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Plant cell walls are essential for most aspects of plant growth, development, and survival,
including cell division, expansive cell growth, cell-cell communication, biomechanical
properties, and stress responses. Therefore, characterizing cell wall diversity contributes
to our overall understanding of plant evolution and development. Recent biochemical
analyses, concomitantly with whole genome sequencing of plants located at pivotal
points in plant phylogeny, have helped distinguish between homologous characters and
those which might be more derived. Most plant lineages now have at least one fully
sequenced representative and although genome sequences for fern species are in progress
they are not yet available for this group. Ferns offer key advantages for the study of
developmental processes leading to vascularisation and complex organs as well as the
specific differences between diploid sporophyte tissues and haploid gametophyte tissues
and the interplay between them. Ceratopteris richardii has been well investigated building
a body of knowledge which combined with the genomic and biochemical information
available for other plants will progress our understanding of wall diversity and its impact
on evolution and development.
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INTRODUCTION
Driven by an increased awareness of the impact of plant cell wall
composition on environmental responses, and their commercial
exploitation, as well as by curiosity, and facilitated by technologi-
cal developments, cell wall diversity and evolution has increasingly
become a major research focus in the last 5 years (Popper, 2008;
Sarkar et al., 2009; Yin et al., 2009; Popper and Tuohy, 2010;
Sørensen et al., 2010; Popper et al., 2011; Fangel et al., 2012). Cell
walls are involved at every level of plant morphology, growth and
development, and have changed during evolution (Popper and
Fry, 2004; Sørensen et al., 2010; Popper et al., 2011; Fangel et al.,
2012); the evolution of morpho-anatomical characters in particu-
lar rely on cell wall modification. Cell division, cell expansion and
cell differentiation, which give rise to the generation of cell shape
and plant form, are intrinsically cell wall processes (Szymanski and
Cosgrove, 2009; Boudaoud, 2010). For example plant cell division
necessitates coordinated synthesis and deposition of a new wall
between the two daughter cells and turgor-driven cell expansion
depends on wall relaxation mediated for example by enzymes, such
as xyloglucan endotransglucosylase (Fry et al., 1992; Nishitani and
Tominaga,1992), or proteins, such as expansins (McQueen-Mason
et al., 1992; McQueen-Mason and Cosgrove, 1995), whose pres-
ence and action is dependent on wall composition (Franková and
Fry, 2011).

Although initially highlighted by biochemical analyses our
understanding of the taxonomically-based diversity of plant and
algal cell wall components and their biosynthesis has been rev-
olutionized by the availability of sequenced plant genomes (Yin

et al., 2009; Popper et al., 2011). There are currently around
forty fully sequenced plant and algal genomes (Goodstein et al.,
2012). However, in sharp contrast to the late nineteenth cen-
tury pteridomania which endangered some species (Dyer et al.,
2001) ferns (here delimited as the monilophytes which includes
ferns, whisk ferns and horsetails) now receive comparatively less
attention than many other plant groups and full sequences of
fern genomes are, as yet, unavailable (Barker and Wolf, 2010).
Cronk (2009) noted that early genome sequencing focussed heav-
ily on angiosperms; perhaps unsurprisingly given their economic
prominence. Recently the need for greater phylogenetic coverage
has been recognized and, aided by technological advances, has led
to the sequencing of representatives of algae and earlier diverged
land plants with phylogenetic significance and possessing rela-
tively small genomes including the green alga, Ostreococcus tauri
(Derelle et al., 2006) and the spike moss, Selaginella moellendorffii
(Banks et al., 2011). Despite being hampered by its exceptionally
large genome size (Burleigh et al., 2012) at ∼150 times greater than
that of Arabidopsis, the first gymnosperm genome, Norway spruce
(Picea abies), was published earlier this year (Nystedt et al., 2013).
Thus, the remaining gaps include sequenced genomes of a fern
(Nakazato et al., 2006) and a hornwort (Cronk, 2009). Similarly
to gymnosperms, ferns include plants of significant commercial,
economic and ecological value such as the aquatic giant salvinia
(Salvinia molesta) that was recently added to the International
Union for Conservation of Nature (IUCN) worst invasive alien
species list (Luque et al., 2013). Ferns have a worldwide distribu-
tion and are adapted to diverse habitats; often occurring as pioneer
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species and occasionally becoming ecologically dominant e.g.,
Pteridium aquilinum (commonly known as bracken). Additionally,
although ferns consist of ∼15,000 species and therefore comprise
only around 3% of vascular plant diversity globally (Schuettpelz
and Pryer, 2008) they may account for up to 20% of vascular plant
diversity in areas such as the West Indies (Groombridge, 1992).

