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Most higher plants are unable to survive desiccation to an air-dried state. An exception is a
small group of vascular angiosperm plants, termed resurrection plants. They have evolved
unique mechanisms of desiccation tolerance and thus can tolerate severe water loss, and
mostly adjust their water content with the relative humidity in the environment. Desiccation
tolerance is a complex phenomenon and depends on the regulated expression of numerous
genes during dehydration and subsequent rehydration. Most of the resurrection plants have
a large genome and are difficult to transform which makes them unsuitable for genetic
approaches. However, technical advances have made it possible to analyze changes in
gene expression on a large-scale. These approaches together with comparative studies
with non-desiccation tolerant plants provide novel insights into the molecular processes
required for desiccation tolerance and will shed light on identification of orphan genes
with unknown functions. Here, we review large-scale recent transcriptomic, proteomic,
and metabolomic studies that have been performed in desiccation tolerant plants and
discuss how these studies contribute to understanding the molecular basis of desiccation
tolerance.
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INTRODUCTION
The sessile nature of plants has endowed them with a wide spec-
trum of adaptations to combat environmental perturbations. The
mechanisms to survive under various environmental fluctuations
are complex and vary widely. Drought, a physiological form of
water stress or deficit, affects the performance of plants and
leads to low crop yield. Most of the flowering angiosperm plants
are drought sensitive and have relative water contents of around
85–100% under actively growing conditions and do not survive, if
the water content falls below 59–30% (Höfler et al., 1941). In this
context, Arabidopsis thaliana is considered as a model to study the
responses of plants toward tolerating moderate water stress and to
study the genes involved in this response. Although desiccation tol-
erance in seeds is common in higher plants, desiccation tolerance
in vegetative tissues is restricted to the unique group of resur-
rection plants (Bartels and Hussain, 2011). Several resurrection
species have been extensively studied for understanding the molec-
ular basis of desiccation tolerance: the bryophyte Tortula ruralis,
the clubmosses Selaginella lepidophylla and Selaginella tamariscina,
the dicots Craterostigma plantagineum, C. wilmsii, Boea hygromet-
rica, and Myrothamnus flabellifolia, and the monocots Xerophyta
viscosa, X. humilis, and Sporobolus stapfianus (Ingram and Bar-
tels, 1996; Alpert and Oliver, 2002; Moore et al., 2009; Cushman
and Oliver, 2011; Oliver et al., 2011a,b). The survival strate-
gies often involve the re-activation of existing protection systems
(Moore et al., 2009; Dinakar et al., 2012; Gechev et al., 2013). The
importance of orphan genes/proteins/metabolites in the context
of desiccation tolerance also needs to be considered. Most res-
urrection plants are polyploid with large genomes, difficult to

transform and their genome sequences are not available; due to
these features a mutational approach is at present not possible for
functional analysis. Desiccation tolerance is controlled by many
genes or proteins, therefore, a systems biology approach com-
bining transcriptomics, proteomics, and metabolomics should
be informative to understand the mechanism of desiccation tol-
erance, and to determine at which level of control the changes
are affected. Here recent progress is reviewed on transcriptomic,
proteomic, and metabolomic analyzes in resurrection plants and
future prospects are discussed.

“OMICS” APPROACHES TO UNDERSTAND DESICCATION
TOLERANCE
Recent advances in “omics” technologies have enabled quanti-
tative monitoring of the abundance of biological molecules in
a high-throughput manner, thus making it possible to com-
pare their levels between desiccation tolerant and sensitive
species. Transcriptomic, proteomic, and metabolomic approaches
attempt to capture complete information on the changes in tran-
scripts/proteins/metabolites that take place during desiccation and
subsequent rehydration thereby giving an outline of the metabolic
situation. The identification of the abundant transcripts gives
an indication which metabolic processes may be important at
different physiological conditions.

