribution of sucrose (and some other sugars such
as raffinose and polyols) across plant organs through the phloem. However, sugar transport
through the phloem can be affected by many environmental factors that alter source/sink
relationships. In this paper, we summarize current knowledge about the phloem transport
mechanisms and review the effects of several abiotic (water and salt stress, mineral
deficiency, CO2, light, temperature, air, and soil pollutants) and biotic (mutualistic and
pathogenic microbes, viruses, aphids, and parasitic plants) factors. Concerning abiotic
constraints, alteration of the distribution of sugar among sinks is often reported, with some
sinks as roots favored in case of mineral deficiency. Many of these constraints impair the
transport function of the phloem but the exact mechanisms are far from being completely
known. Phloem integrity can be disrupted (e.g., by callose deposition) and under certain
conditions, phloem transport is affected, earlier than photosynthesis. Photosynthesis
inhibition could result from the increase in sugar concentration due to phloem transport
decrease. Biotic interactions (aphids, fungi, viruses. . .) also affect crop plant productivity.
Recent breakthroughs have identified some of the sugar transporters involved in these
interactions on the host and pathogen sides. The different data are discussed in relation
to the phloem transport pathways. When possible, the link with current knowledge on the
pathways at the molecular level will be highlighted.
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SUGAR TRANSPORT IN THE PHLOEM
Among the sugars synthesized in a plant, only a few are transported
in the phloem over a long-distance, whatever the species and the
type of phloem loading considered. In all cases, sucrose is the
main form of carbon found in the phloem. In addition to sucrose,
polyols (mainly sorbitol and mannitol) and oligosaccharides of the
raffinose family can also be found. In some species, both polyols
and raffinose are found in the phloem (Rennie and Turgeon, 2009).
Hexose transport in the phloem has also been reported for a limited
number of species (van Bel and Hess, 2008) but these results were
recently challenged (Liu et al., 2012). Raffinose and other members
of the raffinose family oligosaccharides are indirectly involved in
the building up of sugar concentrations in the phloem by polymer
trapping (Rennie and Turgeon, 2009). Conversely, polyols tend to
behave exactly like sucrose as far as transport is concerned and
thus, in apoplastic loaders, there are specific polyol transporters
(Noiraud et al., 2001b). Unless stated otherwise, sucrose is the
main sugar we deal with in the following sections.

According to many studies, up to 80% of photosynthetic
fixed carbon can be exported by mature leaves. The amount
of sucrose available for export from source leaves depends on
several parameters: photosynthetic activity (carbon fixation),

partitioning between starch synthesis in the chloroplast and
triose-phosphates exported from the chloroplast for sucrose syn-
thesis, and transient storage of sucrose in the vacuole (Figure 1).
If one of these factors is altered, the amount of sucrose available
for export is affected and therefore source/sink relationships can
be altered. The pathways for sucrose loading in the conducting
cells of the phloem have been documented mostly in the case of
active phloem loading in herbaceous species (Figure 1). Active
phloem loading results in a higher solute concentration in the
sieve element-companion cell complex (SE/CC complex) than in
the surrounding tissues. The mechanism of active phloem loading
from the apoplastic space involves sucrose and polyol trans-
porters that have been identified in numerous species (Noiraud
et al., 2001b; Lalonde et al., 2004; Sauer, 2007; Reinders et al.,
2012). These transporters can concentrate sugars in the SE/CC
complex by dissipating the proton gradient established by an
H+/ATPase located in the same cells. The release of sucrose in
the apoplast in the vicinity of the SE/CC complex may be con-
trolled by the recently discovered SWEET facilitators (Chen et al.,
2012; Figure 1). The second mechanism for active phloem load-
ing is polymer trapping, whereby sucrose is converted to raffinose
or larger molecules through addition of galactose to sucrose in
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FIGURE 1 | Comparison of source-to-sink sugar transport in symplastic

and apoplastic active phloem loaders. Sucrose available for export from
mesophyll cells (MC) results from a balance between storage in the vacuoles
and sequestration as starch in the chloroplasts. Sucrose can reach the sieve
tubes through plasmodesmata that allow for its diffusion from cell to cell in
species like cucurbits. Sucrose is converted to larger molecules (RFOs) by the
sequential addition of galactosyl residues in modified companion cells (CC)
called intermediary cells. The larger molecules cannot move back to phloem
parenchyma cells (PP) and are transferred and accumulated in sieve tubes. In
apoplast-loading species, sucrose reaches phloem parenchyma cells through
plasmodesmata. Sucrose is loaded and accumulates in the phloem by
passing through the apoplast between the PP and the CC. The major players
are presented in the enlargement of that area. Sucrose enters the apoplast
through facilitators of the SWEET family (pale green circle) and is
accumulated in the companion cell by a proton/sucrose co-transporter of the
SUT1/SUC2 type (green circle). The energy necessary for the co-transport is
provided by an H+/pumping ATPase (black circle) which establishes a proton
gradient and a trans-membrane potential regulated by potassium channels of
the AKT2/3 type (white circle). In Solanaceous species, SUT1 transporters are

localized at the plasma membrane of sieve elements (not shown). Polyols can
also be transported into the phloem, with specific transporters located in the
plasma membrane of CC (not shown). A high hydrostatic pressure is
generated in the sieve tubes of the collection phloem and water from the
xylem is attracted. Sucrose, RFOs and polyols are transported in the sieve
tubes to the sink organs in the transport phloem. All along the path, they can
be leaked from and reloaded into the phloem via the same mechanism (not
shown). Sucrose is unloaded into the release phloem where the hydrostatic
pressure is supposed to be lower. Sucrose can be unloaded through a
symplastic pathway or through an apoplastic pathway. In the latter case,
sucrose is unloaded into the apoplast through specific carriers which can be
of the SUT1/SUC2 type (green circle; Carpaneto et al., 2005). Sucrose is then
taken up by sink-specific sucrose carriers of the same SUT1/SUC2 (light
green circle) or converted to hexoses by a cell-wall invertase (CWInv).
Hexoses are then taken up by specific carriers at the plasma membrane
(orange circle) or at the tonoplast level (yellow and brown circles). Sucrose in
sink cells can be metabolized (growing sinks) or stored as starch in
amyloplasts, or imported into the vacuoles (red circles) and further converted
to hexoses by a vacuolar invertase (VInv).
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intermediary cells (Rennie and Turgeon, 2009). In that case, sug-
ars move from cell to cell through a symplastic pathway (Figure 1).
Active phloem loading may not be universal as there are many
indications of passive loading at least in tree species (Rennie and
Turgeon, 2009; Turgeon, 2010b). This is achieved by maintain-
ing high solute concentrations in the mesophyll cells of such
species.

These different pathways concern the loading of sucrose in the
so-called collection phloem (Van Bel, 2003) which represents the
initial step of long-distance transport. Transport along the path
between source and sink occurs in the transport phloem and
sucrose is delivered to sink organs by the release phloem (Van
Bel, 2003). The most widely accepted concept to explain solute
transport in the phloem is mass-flow, as initially proposed by
Münch and followers, whereby the hydrostatic pressure difference
in the phloem between source (high pressure) and sink (low pres-
sure) accounts for sap movement (Figure 1). At many stages along
the pathway, specific transporters are involved in the cell-to-cell
movement of sucrose or in the intracellular compartmentation
between the cytoplasm and organelles; they thus represent major
regulators of sugar fluxes. It should be noted that sucrose trans-
porters (SUTs) have been localized and characterized in the three
phloem sections. Sucrose can act as a signal and regulate many
genes involved in growth and development (Koch, 2004; Muller
et al., 2011).

During longitudinal transport, sucrose can be leaked and
retrieved but also used by sink cells along the path (axial sinks;
Minchin and Thorpe, 1987). In some species, stems or petioles can
be turned into storage organs (e.g., celery; Noiraud et al., 2001a)
and this function is even more pronounced in tree trunks (Hou,
1985). In such conditions, storage is transient as resources will later
be used to support growth along with plant development. These
organs successively act as sinks and sources (Juchaux-Cachau
et al., 2007). Concerning their ability to retrieve sucrose from the
apoplast, the respective membrane potential levels between SEs
and phloem parenchyma cells are decisive (Hafke et al., 2005).
SUTs are involved in sucrose movement in the transport phloem,
even in tree species where loading is symplastic in the collection
phloem (Turgeon, 2010b).

In the release phloem, sugars can exit the phloem through either
a symplastic or an apoplastic pathway, although the first steps are
often symplastic (Fisher and Oparka, 1996; Patrick, 1997). How-
ever, unloading pathways depend on the particular sink involved
and its development stage (Figure 1). In sinks like developing seeds
or infected tissues, symplastic discontinuity requires an apoplastic
step for the transfer of photo-assimilates. A switch from apoplas-
tic to symplastic unloading was noted during potato tuberization
(Viola et al., 2001). In fruit development, contrasting results have
been found: in grape berry, Zhang et al. (2006) demonstrated a
shift from symplastic to apoplastic unloading whereas in apple
and cherry fruit there is evidence for an apoplastic step in sucrose
and sorbitol unloading, involving transporters (Gao et al., 2003;
Zhang et al., 2004).

In seeds, SUTs but also hexose transporters and cell-wall inver-
tases are responsible for sugar movement but their respective
roles differ depending on the development stage (Weber et al.,
1997; Weschke et al., 2003). These pathways have been extensively

studied in legume seeds, together with the corresponding
regulation of sucrose unloading (Zhang et al., 2007).