Given the ecological importance and placement of ferns as early
diverging euphyllophytes (a sub-division of vascular plants includ-
ing monilophytes and seed plants) a better understanding of their
cell wall complexity, in terms of composition, biosynthesis and
tissue- and cell-specific variation, may provide novel insight into
key developmental processes, for example vascularisation of leaves
(Cronk, 2009), as well as providing unique opportunity to investi-
gate gametophyte-specific processes. In this perspective we review
the current state of knowledge regarding fern cell wall composi-
tion, the impact of genome sequencing on our understanding of
evolutionary pathways of cell wall biosynthetic genes, the require-
ment for a sequenced fern genome and how this might impact
future research focussed on plant cell wall biology, physiology,
evolution and development.

FERN CELL WALLS
Biochemical analyses have contributed much of what we know
about fern cell walls and indicate that they are compositionally
similar, though not identical, to those of flowering plants. More
specifically, mannose-containing polysaccharides such as man-
nan and glucomannan appear to be abundant in ferns, whereas
pectins appear to be present in lower concentrations than found
in other plants (Popper and Fry, 2004; Silva et al., 2011). On the
other hand, some wall components have a structure and function
which appears to pre-date the divergence of ferns from gym-
nosperms and flowering plants. α-Expansins, wall-acting proteins
which mediate acid-induced wall creep (McQueen-Mason et al.,
1992; McQueen-Mason and Cosgrove, 1995), have not only been
identified from the ferns Marsilea quadrifolia and Regnellidium
diphyllum (both species of aquatic ferns) by their homology to
flowering plant α-expansins but protein extracts from M. quadri-
folia are capable of inducing wall creep in cucumber cell walls
(Kim et al., 2000). The importance of cell wall composition and
metabolism to plants environmental responses and survival, as
well as our exploitation of them, deem wall composition worthy
of extensive exploration. Current approaches include application
of specific cell wall-directed tools and methodologies (Fry, 2000;
Popper, 2011) including carbohydrate microarrays (Moller et al.,
2007), glycome profiling (Pattathil et al., 2012) and microscopy
utilizing wall-directed monoclonal antibodies (mAbs), as exem-
plified in Figure 1 (right hand side), and carbohydrate-binding
modules (CBMs; Sørensen et al., 2009; Pattathil et al., 2010; Hervé
et al., 2011) as well as comparative genome analysis.

THE LYCOPHYTE-EUPHYLLOPHYTE DIVIDE
The genes responsible for the biosynthesis of plant cell wall compo-
nents are increasingly well identified and characterized. However,
the genes responsible for the synthesis and metabolism of some
components are not yet fully elucidated (Harholt et al., 2012).
This is particularly true for seemingly anomalous occurrences
of specific wall components. For instance, although cellulose

synthase-like (CSL) supergene family members CslF’s and CslH ’s
are responsible for synthesizing β-(1,3)(1,4)-glucan (mixed link-
age glucan, MLG) in members of the Poales (grasses; Richmond
and Somerville, 2000; Burton et al., 2006, 2008; Doblin et al., 2009)
the absence of orthologues of these genes (Harholt et al., 2012)
confounds detection of MLG in Selaginella moellendorffii and syn-
thesis of MLG in this plant remains enigmatic but is corroborated
by the discovery of MLG in Equisetum (horsetails; Fry et al., 2008;
Sørensen et al., 2008).