TRANSCRIPTOME ANALYSIS
Transcriptomics or mRNA expression profiling captures spatial
and temporal gene expression and quantifies RNAs under dif-
ferent conditions. While quantitative analysis of gene expression
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can be done by either qRT-PCR (quantitative reverse transcrip-
tase polymerase chain reaction) or by gene microarray, the most
widely used early approach toward transcriptome analysis was the
collection of expressed sequence tags (ESTs) which is limited to
a few hundred or thousand sequenced cDNAs. Recent advances
in sequencing technologies and assembly algorithms have facili-
tated the reconstruction of the entire transcriptome by deep RNA
sequencing (RNA-seq), even without a reference genome, there-
fore, this is also applicable to resurrection plants (Table 1). Gene
expression studies and EST sequencing have been performed in
some resurrection species, such as the moss T. ruralis (Scott and
Oliver, 1994; Wood and Oliver, 1999; Zeng et al., 2002; Oliver
et al., 2004), the clubmosses Selaginella lepidophylla and Selaginella
tamariscina (Zentella et al., 1999; Iturriaga et al., 2006; Liu et al.,
2008), the monocot species Sporobolus stapfianus (Neale et al.,
2000; Le et al., 2007), X. viscosa (Mundree et al., 2000; Mowla
et al., 2002; Lehner et al., 2008), X. humilis (Collett et al., 2003,
2004; Illing et al., 2005; Mulako et al., 2008), and X. villosa (Collett
et al., 2004), and the dicot species C. plantagineum (Bockel et al.,
1998). In these studies, the cDNA libraries for EST sequencing were
either generated from one or two physiological conditions (dehy-
drated and rehydrated gametophytes/fronds/roots or leaves) and
restricted in number thereby not always reflecting global transcript
changes. Comprehensive transcriptome analysis have so far been
reported for C. plantagineum and Haberlea rhodopensis (Rodriguez
et al., 2010; Gechev et al., 2013).

Transcriptome sequencing of C. plantagineum and H. rhodopen-
sis at four different physiological stages (control, partially dehy-
drated, desiccated, and rehydrated) revealed that the overall iden-
tified transcripts have highest similarity to genes of Vitis vinifera,
Ricinus communis, and Populus trichocarpa. In C. plantagineum,
182 MB of transcript sequences were assembled into 29,000 con-
tigs which yielded more than 15,000 uniprot identities and in
H. rhodopensis 96,353 expressed transcript contigs were identi-
fied (Rodriguez et al., 2010; Gechev et al., 2013). EST sequencing
of a cDNA library from the rehydrated moss T. ruralis resulted
in the characterization of around 10,368 ESTs representing 5,563

genes (Oliver et al., 2004). An interesting feature that resulted
from these studies is that about one-third of the contigs from C.
plantagineum and around 40% of the sequences from H. rhodopen-
sis and T. ruralis did not map to uniprot identities and encode
unknown transcripts which are potential sources for gene dis-
covery. The transcripts can be divided into two main groups
according to expression patterns observed for C. plantagineum and
H. rhodopensis. The first group consists of transcripts abundant
in control and rehydrated tissues and the second group con-
sists of transcripts abundant in dehydrated and desiccated tissues
(Rodriguez et al., 2010; Gechev et al., 2013).

TRANSCRIPTS ABUNDANTLY EXPRESSED IN FULLY HYDRATED
TISSUES AND UNDER REHYDRATION CONDITIONS
The most abundant transcripts in fully hydrated and rehydrated
conditions encode proteins involved in photosynthesis and car-
bohydrate metabolism. In C. plantagineum and H. rhodopensis,
the transcripts encoding RuBisCO activase, carbonic anhydrases,
fructose bisphosphatases, chlorophyll a/b binding protein, light
harvesting complex, and RuBisCO small subunit are highly
abundant in fully hydrated conditions. The transcripts related
to photosynthesis decline gradually upon dehydration suggesting
decreasing photosynthetic activity as the primary target during
dehydration (Rodriguez et al., 2010; Gechev et al., 2013). A similar
trend in the gene expression related to photosynthesis was also
observed in X. viscosa (Collett et al., 2003).

Comparison of genes abundantly expressed in fully hydrated
conditions indicates the presence of different pathways in
C. plantagineum and H. rhodopensis. Galactinol synthases which
catalyze the first step in the synthesis of raffinose oligosaccharides
are abundantly expressed in fully hydrated leaves of C. plan-
tagineum, but in H. rhodopensis their expression is high during
dehydration and desiccation suggesting that raffinose synthe-
sis is induced in H. rhodopensis at later stages of dehydration
(Rodriguez et al., 2010; Gechev et al., 2013). Other abundant
transcripts in C. plantagineum encode acid phosphatases that
are required for the maintenance of cellular inorganic phosphate

Table 1 | Omics studies carried out in resurrection plants and sister group comparisons between desiccation tolerant and sensitive plants.