SOURCE-SINK RELATIONSHIPS IN PLANT AND SUGAR
ALLOCATION (SINK STRENGTH)
Sink organs depend on the delivery of sucrose (or other forms of
carbohydrates) by the phloem for their growth and development.
A plant may be regarded as a series of sources and sinks with
an overall carbon fixation capacity and several sinks “competing”
for the available photo-assimilates. This creates a priority system
among sinks. Roots and young leaves are major sinks during the
early developmental stages, whereas tubers, fruit and seeds become
major sinks during the reproductive stages (Wardlaw, 1990). The
distribution of resources among sinks is also a key factor of plant
productivity based on the harvest index (HI). The HI is the ratio
of harvested dry weight over plant dry weight (or above-ground
shoot dry weight): therefore a high HI indicates that a large amount
of photo-assimilates has been diverted to the sinks harvested by
humans (Gifford et al., 1984).

In order for plants to reach a balanced development and
optimize their reproductive fitness, priority for access to photo-
assimilates needs to be established between sinks. Changes in
carbon partitioning and switches between the apoplastic and
symplastic pathways occur throughout development or as a
response to the environment (Roitsch, 1999; Godt and Roitsch,
2006). Concerning the apoplastic pathway, hexose transport
resulting from cell-wall invertase/hexose transporter activity
has been suggested to predominate in the sink tissues that
undergo cell division and elongation, while sucrose transport
predominates in the sink tissues that switch to storage mode
(Weschke et al., 2000, 2003).

Priority among sinks has been related to the so-called “sink
strength” (Ho, 1988) or sink dominance. According to Wardlaw
(1990), the underlying basis of sink strength (assuming a pressure
flow mechanism for translocation) is an ability to effectively lower
the concentration of photo-assimilates in the SEs of the sinks and
thus establish a favorable hydrostatic pressure gradient between
the source and the sink. In that respect, the role of cell-wall inver-
tases has frequently been highlighted in sink organs as they increase
sucrose unloading by converting sucrose to hexoses. Transport of
photo-assimilates depends on source supply and sink demand.
The role of the phloem sap sugar content in the coupling between
sink demand and source activity is still a matter of debate (Minchin
et al.,2002). However, high sucrose contents in leaves could have an
inhibitory effect on SUT activity and thus inhibit sucrose loading
into the phloem. This point was evidenced by feeding sucrose to
the transpiration stream of cut sugar-beet leaves (Chiou and Bush,
1998). The authors hypothesized that high sucrose concentra-
tions in the vascular tissue, resulting from decreased sink demand,
down-regulated transporter activity. This could lead to decreased
phloem loading and increased sugar levels in mesophyll cells, and
in turn down-regulated photosynthesis. The opposite regulation
is thought to occur in the case of increased sink demand (Chiou
and Bush, 1998). This link between sugar export in leaves and sink
demand has been re-examined by Ainsworth and Bush (2011) and
phloem sucrose transport has been identified as a possible target
for improving plant productivity.
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Phloem transport capacity may not be a limiting factor, as
shown in several reports. In transgenic sugarcane, expressing a
sucrose isomerase led to the accumulation of sucralose in addition
to sucrose in stalk vacuoles. The sugar concentration was therefore
doubled in the juice harvested from stalks (Wu and Birch, 2007).
In such plants, photosynthesis and sucrose transport were greatly
increased, indicating a release of sink limitation. The overexpres-
sion of an Arabidopsis tonoplastic glucose transporter (TMT1) led
to increased glucose contents in the vacuoles of mesophyll cells
and to higher seed yield. In these plants, higher expression lev-
els of AtSUC2, the transporter that loads sucrose into the phloem
in Arabidopsis, have been noted (Wingenter et al., 2010). How-
ever, TMT1 can also drive sucrose entry into the vacuole (Schulz
et al., 2011) and therefore the former interpretation may have to
be reconsidered. In rice, when the expression of a SUTs involved
in sucrose efflux from the vacuole (OsSUT2) was suppressed, seed
production as well as root growth were reduced, indicating that
sucrose transport to sinks was impaired (Eom et al., 2011) and
confirming the former results obtained in Arabidopsis. Altogether
these different data suggest a link between the sugar concentration
in the cytoplasm of mesophyll cells and the export of sucrose, and
indicates source-limitation in wild-type plants.

Taking the former elements into account, source-to-sink
sucrose transport can be affected by environmental factors at least
at three different levels (Figure 1):

(i) the source (e.g., by an effect on photosynthesis or phloem
loading), resulting in less sucrose available for export,

(ii) the sink (e.g., increased demand for root growth, pathogens
developing on plant organs), leading to a new balance between
sinks that can be detrimental to yield,

(iii) the path between source and sink (by e.g., cold treatment,
aphids, viruses) leading to impaired sucrose delivery.

Plants undergo large changes in their environment throughout
their life and have developed many strategies to respond to these
changes. The following sections will try to summarize some of the
effects of environmental factors on sucrose transport from source
to sink organs.

EFFECTS OF ABIOTIC FACTORS
Among the many environmental factors that can affect plant
growth, the present review concentrates on two types: environ-
mental cues and some air and soil pollutants.

EFFECTS OF ENVIRONMENTAL CUES
Effects of water deficit
Water deficit is a major abiotic factor affecting crop development
and yield. Drought imposes unfavorable conditions on the leaves
(source) and roots (sink) of a plant. However, as pointed out by
Turgeon (2010a), the high osmotic potential in the phloem can
be a positive parameter for attracting water to the sieve tubes and
maintaining phloem sap flow in drought conditions.

Under mild water deficit, shoot growth is restricted while root
growth continues and, consequently, plant architecture is modi-
fied. In dicots, e.g., pea and grape, the number of branches and
the number of leaves on branches are particularly sensitive to soil
water deficit (Lecoeur et al., 1995; Lebon et al., 2006). In monocots

such as grasses, the number of young emerging organs is reduced
under drought (Courtois et al., 2000). As a result of this water-
stress avoidance strategy, global photosynthetic productivity may
decrease and thus impact the carbon flow to different sink organs.

Most research on the effect of water deficit on sugar metabolism
and phloem loading has been led using sucrose-translocating
species and demonstrates that in leaves, carbohydrate levels
are altered by drought. Sucrose and hexose amounts increase,
while starch levels decrease (Pelleschi et al., 1997), suggesting the
induction of starch hydrolysis and sucrose synthesis. In cotton,
water-stress-induced accumulation of sucrose in the source leaves
has been hypothesized as providing an energy supply to main-
tain cell survival in high-respiration environments (Burke, 2007).
Furthermore, sucrose and hexose accumulation is considered to
play a major role in osmotic adjustment to maintain metabolic
activity in source leaves. However, sugars may also accumulate in
leaves because of a decreased demand as a consequence of growth
limitation (Hummel et al., 2010).

The effects of water deficit on species that translocate raffi-
nose family oligosaccharides (RFOs) were also investigated since
RFOs are involved in desiccation tolerance in seeds (Koster and
Leopold, 1988) and in low-temperature acclimation of leaves
(Bachmann and Keller, 1995). A hypothetical model depicting the
effects of water-deficit stress on the carbon flow between RFOs
and O-methyl-inositol (OMI) has been proposed in Coleus, a
drought-tolerant plant. Under stress, reduced RFO levels were
observed and, conversely, increased OMI synthesis was noted. The
two metabolic pathways share myo-inositol, a ubiquitous plant
cyclitol, as an intermediate. In Coleus, the activity of galactinol
synthase, an enzyme that catalyses the first step of RFO biosyn-
thesis from UDP-galactose, was found down-regulated by water
deficit, thus contributing to lower levels of transportable RFOs
(Pattanagul and Madore, 1999).

In source leaves, transcript abundance of several genes
encoding enzymes involved in gluconeogenesis such as fructose-
biphosphate aldolase (Cramer et al., 2007), in the phosphorylation
of soluble sugars such as hexokinase (Whittaker et al., 2001),
and in RFO biosynthesis such as galactinol synthase (Taji et al.,
2002) increased in response to dehydration stress. Transgenic Ara-
bidopsis plants that overexpressed galactinol synthase produced
elevated amounts of galactinol and raffinose, which may function
as osmoprotectants and contribute to water-deficit stress tolerance
(Taji et al., 2002). Such an apparent discrepancy between RFO-
transporting plants such as Coleus and sucrose-transporting ones,
such as Arabidopsis, may reflect differential responses of distinct
species to water stress.