Sequencing and genome analysis of the whisk fern Selaginella
moellendorffii, chosen for its small genome size (Banks et al., 2011;
Harholt et al., 2012), has already proven invaluable to elucidat-
ing diversification of cell wall components and their biosynthetic
machinery (Popper et al., 2011). Lycophytes are the earliest diverg-
ing extant plants to have a vascular system and a dominant sporo-
phyte generation. However, disparities in genome sequence and
cell wall biochemistry between Selaginella and other sequenced
vascular plants including Arabidopsis (Arabidopsis Genome Ini-
tiative, 2000), Populus (Tuskan et al., 2006), and the grasses, rice
(International Rice Sequencing Project, 2005), and Brachypodium
(International Brachypodium Initiative, 2010), detailed below,
highlight the need for fern sequences and detailed cell wall studies,
not only to help better understand ferns, but also euphyllophyte
evolution and development.

Although the majority of cell wall components found in flower-
ing plants also occur in Selaginella, Harholt et al. (2012) observed
differences in the abundance, localization and extractability
between wall polymers in flowering plants compared with those in
Selaginella. This is potentially indicative of differences in interac-
tions between specific cell wall components. Pectins in particular
appeared to not only be more abundant in lycophytes than in
angiosperms but also required harsher extraction procedures
(Harholt et al., 2012). The pectin, rhamnogalacturonan II, was
found to occur in all vascular plant groups in similar concentration
but, despite appearing to be highly conserved, exhibited a minor
compositional variance; in lycophytes, ferns and whisk ferns; a
rhamnose residue was replaced by a 3-O-methyl rhamnose residue
in one of the side chains (Matsunaga et al., 2004). Furthermore,
some cell wall features appear to have arisen through convergent
evolution. For example the regulation and biosynthesis of syringyl
(S) lignin which reinforces the secondary cell walls in the vascular
tissue of flowering plants and lycophytes, but is absent from the
majority of ferns and gymnosperms, occur via independent path-
ways (Weng et al., 2008, 2011; Zhao et al., 2010; Novo-Uzal et al.,
2012). In angiosperms S lignin is synthesized from guaiacyl lignin
intermediates by ferulic acid/coniferaldehyde/coniferyl alcohol
5-hydroxylase (F5H) and although Selaginella moellendorffii con-
tains a functional F5H it is not orthologous to angiosperm F5Hs
instead belonging to a clade of genes unique to Selaginella (Weng
et al., 2008). As Harholt et al. (2012) point out this is in direct
contrast with an apparent lack of diversification and specializa-
tion within the cellulase synthase (CESA) superfamily. Homologs
of IRX10, also involved in vascular formation in land plants, were
found in the moss Physcomitrella patens and were recently reported
to exhibit functional conservation with those from Arabidopsis
(Hörnblad et al., 2013). Taken together these data suggest that
at least some components of vascular tissues considered to be a
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FIGURE 1 | Ceratopteris richardii morphology (left hand side).

Gametophytes develop as hermaphrodites or males. Sporophyte fronds are
dimorphic. Fronds are initially sterile and oval shaped to three-lobed but new
fronds become progressively larger and more pinnately dissected. Fertile
fronds are more finely dissected and their enrolled margins are covering the
sporangia. Developmental and tissue-specific variation in Ceratopteris

richardii cell walls (right hand side). Localization of cell wall components in

hermaphroditic gametophytes and in transverse sections of sporophytic
petioles. Calcofluor white stains β-glucans such as cellulose, which occurs in
most cell walls. A xyloglucan epitope (mAb LM15) is detected in the apical
neck cells of fully mature (and opened) archegonia. LM11, a mAb directed
against xylan labeled secondary cell walls of the petiole. d, developing
archegonium; m, mature and opened archegonia; mAb, monoclonal antibody;
s, sclerenchyma; t, tracheids. Scale bars = 20 μm.

“hallmark” of vascular plants (Weng et al., 2008), are not homol-
ogous between the lycophyte and euphyllophyte vascular plant
lineages. Lycophytes also have unique primary cell wall charac-
ters. The isolation of uniquely high concentrations of the unusual
sugar residue 3-O-methyl-D-galactose had previously been con-
sidered an autapomorphy of the lycophytes as its occurrence
was restricted to homosporous (including Lycopodium pinifolium,
Huperzia selago, and Diphasiatrum alpinum) and heterosporous
lycophyte (including three species of Selaginella although not S.
moellendorffii) primary cell walls (Popper et al., 2001).