Approach Desiccation tolerant species Desiccation sensitive species Reference

Resurrection plants

Transcriptome analysis Craterostigma plantagineum Rodriguez et al. (2010)

Transcriptome and metabolomic analysis Haberlea rhodopensis Gechev et al. (2013)

Proteome analysis Selaginella tamariscina Wang et al. (2010)

Proteome analysis Xerophyta viscosa Ingle et al. (2007)

Proteome analysis Boea hygrometrica Jiang et al. (2007)

Proteome analysis Sporobolus stapfianus Oliver et al. (2011a)

Metabolomic analysis Selaginella lepidophylla Yobi et al. (2013)

Sister group comparisons

Metabolomic comparison Sporobolus stapfianus Sporobolus pyramidalis Oliver et al. (2011b)

EST sequencing and comparison Selaginella lepidophylla Selaginella moellendorffii Iturriaga et al. (2006)

Metabolomic comparison Selaginella lepidophylla Selaginella moellendorffii Yobi et al. (2012)
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levels. The transcripts encoding proteins involved in ion trans-
port such as membrane-associated carriers together with proteins
involved in cell wall plasticity and membrane integrity such as
xyloglucan endotransglucosylases and members of the expansin
gene family are abundant in fully hydrated conditions in C. plan-
tagineum (Rodriguez et al., 2010). In H. rhodopensis two of the
most abundant transcripts observed in hydrated conditions are
catalase encoding genes that are not observed in C. plantagineum
(Rodriguez et al., 2010; Gechev et al., 2013).

A feature that was observed in rehydrated H. rhodopensis plants
is the abundance of genes encoding an auxin efflux carrier, hypo-
thetical proteins and genes with unknown functions (Gechev
et al., 2013). In C. plantagineum, the abundant transcripts in
rehydrated tissues are related to defense, oxidative stress, and
metabolism of vitamin K-related compounds (Rodriguez et al.,
2010). Several of the transcripts expressed under rehydration con-
ditions in C. plantagineum encode pathogen responsive proteins,
carbohydrate metabolism associated enzymes like transketolases,
enzymes related to phylloquinone metabolism which are elec-
tron transfer cofactors in photosystems, and peroxidase transcripts
which function in detoxification of reactive oxygen species (ROS;
Rodriguez et al., 2010).

TRANSCRIPTS INDUCED IN MILDLY DEHYDRATED AND DESICCATED
TISSUES
Generally genes induced during dehydration code for proteins
that prevent stress-related cellular damage and participate in
antioxidant defense. Dehydration-induced transcripts encode
proteins with protective properties, enzymes related to carbo-
hydrate metabolism, regulatory proteins such as transcription
factors, kinases, and signaling molecules as well as unknown pro-
teins (Iturriaga et al., 2006; Rodriguez et al., 2010; Gechev et al.,
2013).

TRANSCRIPTS ENCODING LATE EMBRYOGENESIS ABUNDANT
PROTEINS
Late embryogenesis abundant (LEA) genes comprise the most
abundantly up-regulated group of genes in response to dehy-
dration. In H. rhodopensis some LEA genes are constitutively
expressed in hydrated conditions and their expression is induced
to higher levels upon drought and desiccation suggesting that
the transcriptome of Haberlea is primed already for dehy-
dration and desiccation tolerance (Gechev et al., 2013). Genes
encoding LEA proteins are abundant in dehydrated leaves of
C. plantagineum but unlike Haberlea not in fully hydrated tis-
sues (Piatkowski et al., 1990; Michel et al., 1994; Rodriguez et al.,
2010). LEA proteins are localized in different cellular compart-
ments such as cytosol, chloroplasts, mitochondria, or nuclei.
Dehydration-induced expression of LEA transcripts is a common
response in resurrection plants as well as in desiccation sensitive
plants (Bartels et al., 1990; Collett et al., 2004; Oliver et al., 2004;
Rodriguez et al., 2010; Gechev et al., 2012, 2013). The major dif-
ference between desiccation tolerant and sensitive plants seems
to be in the abundance of the transcripts. As an example, the
LEA-like CDeT11-24 transcript is highly expressed during desic-
cation in C. plantagineum, whereas the transcript is expressed at
a low level in desiccation sensitive Lindernia subracemosa plants.

This suggests that the CDeT11-24 transcript in L. subracemosa is
unstable or induced at a lower rate during dehydration. Com-
parative promoter analysis of the CDeT11-24 gene between C.
plantagineum and L. brevidens showed different promoter activi-
ties and the absence of dehydration specific promoter cis elements
in L. brevidens, which correlates with the transcript expression
level (van den Dries et al., 2011). These results lead to the hypoth-
esis that high level gene expression under dehydration is evolved
by selection of promoter cis elements.