Water deficit induces changes in the concentrations of the main
organic nutrients that move inside the sieve tubes, i.e., sugars and
amino acids. Analysis of alfalfa phloem sap, collected by stylec-
tomy, indicated a significant increase in sucrose contents and total
amino acid concentrations as the leaf water potential decreased
from −0.4 to −2.0 MPa. The change in total amino acid con-
centration was due to larger amounts of Val, Leu, Ile, Glu, Asp,
Thr, and especially Pro (Girousse et al., 1996). Similarly, water
stress induced increased sucrose and Pro levels in phloem sap
collected from cut petioles of Arabidopsis leaves by the EDTA
method (Mewis et al., 2012).
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In sink organs, examples of the negative effects of drought on
sink growth have been reported in potato tubers, where osmotic
stress promoted sucrose biosynthesis instead of starch biosyn-
thesis via the induction of sucrose-phosphate synthase (SPS)
and the inhibition of ADP glucose pyrophosphorylase (AGPase;
Geigenberger et al., 1997). The degradation of some storage carbo-
hydrates such as starch and fructans in stems has been correlated to
starch accumulation in grains (Yang et al., 2004). Likewise, drought
led to a fivefold decrease in cytosolic invertase activity in the seeds
of Lupinus albus (Pinheiro et al., 2005), together with an increase in
the activity of vacuolar and cytosolic invertases in leaves, suggest-
ing that the amounts of sucrose available for transport to the seeds
are reduced under drought (Kim et al., 2000; Pinheiro et al., 2001;
Trouverie et al., 2004). As a conclusion, several observations bring
evidence for negative effects of dehydration on the sink/source
ratio that are detrimental to crop production in terms of biomass
redistribution (Cuellar-Ortiz et al., 2008).

Data about the involvement of SUTs in drought and salinity
tolerance remain limited. Group IV SUTs have been identified as
tonoplast-localized SUT/H+ symporters able to regulate sucrose
movement from the vacuole to the cytosol. In rice photosynthetic
leaves, the SUT OsSUT2 was up-regulated during drought and
salinity treatments (Ibraheem et al., 2011). Using PtaSUT4-RNAi-
suppressed poplars, (Frost et al., 2012) demonstrated the effects
of altered sucrose compartmentation on photosynthesis efficiency
and accumulation of water-stress-related RFOs in source leaves.
The authors suggest that export and long-distance sucrose trans-
port may be at least partly controlled by SUT-mediated sucrose
sequestration within the vacuole.

The effects of water deficit have also been studied at differ-
ent development stages. Drought stress can induce senescence
and enhance reserve mobilization (Chandlee, 2001). In other
terms, senescence and reserve mobilization are integral compo-
nents of plant development and basic strategies in stress mitigation
(Cowan et al., 2005). Studies using tomato plants over-expressing
Arabidopsis hexokinase showed that increased hexokinase levels in
plants induced higher sugar contents, which reduced photosyn-
thetic activity and consequently accelerated senescence in leaves
(Dai et al., 1999). Sugar levels can influence leaf progress through
senescence as direct causal signals, but also as substrates for car-
bon mobilization and reallocation to allow plants to alleviate the
effects of drought stress (Wingler et al., 1998; Rizhsky et al., 2004;
Cramer et al., 2007).

In rice, drought-induced leaf senescence promotes allocation
of assimilates to developing grains, shortens grain filling, and
increases the grain filling rate (Yang et al., 2002). In soybean, water
depletion decreases seed size primarily because of a shortening of
the filling period rather than an inhibition of the seed growth rate
(Westgate et al., 1989). Since seed growth depends on the supply
of assimilates from the maternal plant (source activity), as well as
on the demand for assimilates within the embryonic tissues (sink
activity), both maternal and embryonic factors contribute to the
maintenance of seed growth under water deficit. Thus, the lat-
ter authors hypothesized that a rapid depletion of sucrose in and
around the embryo would point to a source limitation, whereas a
reduction in sucrose uptake would imply a sink limitation. Even
though severe water deficit completely inhibits photosynthesis and

decreases the sucrose concentration in the cotyledon apoplast by
approximately 50%, seeds continue to accumulate dry matter at
or near the control rate. Reserve carbohydrates are thus mobi-
lized from all source organs (leaves, stems, and pericarp tissue),
and this enhances the apoplastic and/or symplastic supply to sup-
port seed filling; water-deficient plants display an increased rate
of sucrose uptake relative to their well-watered controls (Westgate
et al., 1989), consistent with source limitation.

As an example of fruit development, the ripening grape berry
represents a well-characterized example of a very strong sugar
sink. Grape yield is reduced under drought, while total sugar con-
tent in the surviving berries increases (Huglin, 1986). The early
development of grape berry appears as the most drought-sensitive
stage, but in spite of negative effects on berry growth, drought
does not affect sugar accumulation, confirming that sink strength
within individual berries is set by sink activity, not by berry size,
as reviewed by Agasse et al. (2009). A shift from a symplastic-
to an apoplastic-unloading pathway has been demonstrated. It
occurs at the onset of ripening, and is accompanied by a concomi-
tant increase of the expression and activity of cell-wall invertases,
leading to a massive import of hexoses (Zhang et al., 2006).

Altogether these data indicate that sensitivity to water deficit
is particularly acute during reproductive development because
photo-assimilate allocation to newly established sinks such as flow-
ers, seeds, and fruit, can be compromised by competition with
roots under drought stress. In order to apply this knowledge to
crop improvement, more detailed understanding of drought sensi-
tivity at that crucial stage for productivity is needed. In that respect,
it is no surprise that selection for drought resistance should result
in the choice of traits affected by modifications in the sink/source
relationship in response to drought, such as the accumulation of
biomass in reproductive organs (Schnyder, 1993).

Effects of mineral deficiency
Plants acquire mineral nutrients for their growth and develop-
ment through the roots. Plasticity of the root system architecture
is therefore a key adaptation feature that allows plants to cope
with a changing environment. As pointed out by Hermans et al.
(2006), plants generally respond to a shortage in mineral nutrition
by allocating more resources to the organs involved in mineral
acquisition, and this results in a larger root surface. Therefore any
depletion in mineral supply can have dramatic effects on resource
allocation in plants. Marschner et al. (1996) proposed that nutrient
deficiency can affect photo-assimilate partitioning either directly
via phloem loading and transport or indirectly by depressing sink
demand.

As a consequence of plant growth reduction or inhibition by
mineral deficiency, sugar concentrations increase in plants and in
phloem sap (Peuke, 2010). The question remains as to whether
the phloem sugar concentration is a stress response and/or a stress
signal (Peuke, 2010).

Response to nitrate limitation. Deficiency in nitrogen leads
to an accumulation of carbohydrates in leaves and to a higher
level of carbon allocated to the root (Figure 2) that increases
the root/shoot ratio (Marschner et al., 1996; Scheible et al., 1997;
Remans et al., 2006). Scheible et al. (1997) reported that the
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FIGURE 2 | Model of the plant’s responses to mineral nutrient

deficiency. (A) Response to nitrate and phosphorus deficiency: deficiency
in nitrogen and phosphorus leads to reduced photosynthesis, accumulation
of sugars in source leaves, increased carbon allocation to the roots and a
higher root/shoot ratio. Moreover, phosphorus limitation induces an
adaptation of the root system architecture: root hairs initiate and elongate,
which increases the root surface area. AtSUC2 (green circle) is a component
of the sugar-signaling pathway in the response to phosphorus starvation.
(B) Response to magnesium and potassium deficiency: Mg deficiency

increases the concentration of soluble sugars and starch in leaves and
reduces leaf growth. Mg deficiency impacts sugar metabolism, as well
as sucrose export to the roots. Mg deficiency reduces the Mg-ATP
availability and the activity of H+-ATPase, thus reducing the driving
force for sucrose phloem loading. AKT2/3 potassium channels affect
sugar loading and long-distance transport by regulating the H+/sucrose
transporter. Conversely, K+-limitation rarely results in starch accumulation.
MC, mesophyll cell; CC, companion cell; PP, parenchyma phloem; MC,
mesophyll cell.

root growth rate is correlated with the root sugar content,
and nitrate accumulation in the shoot acts as a signal to reg-
ulate root/shoot allocation in tobacco. Sugars accumulated in
the leaves of N-deficient plants lead to reduced photosynthesis
probably due to feedback metabolite regulation (Martin et al.,
2002; Figure 2). Nitrogen deficiency reduces photosynthesis by
a decrease in RubisCO amount and activity and also a decrease
in electron transfer (Paul and Driscoll, 1997; Antal et al., 2010).
Hermans et al. (2006) gave some clues as to how N deficiency alters
carbohydrate metabolism in the shoot and increases the root/shoot
biomass ratio. Arabidopsis microarray data suggest that genes
related to primary metabolism and carbohydrate metabolism such

as starch metabolism, glycolysis, and disaccharide metabolism are
significantly over-represented among the differentially regulated
genes in the shoots of N-deficient plants (Hermans et al., 2006).
All these data show that nitrogen affects the distribution of sugars
across plant organs.

Response to phosphorus limitation. Phosphorus is the sec-
ond most limiting mineral nutrient for crop production after
nitrogen. Lack of phosphorus in leaf mesophyll cells has a direct
effect on photosynthesis through Pi availability in the chloroplast
and leads to reduced carbon assimilation (Figure 2). Neverthe-
less, sucrose translocation into the phloem is maintained and
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sometimes increased at least during the early phases of phosphorus
starvation (up to 6 days; Hermans et al., 2006).

Like N deficiency, phosphorus limitation induces increased
photo-assimilate allocation to the roots and an adaptation of
the root system architecture. Root hairs initiate and elongate in
response to phosphate starvation, increasing the root surface area
(Hammond and White, 2008).

The importance of phloem sucrose transport in P-deficiency
signaling has been clearly demonstrated by Liu et al. (2005). In
white lupin roots, two genes responsible for phosphate acquisi-
tion (LaPTI, a phosphate transporter and LaSAP1, a secreted acid
phosphatase) are rapidly induced by phosphate starvation. When
phosphate-starved plants were treated by phloem girdling to pre-
vent shoot-to-root sucrose transport, no induction of either LaPT1
or LaSAP1 was noted. In such conditions, delivery to the roots of
14C-sucrose applied onto leaflets was reduced by 95% in stem-
girdled plants. Sucrose transport from shoot to root was therefore
necessary for phosphate starvation signaling.