Despite accounting for only 5–10% of the dry mass of cell walls
(Jamet et al., 2008) proteins are intrinsically responsible for wall
synthesis, structure and function, primarily through their modifi-
cation of other cell wall components, such as polysaccharides, in
response to developmental and environmental cues. There appears
to be a phylogenetic basis to the profile of cell wall-acting enzymes
possessed by a specific plant. While some enzyme activities, such
as xyloglucan endotransglucosylase, which coordinates expansive
plant cell growth by cutting and rejoining of intermicrofibrillar
xyloglucan chains (Fry et al., 1992; Nishitani and Tominaga, 1992),

appear to be present in all vascular plants (Vissenberg et al.,
2003) others show a disjuncture between lycophytes and euphyl-
lophytes. Franková and Fry (2011) extracted and assayed proteins
from 57 rapidly growing plant organs from a range of flowering
plants, Selaginella (apoda), a horsetail and a liverwort and found
remarkable differences in glycanase (endo-hydrolase) and glycosi-
dase (exo-hydrolase) activities which correlated with differences
in wall composition. For instance, β-mannosidase activities were
highest in plants with mannan-rich endosperms requiring rapid
metabolism during germination rather than in plants, including
Selaginella, whose vegetative tissues have mannan-rich cell walls
(Franková and Fry, 2011). Polygalacturonases (PGs) are a large
family of hydrolytic enzymes (Kim et al., 2006) which modify
pectins developmentally. Analysis of Arabidopsis, Populus, rice,
Selaginella, and Physcomitrella genomes indicate an expansion of
the PG gene family occurred after the divergence of the lycophytes
and euphyllophytes; 16 PG genes were identified in the lyco-
phyte Selaginella in comparison with 44 in rice and 75 in Populus
(Yang et al., 2013). Although lycophytes and euphyllophytes have
shared characteristics including vascular tissue and a dominant
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sporophyte generation they last shared a common ancestor 400
million years ago (Pryer et al., 2004) and there are many dif-
ferences as summarized in Table 1. A fundamental difference
between the groups is that lycophytes possess microphylls whereas
euphyllophytes possess structurally more complex, particularly
with respect to vascularisation, megaphyll leaves (Cronk, 2009).
The two organs appear to be developmentally and morphologi-
cally distinct which, in combination with the existence of many
leafless but otherwise highly complex fossils, has led to relative
consensus that despite having similar functional roles microphylls
and megaphylls are not homologous (Cronk, 2009). Yang et al.
(2013) hypothesized that expansion of the PG gene family may
be correlated with the evolution of leaves and increased organ
complexity but emphasized that the current sample of sequenced
vascular plant genomes, which does not yet include ferns, does not
enable dating of the PG gene family expansion. However, spatial-
temporal changes in remodeling of cell wall components, such as
pectins by PGs, lead to changes in wall biomechanical properties,
resulting in altered development and morphology (Boudaoud,
2010).

As outlined above the distinct differences in cell wall bio-
chemistry between lycophytes and euphyllophytes is perhaps not
unexpected because lycophytes are distinguished as a sister group
to all other vascular plants with associated key differences in
anatomy and development (Judd et al., 1999; Pryer et al., 2001;
Banks, 2009). Therefore, a model fern may provide key insight

into whole plant development (Tilney et al., 1990; Racusen, 2002)
and the impact of cell wall metabolism.

C-Fern CELL WALLS
A strong foundation for using Ceratopteris richardii, often referred
to as C-Fern, as a model to investigate the influence of cell
walls on development has been laid by anatomical and cyto-
chemical investigations. Such studies include scanning electron
microscopy of xylem (Carlquist and Schneider, 2000), gameto-
phyte development (Banks, 1999), embryogenesis (Johnson and
Renzaglia, 2008), the histology of spermatocyte cell wall com-
position (Cave and Bell, 1973) and drug-induced perturbation
of cellulose synthesis in root hairs (Meekes, 1986). The latter
study indicated that C-Fern responds to cell wall-acting drugs in
a similar way to flowering plants. Additionally C-Fern is highly
sensitive and provides opportunity to investigate drug action; in
a single cell layer, in free-living haploid tissues (gametophytes),
and in combination with microtubule organizing centers which
might be important in order to investigate the effects of micro-
tubule disruption on cell wall component secretion (Meekes,
1986). Furthermore, an array of C-Fern mutants exists includ-
ing some that may have altered cell walls. One of the most striking
is polka dot, which has clumped chloroplasts, putatively result-
ing from disruption to the cytoskeleton (Vaughn et al., 1990),
which may have led to the observed associated weaknesses in spore
walls.