TRANSCRIPTS ENCODING PROTEINS RELATED TO DETOXIFICATION
AND ANTIOXIDANT DEFENSE
Reactive oxygen species such as superoxide, hydrogen peroxide,
and hydroxyl radicals are unavoidable by-products of aerobic
metabolism and are commonly generated during dehydration
stress. Since ROS can potentially damage proteins, lipids, and
nucleic acids, genes encoding antioxidant enzymes are supposed
to be up-regulated in resurrection plants. Transcriptome analy-
sis confirmed an up-regulation of genes involved in antioxidative
defense. In hydrated conditions resurrection plants maintain high
levels of antioxidants, which increase upon stress. This feature is
observed in all resurrection species studied so far (Sherwin and
Farrant, 1998; Farrant, 2000; Kranner et al., 2002). The transcrip-
tome of H. rhodopensis contained an extensive antioxidant gene
network in the fully hydrated state. The number of expressed genes
encoding superoxide dismutases, catalases, monodehydroascor-
bate reductases, and glutathione (GSH) reductases are higher in H.
rhodopensis than in C. plantagineum in the hydrated state. Expres-
sion of these genes is even further up-regulated during dehydration
in H. rhodopensis (Gechev et al., 2013). Induction of genes related
to the antioxidant pathway during desiccation has also been
reported in the desiccation tolerant plant Sporobolus stapfianus
(Neale et al., 2000). In X. humilis, a plant that looses chlorophyll
during desiccation, also a large number of antioxidant defense
genes are up-regulated during dehydration (Collett et al., 2004).
Besides conserved antioxidant genes some resurrection plants
acquired expression of genes from other pathways. An example
was reported for X. viscosa, in which the desiccation-induced
antioxidant gene encoding 1-Cys peroxiredoxin (XvPer1) shows
70% sequence identity to Arabidopsis seed specific dormancy
related 1-Cys peroxiredoxin (AtPer1; Haslekás et al., 1998; Ndima
et al., 2001; Mowla et al., 2002). In the C. plantagineum tran-
scriptome analysis thiamine biosynthesis transcripts and aldehyde
dehydrogenase (CpALDH) transcripts are up-regulated during
dehydration and contribute to antioxidant defense (Rodriguez
et al., 2010). In T. ruralis the transcript levels of an aldehyde dehy-
drogenase (ALDH21A1) were also increased during dehydration
suggesting ALDH as a stress regulated enzyme with the potential to
detoxify excess amounts of aldehydes (Chen et al., 2002; Stiti et al.,
2011). Transgenic Arabidopsis plants over-expressing AtALDH3
showed tolerance to dehydration stress and low accumulation of
malondialdehyde thereby emphasizing the importance of aldehyde
dehydrogenase in conferring tolerance to oxidative stress (Sunkar
et al., 2003).

Another group of transcripts that are induced during dehy-
dration/desiccation encode early light induced proteins (ELIPs).
These ELIPs are nuclear-encoded proteins associated with
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thylakoid membranes in the chloroplast and are believed to
bind to chlorophyll thus preventing ROS-induced photooxida-
tive damage. Several desiccation-related genes encoding ELIPs
have been isolated from C. plantagineum. DSP-22 a homolog
of a class of ELIPs is thought to stabilize photosynthetic struc-
tures within the chloroplasts of C. plantagineum and ameliorate
rehydration-induced damage (Bartels et al., 1992; Ingram and Bar-
tels, 1996). In C. plantagineum, the dsp-22 transcript is undetected
in unstressed plants but abundantly expressed during desiccation
in light (Alamillo and Bartels, 1996). ELIPs are also abundantly
expressed during dehydration in H. rhodopensis (Gechev et al.,
2013). In Sporobolus stapfianus induction of transcripts encod-
ing ELIPs was observed only in desiccation tolerant tissues but not
in desiccation sensitive tissues, which supports the role for ELIPs
in desiccation tolerance (Neale et al., 2000).