In a search for Arabidopsis plants affected in secreted acid
phosphatase activity, Zakhleniuk et al. (2001) identified pho3, a
mutant that displays a number of features usually associated with
Pi-deficient plants (low Pi, sugar, anthocyanin and starch accumu-
lation in leaves). Moreover, pho3 mutants were unable to respond
further to low Pi (Zakhleniuk et al., 2001; Lloyd and Zakhleniuk,
2004). The mutation was subsequently located in the AtSUC2 gene
(Lloyd and Zakhleniuk, 2004) and a link was thus clearly estab-
lished between sucrose availability for long-distance transport and
the response to P starvation. This was confirmed by the over-
expression of AtSUC2 in Arabidopsis plants that displayed higher
sensitivity to P starvation (Lei et al., 2011; Figure 2). Altogether,
these data clearly demonstrate that sucrose transport to the root is a
necessary signal for the response to phosphate starvation, although
recent data identified miRNAs translocated into the phloem as key
players in the regulation of mineral nutrition (Kehr, 2013).

Response to magnesium and potassium deficiency. Metabolic
processes and reactions that are influenced by Mg include chloro-
phyll formation, photosynthetic carbon dioxide fixation, photo-
assimilate phloem loading and partitioning (Cakmak and Yazici,
2010). Accumulation of carbohydrates in leaves is a common phe-
nomenon in Mg-deficient plants (Figure 2). Mg deficiency reduces
leaf growth more than root growth (Figure 2) and impacts on
sucrose export to the roots (Hermans et al., 2004; Hermans et al.,
2005; Ding, 2011). Mg deficiency is thought to affect phloem
sucrose loading by decreasing Mg-ATP availability. Consequently,
H+-ATPase activity could be inhibited, reducing the driving force
for active sucrose phloem loading (Marschner et al., 1996; see
Figure 1). Moreover, in response to Mg deficiency, the expression
of BvSUT1, a gene encoding a companion cell sucrose/H+ sym-
porter, was induced in the uppermost expanded leaves, but
without further enhancement of sucrose loading into the phloem
(Hermans et al., 2005).

K+ is the major cation in the phloem. Therefore, changes in
its amounts can have dramatic effects on phloem functions. The
high sugar concentration measured in the leaves of K-deficient
plants does not promote any increase in root sugar content or
growth. Deeken et al. (2002) demonstrated that AKT2/3 potassium

channel affected sugar loading and long-distance transport by
regulating sucrose/H+ symporter activity through the pmf (see
Figure 1). As a consequence, in the akt2/3 mutants, the amount
of sucrose in the phloem sap was drastically reduced. Unlike N
deficiency, K+ limitation rarely results in starch accumulation.

In conclusion, enhanced carbohydrate transport to the roots
has been demonstrated for N and Pi limitation, but not for K or
Mg deficiency (Peuke et al., 1994; Hermans et al., 2006; Figure 2)
and the underlying mechanisms have been partly unraveled.

EFFECTS OF NaCl
Salt stress, due in many places to irrigation with poor quality water,
is considered as a major factor limiting plant growth and produc-
tivity. Salt stress shares many features with drought stress because
in both cases, the primary effect is a lower soil water potential
around the roots. Sodium toxicity, due to transport inside the
plant via the transpiration stream, adds to that initial stress.

Potassium channels are implied in the recirculation of Na+
inside the plant (Berthomieu et al., 2003). Na+ can be loaded into
the leaf phloem to be directed to roots for excretion, therefore
reducing the amount of Na+ in leaves (Berthomieu et al., 2003),
although that flux may be marginal compared to the xylem flux
(Davenport et al., 2007).

Little is known about the effects of salt stress on sucrose translo-
cation into the phloem. Salt stress has an inhibitory effect on
photosynthesis (Suwa et al., 2008) and in many cases it leads
to growth impairment, more important in leaves than in roots
(Lohaus et al., 2000). In maize, phloem sucrose concentrations
were not altered by salt stress, whereas amino-acid and Na+ con-
tents of the sieve tube sap increased. The higher amount of amino
acids delivered to the roots could partly explain the increased
root/shoot ratio (Lohaus et al., 2000). However, in tomato, salt
stress can have a direct inhibitory effect on phloem sucrose load-
ing and translocation, leading to a deficit in sucrose partitioning
to the roots (Suwa et al., 2008).

Resistance to salt stress is frequently associated with polyol-
synthesizing plants as polyols are thought to act both as osmotically
active and anti-oxydant molecules. When such plants are subjected
to salt stress, their polyol content increases in different organs.
Polyols are considered as major molecules for plants to cope with
stress (Stoop et al., 1996). In polyol-transporting plants, increased
polyol synthesis occurs together with an increased expression
of genes encoding polyol transporters located in the phloem in
Plantago (Pommerrenig et al., 2007), celery (Landouar-Arsivaud
et al., 2011) and olive (Conde et al., 2011), suggesting that long-
distance polyol transport is also enhanced in response to salt stress.
Increased delivery of polyols to roots could have a positive effect
on metabolism and water potential of roots.

EFFECTS OF LIGHT
Light has a direct effect on phloem loading through photo-
synthesis via the synthesis of sucrose and by providing energy.
However, light also has an effect on the anatomy of the load-
ing zone itself (Amiard et al., 2005, 2007). Depending on the
loading mode (apoplastic or symplastic), the response to trans-
fer from low light to high light (and therefore acclimation to
increased photosynthesis) was different: in apoplastic species such
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as pea, cell-wall invaginations in the companion cells around the
SE increased (Amiard et al., 2005). This indicated an increased
exchange surface that allowed for higher sucrose phloem load-
ing. On the contrary, in symplastic loaders such as pumpkin,
plasmodesmatal frequencies did not increase, leading to starch
accumulation in leaves (Amiard et al., 2005). The capacity of
apoplastic loaders to increase the surface for membrane-mediated
sucrose transfer around the conducting cells was further investi-
gated (Amiard et al., 2007). Besides its role in nutrient exchange,
cell-wall enlargement was proposed as protecting phloem cells
against pathogens and insects.

EFFECTS OF LOW TEMPERATURES
Low temperatures can affect phloem sugar transport in different
ways, involving distinct cell types (intermediary cells, parenchyma
transfer cells, SEs).Considering that species with a symplastic
minor-vein configuration dominate in tropical regions and that
species with an apoplastic configuration dominate in temper-
ate zones, temperature is considered as a major parameter of
the phloem-loading mode in plants. Symplastic loaders are con-
sidered as more cold-sensitive than apoplastic loaders (Gamalei,
1991; Van Bel and Gamalei, 1992). Gamalei et al. (1994) proposed
that in herbaceous species and deciduous trees, the collapse of
intermediary cells at low temperatures, which leads to decreased
photo-assimilate loading, could explain the sensitivity of sym-
plasmic phloem loading to cold. However, these ultrastructural
changes have not been observed in broadleaf-evergreen species
(Ajuga reptans, Aucuba japonica, and Hedera helix) with a symplas-
tic phloem-loading mode. The winter leaves of these plants have a
higher exudation rate at low temperatures and no starch accumu-
lation is observed in their chloroplasts. Therefore, the removal of
excessive photo-assimilates from source leaves under low temper-
ature may be necessary to maintain their functional and structural
integrity and can thus be regarded as a result of cold acclima-
tion (Hoffmann-Thoma et al., 2001). Later physiological studies
(Schrier et al., 2000) revealed no differences between symplastic
and apoplastic species in their response to cold. This led to the
hypothesis that the phloem-loading mode was related to growth
architecture rather than habitat, and was confirmed by a study by
Davidson et al. (2011).

In monocot and dicot plant species, tocopherol (vitamin E)
deficiency impairs photoassimilate export from source leaves via
enhanced callose deposition in the vascular tissues (Hofius et al.,
2004). The same effect has also been described for phloem load-
ing under low temperature (Maeda et al., 2006). The Arabidopsis
vitamin E2 (vte2) mutants, which lack α-tocopherol (the major
tocopherol in leaves), exhibit dramatic phenotypes under low
temperature. When they are transferred to non-freezing low-
temperatures (+7.5◦C), vte2 mutants grow more slowly than
wild-type plants, and accumulate significantly higher levels of
anthocyanins. Accumulation of sucrose and other soluble sug-
ars is much higher in vte2 than in the wild-type after 60 h
of low temperature treatment, although the photosynthesis and
carbon fixation rates do not differ between the two genotypes.
14CO2-labeling experiments demonstrate that low-temperature-
treated vte2 plants translocate significantly less 14C-labeled
photo-assimilates from leaves to roots. In vte2 mutants, changes

in cell structure occur exclusively within the phloem parenchyma
“transfer” cells, which exhibit irregular thickenings of cell-wall cal-
lose deposits. This process leads to a callose boundary between
the phloem parenchyma “transfer” cells and the SE/CC com-
plex. Therefore, tocopherol prevents abnormal callose deposition
in phloem parenchyma cell walls and thus maintains photo-
assimilate transport at low temperature. In Arabidopsis plants
acclimated to low temperature (+5◦C), up-regulation of SUTs
SUC1 and SUC2 expression represents another mechanism for
maintaining sucrose transport to sinks (mainly young leaves;
Lundmark et al., 2006).