Table 1 | Summary of differences between the lycophyte Selaginella moellendorffii, fern Ceratopteris richardii, and angiosperms.

Character Selaginella moellendorffii Ceratopteris richardii Flowering plants

Taxonomic grouping Lycophyte Fern Angiosperms

Ploidy of sporophytes Diploid Diploid Various

Dominant generation Sporophyte Sporophyte Sporophyte

Gametophytes Endosporic (remain largely enclosed in

spore tissue), subterranean

Exosporic and photosynthetic Endosporic (remain enclosed in

sporophyte tissues)

Primary photosynthetic

organ

Microphylls, typically with only a single

unbranched vascular strand

Megaphylls (euphylls), lateral

organs of the shoot, derived from

stems and possessing branched

vasculature

Megaphylls (euphylls)

Plant axis Rhizophore, homorhizic roots (which

develop laterally relative to the

embryonic axis of the embryo), and

stem

Homorhizic roots, and stem Allorhizic roots (which develop at

the opposite end of the embry-

onic axis to the shoots (eudi-

cots), or a secondarily homorhizic

root system (most monocotyle-

donous plants), and stem

Mega- and micro-sporangia Heterosporous, typically producing four

megaspores in the megasporangium

and hundreds of micro-spores in the

micro-sporangium

Homosporous, producing

hermaphrodite and male

gametophytes

Heterosporous, producing a dis-

persed ovule (mega-sporangium

protected by an integument)

Branching pattern Dichotomous (derived from

dichotomous branching of the shoot

apical meristems)

Lateral Lateral
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C-Fern AS A MODEL PLANT
Clearly, as previously voiced by others (Weng et al., 2008;
Cronk, 2009), there is a requirement for sequenced fern
genomes. Although there are currently no fully sequenced
fern genomes the National Center for Biotechnology Informa-
tion’s (NCBI) short read archive (SRA) database has incom-
plete genome data for two ferns, Ceratopteris richardii and,
the perhaps more universally familiar invasive, Pteridium aquil-
inum (http://www.ncbi.nlm.nih.gov/). The Pteridium sequence is
derived from a gametophyte transcriptome (Der et al., 2011) simi-
larly the C-Fern expressed sequenced tags (ESTs) are from the early
stages of development in germinating spores (Salmi et al., 2005);
both sequences are therefore equivalent to the tissues which give
rise to pollen grains and embryo sacs in flowering plants. Curi-
ously although wall synthesis and restructuring are required for
gametophyte development, particularly cell division and expan-
sive cell growth, less than 1% of the gene products expressed in
Ceratopteris spores are cell wall-localized (Salmi et al., 2005). Since
annotation was carried out by BLAST comparison with the Ara-
bidopsis genome one possibility is that fern and flowering plant
cell wall-localized genes are significantly divergent.