In dicots, when short sections of stems or petioles are pro-
gressively exposed to cool temperatures (thermal jackets), phloem
transport stops transiently through the cooled region (Faucher
et al., 1982). This stoppage is local and transient as phloem
transport can start again even if tissues are maintained at low
temperatures (Peuke et al., 2006). Furthermore, the cooling rate
determines stoppage duration. In fact, the effect of cooling
depends on experimental conditions and SE structure. Conversely,
in monocots, i.e., species that lack structural P-proteins (Dinant
et al., 2003), assimilate translocation is not (maize) or moderately
(wheat) affected by progressive cooling down to +1◦C applied to
leaves (Faucher and Bonnemain, 1981; Faucher et al., 1982). In
maize, limited phloem transport still occurs after a progressive
cooling down to −3◦C, and 14C-assimilate allocation in the whole
plant remains practically unchanged between +1◦C and +40◦C.

Further studies support the implication of sieve-element struc-
tural proteins in the cooling response (Lang and Minchin, 1986).
The fact that lanthanum, a calcium channel blocker, can prevent
the phloem response to cooling (Pickard and Minchin, 1990),
strongly suggests that the response requires an increase in free
Ca2+ in the SEs. This increase only occurs if the cooling process
is rapid (White, 2009). Recent data indicate that forisomes (a class
of P-proteins restricted to Fabacae), which control the immedi-
ate Ca2+-dependent occlusion of sieve tubes induced by injuries
(Furch et al., 2007; Will et al., 2007), are also involved in the rapid
transport blocking by cooling (Thorpe et al., 2010).

EFFECTS OF CO2

The rise in carbon dioxide (CO2) in the atmosphere is suspected
to be the main cause for global warming. Indeed, atmospheric
CO2 concentration increased from around 315 ppm in 1959 to
an average 390 ppm nowadays, and predictions give a CO2 con-
centration ranging between 540 and 970 ppm at the end of the
century. This elevated atmospheric CO2 has a direct effect on
plant photosynthesis: at the present atmospheric CO2 concen-
tration, the photosynthetic reaction is limited by the low affinity
of the active site of RuBisCO for CO2 in C3 plants (Drake et al.,
1997; Woodward, 2002). An increase in CO2 should therefore
enhance photosynthetic rates, carbohydrate production, and have
a positive effect on phloem transport and growth. In fact, most of
the plants grown in high CO2 effectively exhibit increased carbo-
hydrate accumulation in leaves with biomass partitioning between
source and sink organs differing according to species (Makino and
Mae, 1999). Root/shoot ratios increase in herbaceous plants grown
in high CO2 whereas they decrease in trees and remain stable in
cereals (Farrar and Williams, 1991).
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Classically, two high-CO2 acclimation steps are described, i.e.,
short-term and long-term acclimation (Drake et al., 1997; Cheng
et al., 1998). Biomass formation is initially enhanced in the first
days of exposure but this boosted growth is not sustained for a
long time. The short-term response to high CO2 is an acclimation
process whereby net photosynthesis, net carbon assimilation and
growth are enhanced (Drake et al., 1997; Bae and Sicher, 2004).
Excess sucrose is only partly exported to sink organs via the phloem
and the resulting carbohydrate accumulation in leaves decreases
the photosynthesis rate. A decreased RuBisCO content marks the
beginning of long-term acclimation (Cheng et al., 1998; Bae and
Sicher, 2004).

A comparison of sugar and starch contents in Ricinus communis
leaves in plants grown at 350 or 700 ppm CO2 showed that leaves
accumulated starch at 700 ppm. Starch accumulated because more
sucrose was synthesized than consumed or exported to sink organs
via the phloem (Grimmer et al., 1999). Phloem carbon export was
induced by high CO2 at night. In the daytime, carbon export was
independent of CO2 conditions, whereas at night the export rate
dropped by 50% under normal CO2 but remained unchanged at
high CO2. In fact, R. communis plants seemed to display sink lim-
itation in the daytime and source limitation at night, and source
limitation tended to be suppressed at high CO2 (Grimmer and
Komor, 1999). In short, more sucrose was exported to sink organs
at high CO2. The role of increased sucrose transport as a result
of increased CO2 was also shown in Arabidopsis thaliana grown
under 900 ppm CO2: the plants exhibited enhanced root growth,
with increased root length, root diameter and root number, and
a modified branching pattern (Lee-Ho et al., 2007). The same
root changes were noted on plants grown at 360 ppm CO2 and
supplied with exogenous sucrose, confirming the role of sucrose
transported from the source.

In Opuntia ficus-indica, a CAM plant, no decrease in photosyn-
thesis was detected in long-term exposure at high CO2. After three
months of CO2 enrichment, cladodes displayed an increase in glu-
cose, starch, and malate contents, but no change in their sucrose
content was measured (Wang and Nobel, 1996). The sucrose con-
tent in mother cladodes was stable because it was exported to
daughter cladodes by an enhanced phloem transport that resulted
in a 73% increase in daughter cladode biomass after 3 months of
exposure to high CO2 (Wang and Nobel, 1996). However, data
analysis from different plant species grown under high CO2 shows
that phloem loading cannot alone account for variations in shoot
carbohydrate partitioning. Increased CO2 can also have negative
effects on plants. Due to an imbalance in nitrate assimilation
caused by high CO2, protein accumulation in wheat grains is low
despite an unchanged yield (Pleijel and Uddling, 2012). However,
this is not the case for woody plants, like pine trees, which preserve
seed quality while increasing seed production (Way et al., 2010).

EFFECTS OF SOME SOIL AND AIR POLLUTANTS
Effects of cadmium
Some pollutants like heavy metals, cadmium (Cd), lead (Pb), or
mercury (Hg) and the metalloid arsenic (As) are present in soils all
over the world. Concerning Cd mobility within the phloem and its
impact on sugar transport, little information is available, due to
technical hurdles regarding phloem sampling (Mendoza-Cozatl

et al., 2011). However, a low-affinity Cd transporter, OsLCT1,
involved in phloem loading and accumulation in seeds, was iden-
tified in rice (Uraguchi et al., 2011), but no study related to
sugar transport was carried out. Another experiment was led
on willows used for Cd phyto-extraction. In those trees, sieve
tubes and companion cells degenerated in proportion to increas-
ing Cd concentrations supplied at the root level (Vollenweider
et al., 2006). Long-distance transport was therefore impaired and
a reduction in leaf size and biomass was observed (Cosio et al.,
2006). Phloem degeneration was also noticed on maize grown on
a Cd-contaminated soil (Cunha et al., 2008). Moreover, in willows,
phloem regeneration was hindered due to reduced cambial activity
(Vollenweider et al., 2006).

Effects of ozone
Tropospheric ozone is the most widespread air pollutant in many
areas of the industrialized world and the overall ozone con-
centration has increased over the past decades as a result of
anthropogenic activities (Krupa and Manning, 1988; Volz and
Kley, 1988). Ozone mainly originates from photochemical reac-
tions of volatile organic compounds with nitrogen oxides (NOx)
released from anthropogenic and natural sources (Stockwell et al.,
1997). Ozone causes a series of negative effects on vegetation
such as decreased photosynthesis and growth, enhanced prema-
ture senescence and reduced crop yield (Pell and Dann, 1991;
Sandermann, 1996). O3 alters chloroplast membranes and
decreases photosynthesis by reducing RuBisCO activity and con-
centration (Grams et al., 1999), which suggests that its main target
is the photosynthetic apparatus (Kangasjärvi et al., 1994). Thus
the availability of photo-assimilates for sink organs is decreased
(Fiscus et al., 2005; Grantz et al., 2006).

Grantz and Yang (2000) tried to understand whether the impact
of O3 on reduced carbon allocation in plants was due to source
limitation or inhibition of translocation. The results indicate that
ozone has direct effects on phloem transport with consequent
inhibition of translocation to roots, as previously suggested by
Mortensen and Engvild (1995). These data are consistent with a
primary effect on phloem loading and secondary feedback inhi-
bition of photosynthesis (Grantz, 2003; Grantz et al., 2006).To
gain information on this phenomenon, a meta-analysis of all the
data available about the impacts of O3 on root/shoot allocation
and growth was performed by comparing RGR (relative growth
rate of the whole plant) values and the allometric coefficient k
(k = RGRroot/RGRshoot). The results show that both parameters
were significantly reduced by ozone but k showed more variability
than RGR. This could indicate that root allocation is disturbed
by O3 but photo-assimilate availability is not. This result is con-
sistent with an inhibition of photo-assimilate translocation rather
than with a limitation of the photosynthetic process (Grantz et al.,
2006).

Carbon translocation from source leaves of Pima cotton has
been directly studied by monitoring 14C-labeled photo-assimilates
during a sudden exposure to O3. The results indicate that the
total labeled carbohydrates transported from source leaves were
reduced by O3 through effects on assimilation (up to 20%) and
on export from leaves (up to 70%; Grantz, 2003; Grantz et al.,
2006). Another study examined the translocation velocity of
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14C-labeled photo-assimilates in wheat : although the authors
observed no significant difference in the translocation velocity
in O3-treatedplants, the amount of carbon transported decreased
(Mortensen and Engvild, 1995). In conclusion, O3 could induce
changes in carbon allocation or partitioning probably due to
decreased amounts of transported carbon. All those works high-
light that the major impact of ozone is the reduction of phloem
loading probably linked to oxidant damage on plasmalemma or
plamodesmata in mesophyll or phloem companion cells (Grantz
and Farrar, 1999).