Leptosporangiate ferns, of which Ceratopteris richardii and
Pteridium aquilinum are members, comprise over 95% of extant
fern diversity (Schuettpelz and Pryer, 2008). In fact both of
the aforementioned species belong to the polypods, a clade
strongly supported by molecular and morphological characters
including sporangia which possess a vertical annulus interrupted
by the stalk (Pryer et al., 2001; Schuettpelz and Pryer, 2008).
However, whereas Pteridium is placed in the small dennstaed-
tioid clade, Ceratopteris belongs to the large, diverse pteridoid
clade which accounts for about 10% of extant fern diversity
(Schneider et al., 2004; Schuettpelz and Pryer, 2008); this sug-
gests that Ceratopteris is likely to be highly representative of other
ferns. Ceratopteris is homosporous and produces hermaphrodite
and male gametophytes (see Figure 1). The male gametophytes
are produced in response to antheridiogen (Schedlbauer and
Klekowski, 1972). The diploid sporophytes are extremely heter-
oblastic, initially producing entire sterile leaves and progressing
to highly dissected fertile leaves which, under culture condi-
tions, produce many spores continuously throughout the year
within sporangia on their enrolled leaf margins (Hickok et al.,
1987; Figure 1, left hand side). In comparison to many other
ferns including Pteridium, Ceratopteris sporophytes are relatively
small, reaching 30–40 cm in height. This feature particularly
coupled with its ease of growth in culture has been responsi-
ble for the widespread application of Ceratopteris as model in
undergraduate plant biology teaching, for example to demon-
strate plant lifecycles, genetics and development, and in research
laboratories (Hickok et al., 1987, 1998; Calie, 2005; Spiro and
Knisely, 2008). This has lead to the development of specific
tools and techniques including mutant generation, selection and
characterization; mutants include abscisic acid (Hickok, 1985),
herbicide-tolerant (Hickok and Schwarz, 1986) and salt-tolerant
(Warne et al., 1995). Other features which make Ceratopteris a
suitable model include: (1) a short sexual life cycle which can
be completed in under 120 days, (2) continuous and abundant
spore production, (3) spores that can be stored and remain viable

for many years, (4) gametophytes which can be self-fertilized to
generate completely homozygous sporophytes, (5) visible micro-
tubule organizing centers and developmental synchrony of cells
within a single gametophyte (Hoffman and Vaughn, 1995), (6)
sporophytes that can be vegetatively propagated from marginal
leaf buds or gemmae allowing maintenance of even sterile mutants
(Hickok et al., 1987) and (7) amenability to mutagenesis. Further-
more, although experiments initially suggested that Ceratopteris
is resistant to Agrobacterium-mediated transformation (Hickok
et al., 1987) Agrobacterium has now been shown capable of trans-
forming Ceratopteris thalictroides (and Chinese brake fern, Pteris
vittata) spores leading to stably transformed plants; inheritance
analyses revealed stable expression of the transgene in second
generation sporophytes (Muthukumar et al., 2013). Addition-
ally, Ceratopteris gametophytes have been shown to take up
DNA and RNA directly enabling elucidation of gene function
through observation of phenotype following targeted silencing
(Stout et al., 2003; Kawai-Toyooka et al., 2004; Rutherford et al.,
2004).

LOCATION, LOCATION, LOCATION AND FUTURE
PERSPECTIVE
Although a fully sequenced fern genome will be available in the
near future, likely contributing much to our understanding of the
evolution of euphyllophytes, plant cell wall components and their
biosynthesis, it is unlikely to reveal the full story. The reason for
this is that many wall components are deposited in a tissue, cellu-
lar or even sub-cellular fashion, often in response to development
(Leroux et al., 2007, 2011). Therefore, genomic studies will yield
most information when carried out in combination with localiza-
tion of wall components using (immuno)cytochemical methods
(Cave and Bell, 1973; Hervé et al., 2011). Many of the mAbs and
CBMs developed to flowering plant cell walls have the ability
to recognize and bind to epitopes present in bryophyte (Carafa
et al., 2005) and fern (Leroux et al., 2007, 2011) cell walls includ-
ing those of C-Fern (as exemplified by Figure 1). The ability to
apply these techniques to Ceratopteris (and other ferns) provides
advantages for investigating plant development involving the cell
wall, not afforded by earlier diverging vascular plants. For exam-
ple Selaginella gametophytes are endosporic, meaning that the
female gametophyte remains enshrouded in spore tissue, and sub-
terranean. Flowering plant gametophytes are similarly embedded
in sporophyte tissues. In contrast fern gametophytes which are
photosynthetic and free-living can be prepared (relatively) easily
for biochemical analysis. Furthermore, it is possible to follow every
cell throughout development. A fern model, such as Ceratopteris,
once sequenced will build on what has already been uncovered by
investigation of other sequenced plants, particularly other vascular
plants such as Selaginella, and likely divulge many secrets relating
to euphyllophyte cell wall biochemistry, evolution and function.
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