O3 exposure could also have an indirect effect on plants
by blocking phloem translocation via the induction of callose
deposition on phloem sieve plates (Wilkinson et al., 2012). In
potato, accumulation of callose in the phloem and starch in the
parenchyma cells of source leaves was observed after ozone expo-
sure. O3 also decreased tuber weight, supporting the hypothesis
of impaired phloem functioning (Asensi-Fabado et al., 2010). A
better understanding of the effects of O3 on carbohydrate translo-
cation could come through the study of apoplastic and symplastic
phloem-loading species to confirm the oxidant impact of O3 on
membranes (Grantz and Yang, 2000).

Effects of sulfur dioxide
Sulfur dioxide (SO2) was a major air pollutant during the second
half of the 20th century and was considered as the main cause of
forest decline in central Europe (Kurczyńska et al., 1997). SO2 is
highly soluble in water: a concentration of 0.035 ppm SO2 in the
air can produce up to 35 ppm SO2 in aqueous solution (Puckett
et al., 1973). The pollutant can accumulate in leaf tissues and cause
disturbances in physiological mechanisms such as photosynthesis,
respiration, transpiration (Saxe and Murali, 1989). In bean leaves
(Minchin and Gould, 1986) and castor bean cotyledons (Lorenc-
Plucinska and Ziegler, 1987), photo-assimilate translocation is
also affected due to inhibited phloem loading, independently of
reduced photosynthesis. In broad bean, H+/ATPase and SUTs have
been identified as possible targets, both in leaf discs (Maurousset
et al., 1992b) and plasma membrane vesicles (Maurousset et al.,
1992a). More recently, an anatomical study showed that SO2 led
to a decreased number of phloem cells, but it was difficult to
discriminate between general reduction of cambial activity and
disturbances in the division of phloem mother cells (Kurczyńska
et al., 1997).

EFFECTS OF BIOTIC STRESS
During their development, plants have to deal with the presence
of microbes, like fungi, viruses, bacteria and also herbivores and
sometimes other plants that act as parasites. Those organisms,
whatever their type, develop at the expense of the sugars produced
by plants (Figure 3), and may therefore affect phloem transport
of sugars.

MUTUALISTIC AND PATHOGENIC MICROBES
Microorganisms can be separated into two groups according to
their lifestyles, mutualistic (e.g., mycorrhiza) and pathogenic
(biotrophic to necrotrophic; Newton et al., 2010). Even if their
modes of colonization are different, microorganisms have evolved
sophisticated strategies to avoid, suppress or bypass plant defenses

and to divert nutrients, especially sugars, from the host plant
for their growth (Figure 3). For example, mutualistic microor-
ganisms and biotrophic pathogens can grow within the plant
through complex interfaces, arbuscules and haustoria respectively,
through which nutrients are transferred (Voegele and Mendgen,
2011; Smith and Smith,2012). In contrast, necrotrophic pathogens
secrete toxins and produce hydrolytic enzymes that kill host cells
in order to feed on macerating tissues (van Kan, 2006).

Microbes can colonize either sink or source organs. Because
both mutualistic and pathogenic interactions require sugar sup-
ply from host plants to the heterotrophic colonizing agent, they
interfere with the source-sink balance. In most cases, it is largely
assumed that colonized source organs are subjected to a source-
to-sink transition that modifies the mechanism of sugar transport
and partitioning at the whole plant level (Biemelt and Son-
newald, 2006). Among pathosystems, interactions between plants
and biotrophic fungi are often cited as models for the study of
pathogen-related modifications of carbon partitioning. For this
reason, we particularly focus here on plant-biotrophic fungus
interactions and only mention a few distinctive features of other
pathosystems.

Biotrophic fungi, e.g., rust, powdery mildew, establish a long-
term feeding relationship with the living cells of their hosts
through the formation of haustoria. These are penetrating cell-
wall structures that leave the protoplast of host cells intact and
create an apoplastic interface through which released host nutri-
ents are absorbed by the fungus (Mendgen and Hahn, 2002;
Panstruga, 2003). Autoradiography studies using radiolabeled
substances give indirect evidence for the central role of haustoria in
sugar and amino-acid transfer from host to biotrophic pathogens
(Hall and Williams, 2000; Voegele and Mendgen, 2011). In infected
tissues, the fungal carbon demand creates an additional major sink
that competes with host sinks. Competitiveness between plant
and fungal sinks has been recently examined using a combined
experimental-modeling approach. The authors showed that, in
wheat infected by the leaf rust fungus Puccinia triticina, fungal
sporulation had a competitive priority for photo-assimilates over
grain filling (Bancal et al., 2012).

The nature of the host carbon energy source (hexoses or
sucrose) transferred through the haustoria has been a matter of
debate as to the origin of the apoplastic sugars taken up (Figure 3).
Rather than sucrose, glucose appears to be the major carbohy-
drate imported from the host to the parasite, e.g., powdery mildew
(Sutton et al., 1999; Hall and Williams, 2000). Apoplastic sucrose
is most likely hydrolysed by cell-wall invertases (cwINV) which are
key players in supplying carbohydrates to sink tissues (Roitsch and
Gonzalez, 2004). Many studies report increased invertase activity
in response to powdery mildew or other pathogens and in differ-
ent plant species (Roitsch et al., 2003; Kocal et al., 2008; Siemens
et al., 2011). This increase in cwINV activity in infected tissues
constitutes a major driving force in sugar unloading. For most
pathosystems, especially with obligate pathogens, it is difficult
to discriminate between plant or pathogen contribution to the
induced cwINV activity (Figure 3). While several plant cwINV
genes, whose expression is correlated with increased cwINV activ-
ity, have been identified (Fotopoulos et al., 2003; Hayes et al.,
2010), the pathogen’s needs for carbohydrates are unlikely to be
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FIGURE 3 | Simplified representation of the key players involved in the

competition for sugars at the plant/microbe interface. Depending on the
pathosystem, plants and microbes present efficient machineries to take up or
modify apoplastic sucrose. In biotrophic interactions, sucrose can be taken up
by both host and fungus via sucrose transporters, e.g., maize ZmSUT1 and
fungus Ustilago maydis UmSRT1, respectively. However, glucose is the main
carbon source transferred from the host to the parasite and is essential for
the feeding and metabolism of the parasite. Cell wall invertases from host
and microbes contribute to the source of hexoses at the apoplast level.
Hexose transporters allow pathogenic or mutualistic fungi to preferentially
compete for glucose and/or fructose (i.e., UfHXT1, BcFRT1, CgHXTs,

GiMST2). To gain access to apoplastic hexoses, plants possess a large
repertoire of STPs that can support host demand. Multiple roles of hexoses in
host cells have been described; among others, hexoses can be used as an
energy source or as signaling molecules and regulators of
pathogenesis-related, photosynthetic and sink gene expression. An indirect
consequence of host sucrose and hexose acquisition is a possible starvation
of microbes through a limited access to sugar at the interface. Host sugar
uptake can be bypassed in some pathogenic interactions. Specific effectors
(not represented in the diagram) released by some bacteria and probably
fungi can manipulate host sugar effluxers (SWEETs) and further make
sucrose and hexoses available for the pathogen

solely met by the enzymatic machinery of the host. So far few
studies have reported fungal cwINV involved in such activities.
The characterization of rust fungus Uromyces fabae Uf-INV1 sug-
gests a fungal contribution to the higher cwINV activity in the
biotrophic interaction with the host plant Vicia faba (Voegele
et al., 2006). Regarding the necrotrophic parasite Botrytis cinerea, a
contribution of the fungus to higher cwINV activity during infec-
tion of Vitis vinifera has been evidenced (Ruiz and Ruffner, 2002).
Accordingly, both partners appear to activate their own invertases,
providing strong support to the theory that infection by pathogens
creates a new sink that competes with existing sinks (Figure 3). As
a consequence, hexoses accumulate in the apoplast, and are taken
up by co-regulated hexose transporters (Wright et al., 1995; Clark
and Hall, 1998).

High extracellular sugar levels are somehow beneficial for both
partners. On the plant side, sugars act as signaling molecules

that can regulate many physiological processes, including defense
mechanisms through the control of gene expression (Herbers et al.,
1996; Roitsch et al., 2003; Rolland et al., 2006; Figure 3). For exam-
ple, sugars induce pathogenesis-related genes and repress photo-
synthetic genes (Roitsch, 1999; Bolouri Moghaddam and Van den
Ende, 2012). An indirect host defense strategy consists in starving
the pathogen by limiting host sugar availability at the interface.
Reports describe an increased capacity for glucose retrieval by
host tissues after challenge by biotrophic as well as necrotrophic
pathogens (Fotopoulos et al., 2003; Azevedo et al., 2006). Some
plant monosaccharide transporters (MSTs) are involved in sugar
resorption upon infection (Buttner, 2010; Slewinski, 2011). This
is exemplified by the report of the up-regulation of the plant cell-
wall invertase AtβFRUCT1 and the hexose transporter AtSTP4
in Erysiphe cichoracearum-infected Arabidopsis leaves, which cor-
relates with increased invertase activity and glucose resorption
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(Truernit et al., 1996; Fotopoulos et al., 2003). This supports the
functional coordination of STPs and cwINVs in the supply of sink
tissues with hexoses (Sutton et al., 2007; Figure 3). Further molec-
ular evidence of a competition for apoplastic glucose has been
provided in infected broad bean by the identification and char-
acterization of rust Uromyces fabae sugar transporter UfHXT1,
which is localized in the haustorial plasma membrane. UfHXT1
preferentially transports glucose and fructose rather than sucrose
to the fungus (Voegele et al., 2001). Substrate specificity and local-
ization of such fungal MSTs facilitates plant hexose assimilation
and thus participates in fungal sink strength (Figure 3).

Mutualistic or pathogenic microorganisms use a wide range
of different strategies to gain access to carbohydrates from host
plants, as highlighted in Figure 3. Mycorrhizal fungus Glomus
high-affinity MST2 has been identified as a major player in sugar
uptake with a critical function in the establishment of symbiosis
(Helber et al., 2011; Doidy et al., 2012). Five hexose transporters
(CgHXT1-5) have been characterized in the maize hemibiotrophic
pathogen Colletotrichum graminicola, with large substrate speci-
ficities. CgHXT genes are differentially expressed during all
infection phases, whether biotrophic or necrotrophic (Lingner
et al., 2011). A high-affinity fructose transporter (BcFRT1) has
been found in the necrotrophic fungus B. cinerea. Roles for fruc-
tose as a potent inducer of fungus germination have been suggested
(Doehlemann et al., 2005).

Sucrose is the main photo-assimilate translocated from source
to sinks. Upon release from the phloem in sink organs, sucrose
is unloaded into the apoplast and is potentially exploitable by the
fungus. In infected tissues, apoplastic sucrose uptake by fungal
cells is believed to require the presence of fungal SUTs localized
in the haustorial structure. The identification of SRT1, a highly
specific SUT from the corn smut fungus Ustilago maydis, sug-
gests that this fungus can efficiently use apoplastic sucrose (Talbot,
2010; Wahl et al., 2010). Ustilago maydis hyphae grow along the
phloem of infected maize plants where they have access to sucrose
released from the phloem. Such a transporter (i.e., SRT1) allows
the pathogen to compete for sucrose with sink cell sucrose trans-
porters (SUC/SUT) at the plant/fungus interface (Wahl et al., 2010;
Doidy et al., 2012). During the maize/Ustilago maydis interaction,
competition for extracellular sucrose between the SUTs ZmSUT1
and UmSRT1 has been described, and SRT1 turned out to be
essential for fungal virulence (Wippel et al., 2010). Direct sucrose
uptake is probably an integral part of the pathogen’s strategy to
prevent plant defense responses being triggered by hexoses (mostly
glucose) released from sucrose hydrolysis (Ehness et al., 1997). The
identification and characterization of other fungal SUTs is not yet
achieved and constitutes an open field to better understand the
competition for sugars that takes place between the plant and the
fungus (Doidy et al., 2012).

Recently, key insights into how microbes acquire the ability to
use the host sugar efflux machinery for nutrient supply have been
gained thanks to the discovery of a new class of plasma membrane-
localized sugar transporters (Figure 3). Plant SWEETs function as
facilitators of sugar influx and efflux. SWEETs were at first iden-
tified as glucose uniporters but paralogues (i.e., AtSWEET11 and
AtSWEET12) can also export sucrose (Chen et al., 2010, 2012).
Several SWEET genes are specifically regulated upon pathogen

attack. Different patterns of expression have been reported after
challenge by either bacterial (Pseudomonas syringae pv tomato
strains) or fungal (the necrotroph B. cinerea or the biotroph
Golovinomyces cichoracearum) pathogens. Authors also described
a model in which OsSWEET11 and 14 expression is specifically
targeted by Xanthomonas oryzae pv oryzae effectors to increase
sugar efflux into the apoplast (Chen et al., 2010). Both specific
bacterial effectors and OsSWEET expression are required for bac-
terial virulence, suggesting that pathogens probably take advantage
of the SWEET-induced sugar efflux mechanism to gain access to
sugars in cells around the infection site in order to support their
own growth. The identification of this non-conventional family
of sugar transporters highlights additional complexity and opens
new perspectives onto our knowledge about sugar partitioning
during plant-pathogen interactions.

VIRUSES
Among plant pathogens, viruses are unique because they remain
exclusively in the symplast of their host (Schoelz et al., 2011).
This mode of colonization requires viruses to move from infec-
tion site to systemic tissues via the symplastic continuity cre-
ated by cell-to-cell connections (plasmodesmata, PD) and the
phloem long-distance translocation system (Lucas and Wolf,
1999; Gosalvez-Bernal et al., 2008). Viral infection involves virus-
encoded movement proteins (MPs) which alter the exclusion size
of PDs, suggesting that viruses can exploit the PD-mediated cell-
to-cell trafficking of photo-assimilates. Carbohydrate allocation
and signaling can be directly affected during virus infection. The
mechanisms of these metabolic changes caused by viral infec-
tion have been assessed using transgenic expression of viral MPs;
Olesinski et al., 1996; Hofius et al., 2001). Plants expressing viral
MPs exhibited dilated PDs associated with significant physiological
alterations such as changes in host primary metabolism, accumu-
lation of starch and soluble sugars, decreased photosynthesis and
increased respiration (Tecsi et al., 1996; Balachandran et al., 1997;
Herbers et al., 2000). These changes strongly suggest that virus-
infected leaves function as sinks. However, the effects of viral MPs
on carbohydrate allocation can vary according to the way viruses
exploit the host transport system. In some cases, it is not related to
the PD size exclusion limit, but may rather be due to induced
callose deposition at the PD level which consequently blocks
symplastic sucrose transport (Biemelt and Sonnewald, 2006).

Virus-induced reallocation of host resources and its mech-
anisms seem to be virus-specific and result from interactions
between specific viral and host components (Culver and Pad-
manabhan, 2007). For example, in Cucumber Mosaic Virus
(CMV)-infected melon, modifications in phloem sap sugar com-
position, such as an increase in sucrose content, have been
reported (Shalitin and Wolf, 2000). While cucurbits are known
to be symplastic loaders, the identification of a SUT, CmSUT1,
which catalyzes the active apoplastic loading of sucrose into the
phloem of CMV-infected melon, provides evidence for a possible
symplast/apoplast switch in sucrose loading (Gil et al., 2011).

APHIDS
Aphids, which are the vectors of numerous plant viruses (Brault
et al., 2010; Dedryver et al., 2010), are “experts” at probing the
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phloem and at manipulating the plant tissues to their own advan-
tage (Miles, 1999; Will et al., 2007). Using fine stylets, they drill
into tissues intercellularly, making tiny punctures, and wait a
few seconds to analyze the physicochemical properties of the
microenvironment around the stylet tip (Tjallingii, 2006). Exper-
iments using artificial systems indicate that the ability of aphids
to find sieve tubes is linked to their ability to sense high sucrose
concentrations and pH (Hewer et al., 2010).

Aphids constitute an additional sink that can modify assimi-
late allocation at the whole plant level, especially at the expense
of the stem apex (Hawkins et al., 1987; Girousse et al., 2003). Data
from various controlled infestations of alfalfa stems by pea aphids
indicate that the reduction of the stem elongation rate (SER) is
only partly explained by assimilate withdrawal and suggests that
extra signals associated to pea aphid probing and feeding are
involved in SER reduction (Girousse et al., 2003). In addition, dra-
matic changes in carbon and nitrogen allocation were observed
under growth-chamber conditions using severe and short-time
aphid infestations. They mainly consist in nitrogen mobilization
from some parts of the stem, especially the apex, to the mid-
dle part of the zone of aphid infestation (Girousse et al., 2005).
Complementary approaches show that aphid colonization induces
changes in the expression of genes associated with sugar and nitro-
gen metabolism (Voelckel et al., 2004; Divol et al., 2005; de Vos
et al., 2007) and causes an increase in the mRNA levels of a MST
in infested tissues (Moran and Thompson, 2001). The systemic
impact of aphid infestation also concerns source tissues (Miles,
1989). For instance, a single Aphis fabae on one side of a leaf grows
faster if an Aphis fabae colony is feeding on the other side (Dixon
and Wratten, 1971), suggesting the importance of aphid-related
sugar accumulation. Aphid (Myzus persicae) infestation of Ara-
bidopsis leaves leads to a dramatic increase in sucrose and starch
contents in source tissues despite pest feeding (Singh et al., 2011).
These changes suggest a stoppage of sugar export to the plant sinks.
Infestation also induces an increase in trehalose levels. This change
in trehalose metabolism promotes re-allocation of carbon into
starch at the expense of sucrose, the primary energy source of the
pest, and plant defenses via the induction of the PHYTOALEXIN-
DEFICIENT4 gene (Singh et al., 2011). It is noteworthy that the
trehalose found in the aphid hemolymph at millimolar concentra-
tions as an energy source is also a plant signal that contributes to
controlling infestation by phloem-sucking pests such as M. persicae
at micromolar concentrations.

PARASITIC PLANTS
Many plants like Phelipanche (Orobanche), Cuscuta, and Striga are
able to establish parasitic relationships with a large number of crop
plants, and this results in important productivity losses. Fighting
against these parasitic plants is particularly complex because many
treatments are also active on the host plants. Parasitic plants can
be classified into two categories: hemiparasites are green, con-
tain chlorophyll and can therefore have a photosynthetic activity.
They take nutrients from the xylem sap in the wood of their
host, can reduce nitrate but also use organic nitrogen found in
the sap of their host. Holoparasitic plants are not photosynthetic
and are thus heterotrophic for carbon and depend on their host
for sugars, water, and minerals (Abbes et al., 2009a). Parasitic

plants establish their connections with the host at the level of
the sap-conducting tissues. Several years ago, sugar trafficking
between host plant and parasite was clearly demonstrated using
radiolabelled molecules. Although it is altogether agreed that the
transfer of water and minerals between host and parasite xylem
vessels does not require a membrane, the connections between
host and parasite phloem vessels are more disputed. Initial histo-
logical studies showed that plasmodesmata were absent (Behnke
et al., 1990), suggesting an apoplastic transfer of sugars and other
molecules (Wolswinkel, 1974; Jeschke et al., 1994). However, using
a GFP specifically expressed in companion cells (Haupt et al., 2001)
or a fusion GFP-TMV (Tobacco Mosaic Virus) MP (Birschwilks
et al., 2006), secondarily formed interspecific plasmodesmata were
shown to be open and functional. In addition, 3H-sucrose, 5,6-
carboxyfluorescein and viruses were translocated from the host to
the parasite, giving unequivocal evidence for a symplastic transfer
of solutes (Hibberd and Jeschke, 2001; Birschwilks et al., 2006).

Different enzyme activities are involved in the parasitic mecha-
nism. PrSUS1, a sucrose synthase isolated from the parasitic plant
Phelipanche ramosa, exhibits a spatial and temporal regulation
during the infection process (Péron et al., 2012). Expression is
regulated by auxin from the host plant. The authors suggest that
PrSUS1 is involved in cellulose synthesis during the secondary
thickening of differentiating xylem elements in the tubercles (i.e.,
globular structures developed after parasite seed germination that
carry numerous adventitious roots and whose apical bud produces
a subterranean shoot) and in the adventitious roots of P. ramosa.
Cellulose synthesis is probably crucial for the cell-wall integrity of
both xylem and phloem tissues. Another enzyme activity acting
as the driving force in many source/sink relationships is the inver-
tase activity involved in the cleavage of sucrose into glucose and
fructose. Transcripts of PrSai1 that encodes a soluble acid inver-
tase and the corresponding enzyme activity were high in growing
organs during parasite fixation. In addition, germinated seeds dis-
played enhanced cell-wall invertase activity (PrCWI), suggesting
its contribution to the sink strength of infected roots during the
subsequent step of root penetration (Draie et al., 2011).

Orobanche also accumulates high amounts of polyols like man-
nitol, and this decreases the osmotic potential below that of the
host plant (Harloff and Wegmann, 1993; Abbes et al., 2009b). This
mechanism is essential for increasing the parasite’s sink strength. A
mannose-6-phosphate reductase (M6PR), the key enzyme of the
mannitol biosynthesis pathway, was identified and cloned from
Orobanche (Delavault et al., 2002). Expression of that gene was
induced at the attachment stage and sucrose from the phloem host
was rapidly converted into mannitol. Consequences are increases
in host nutrient uptake and in parasite protein synthesis and veg-
etative growth. Accumulation of mannitol in Orobanche tissues is
strongly enhanced following the haustorial connection. Targeting
the corresponding enzyme activity could be a major strategy for
fighting against these parasites (Delavault et al., 2002).

All these relationships in terms of carbon and nitrogen
exchanges are very important to establish susceptibility or tol-
erance to Orobanche. Phloem exudates of a faba bean tolerant
line were highly deficient in nitrogen compared to those of the
susceptible line (Abbes et al., 2009a). In addition, after haus-
torial development and phloem connections were established
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with the tolerant line, soluble invertase activity was very low.
Taken together, these results indicate that the reduced growth of
Orobanche on the tolerant faba bean line resulted from a reduced
capacity to use the host-derived carbohydrates and lower sink
strength.

Using radiolabelled valine and asparagine, amino acids were
also shown to be transported from the host to Cuscuta europaea
(Wolswinkel et al., 1984). More recently, Aly et al. (2011) demon-
strated that several other molecules such as proteins and macro-
molecules could be translocated to Phelipanche aegyptiaca through
phloem connections. These results suggest that targeting the
delivery of proteins and/or nucleic acids could be very inter-
esting in the development of parasite-resistant strategies. The
use of herbicides could also be a strategy to get rid of parasitic
plants. Glyphosate, a systemic herbicide, is accumulated in the
parasite due to its strong sink activity, without significant dam-
age to the host (Nadler-Hassar et al., 2004). Glyphosate usually
inhibits 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), a
key enzyme in the shikimate pathway. However, in parasitic plants,
glyphosate also blocks the transfer of sugars and macromolecules
to the parasite. Therefore its toxic effect is more due to the inhibi-
tion of phloem transport to the parasite than to the inhibition of
aromatic amino acid synthesis.

CONCLUSION AND PERSPECTIVES
Plant life cycle is characterized by source-sink transitions due to
changes in sink strength or in the number of sink organs compet-
ing for a common pool of sugars (Roitsch, 1999). The phloem plays
a major role in connecting source and sink organs and supplying
sugars, mainly in the form of sucrose, to sinks. As demonstrated in
this review, phloem transport of sugar is tightly regulated and
is very sensitive to alterations in a plant’s environment result-
ing in changes in carbon allocation to sinks. However, there are
few reports on the effects of biotic and abiotic factors on phloem
transport and dealing with all components from source to sink.

At the source level, sucrose availability for export is dependent
on photosynthetic activity. Interestingly, in many cases of adverse
environmental conditions when photosynthetic carbon fixation
was reduced, photosynthesis was not the primary target of the
stress. Phloem transport of sugars was also affected, earlier than
photosynthesis, leading to an increase of sucrose concentration in
leaves and a feed-back inhibition of photosynthesis and sucrose
export (Ainsworth and Bush, 2011).

Recent works have pointed out sucrose concentrations in the
cytosol of mesophyll cells as a key factor for the regulation of
sucrose export. The characterization of tonoplastic hexose and
SUTs provides new support for the role of transient sugar storage
in the vacuole to control the cytoplasmic sucrose concentration
(Wingenter et al., 2010).

One interesting conclusion is that the structure of phloem cells
can be altered by several abiotic stresses (light, SO2, O3). As the
ultra-structure and integrity of such cells are poorly investigated,
these alterations may be more frequent than reported. Additional
evidence for the plasticity of phloem companion or parenchyma
cell-wall comes from several studies on the effect of light (Amiard
et al., 2005, 2007). Structural changes in the cell-wall and invagi-
nations of the plasma membrane can increase fluxes of assimilates

in the case of high light. Conversely, there are several reports of
callose synthesis at different levels in the SEs, in response to exter-
nal biotic or abiotic stresses. This physical constraint leads also to
impaired transport of sucrose to sinks.

At the sink level, environmental cues can alter priority between
different sinks: for example, increase in the root to shoot ratio
is induced by mineral deficiency and both sucrose and ions are
signals between root and shoot. Stress-related increase in sucrose
or polyol delivery to sinks (e.g; roots but also seeds) is impor-
tant for sink growth, cell turgor, and water potential mainte-
nance.

Little is known about the regulation of sugar transporters dur-
ing abiotic stress at the molecular level despite their important
role in the allocation of sugars in plants. This knowledge gap is
due to the fact that many studies were conducted at a physiolog-
ical level. Understanding the changes in transporter expression
during stress is therefore a major challenge in order to predict
and act on plant responses. Interesting clues on possible reg-
ulation by environmental and biotic factors were obtained by
searching for putative regulatory elements in the promoters of
sugar transporters in grape and Arabidopsis (Afoufa-Bastien et al.,
2010). Recent data on biotic stress have unraveled the pathways
of sugar exchange, and the corresponding molecular players have
been identified (Doidy et al., 2012). Unexpectedly, sucrose can
be absorbed by both host and pathogen, while it is commonly
admitted that glucose resulting from the invertase activity is the
main host sugar taken up by pathogens. These new findings high-
light the complexity of sugar exchanges at the host/pathogen
interface.

In order to understand further the distribution of carbon
between sinks, future studies need to concentrate on the mea-
surement of the phloem sap flux in relation with the expression of
sugar transporters, taking advantage of new imaging techniques
(Knoblauch and Oparka, 2012) combined with traditional 14CO2

labeling. Key information should be obtained from metabolomic
approaches of phloem sap composition (Fiehn, 2003). As pointed
out earlier in this review and by Ainsworth and Bush (2011), there
are interesting possibilities for increasing source activity and sink
demand by manipulating the expression of selected transporter
genes (Schroeder et al., 2013).

Concerning the acclimation of plants to some major environ-
mental adverse conditions (drought and salt stress, pathogens),
several sugars transported on long-distances such as polyols can
also be targeted for improving stress resistance (Merchant and
Richter, 2011). Nevertheless, the role of other sugars such as tre-
halose as signaling molecules will have to be taken into account.
There are still considerable efforts to be made before getting a clear
understanding of the role of phloem transport on source-sink rela-
tionships under stress conditions, but any progress should have
beneficial effects on crop production.
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