TRANSCRIPTS ENCODING ENZYMES RELATED TO CARBOHYDRATE
METABOLISM
Accumulation of sucrose and raffinose oligosaccharides is com-
monly observed in resurrection plants (Bartels and Hussain,
2011). Their accumulation correlates with the up-regulation
of transcripts encoding enzymes of carbohydrate metabolism.
In C. plantagineum and H. rhodopensis, several genes encod-
ing galactinol synthases and a stachyose synthase are present in
hydrated leaves and are additionally up-regulated during dehy-
dration (Rodriguez et al., 2010; Gechev et al., 2013) suggesting
the importance of oligosaccharides in protecting cells during des-
iccation. Similarly, the cDNAs encoding enzymes of the polyol
biosynthesis and raffinose family oligosaccharides are abundantly
expressed upon dehydration in X. humilis (Illing et al., 2005). A
high induction is observed for several sucrose synthases, sucrose
6-phosphate synthases, a sucrose transporter, and a sucrose
responsive element-binding protein in H. rhodopensis during
dehydration and desiccation (Gechev et al., 2013). Induction of
transcripts encoding sucrose synthases and sucrose-phosphate
synthases is also observed in C. plantagineum during dehydra-
tion (Ingram and Bartels, 1996; Kleines et al., 1999). The role
of sugar metabolism for the adaptation of C. plantagineum and
H. rhodopensis to desiccation is further substantiated by the pres-
ence of transketolase transcripts (tkt). Transketolases are key
enzymes of the reductive and oxidative pentose phosphate path-
ways that are responsible for the synthesis of sugar phosphate
intermediates, which can flow into different pathways. C. plan-
tagineum has three transketolase isoforms (tkt3, tkt7, tkt10) and
it has been suggested that a transketolase isoform is involved
in octulose synthesis (Willige et al., 2009). While tkt7 is more
abundant in rehydrating tissues of C. plantagineum, tkt10 is pref-
erentially expressed in fully hydrated tissues. Tkt3 is constitutively
expressed and is involved in the Calvin cycle (Bernacchia et al.,
1995; Rodriguez et al., 2010). Compared to C. plantagineum,
two tkt are observed in H. rhodopensis, which differs in its
carbohydrate metabolism from C. plantagineum (Gechev et al.,
2013).

TRANSCRIPTS RELATED TO CELL WALL MODIFICATION
Several reversible modifications occur to stabilize cell wall
architecture in resurrection plants, while some of these changes are

constitutive some are inducible. Cell wall folding plays an impor-
tant role in mechanical stabilization during desiccation (Farrant
et al., 2007). The modifications in cell wall properties to resist the
mechanical stress during dehydration in resurrection plants have
been discussed by Vicré et al. (2004) and Moore et al. (2006, 2008,
2013). Plasticity of cell walls is particularly important to avoid
damage due to mechanical stress imposed during desiccation and
rehydration (Moore et al., 2013). Transcripts encoding proteins
involved in the maintenance of cell wall plasticity such as xyloglu-
can endotransglucosylases are abundantly expressed in unstressed
tissues of C. plantagineum (Rodriguez et al., 2010). Concomitant
with the increased cell wall extensibility transcripts encoding alpha
expansins are up-regulated during desiccation in C. plantagineum
(Jones and McQueen-Mason, 2004). In H. rhodopensis, genes
encoding xyloglucan endotransglucosylases, pectin esterases, and
pectate lyases are abundantly expressed in hydrated conditions and
are switched off during dehydration. Concomitantly, laccase genes
involved in lignin biosynthesis are only expressed in desiccated
tissues pointing toward cell wall remodeling during desiccation
(Gechev et al., 2013).

TRANSCRIPTS ENCODING REGULATORY MOLECULES AND
PARTICIPATING IN GENERAL METABOLISM ARE UP-REGULATED
DURING DEHYDRATION
The transcriptome of desiccated tissues also includes genes that
are either involved in general metabolism or that are related
to environmental stresses other than dehydration. Examples are
temperature-induced lipocalins, aquaporins, tonoplast intrin-
sic proteins, cation transporters, and rare cold inducible 2A
protein. Lipocalins are membrane-associated proteins with a
low-temperature response element, dehydration-responsive ele-
ments, and heat shock elements in their promoters suggest-
ing their involvement in various abiotic stress conditions. A
YSIRK signaling peptide, an alcohol oxidase, and genes encoding
heat shock proteins are expressed in desiccated H. rhodopen-
sis leaves. The occurrence of these types of transcripts implies
that these genes have become dehydration-responsive during
evolution.

The massive expression of transcripts during dehydration
and the re-synthesis during rehydration requires a fine-tuned
regulatory network. This is reflected by the fact that tran-
scripts with a regulatory function comprise a large heterogenous
group. Transcripts of desiccated C. plantagineum are domi-
nated by those encoding DNA binding proteins, cysteine pro-
teases, and proteins of amino acid metabolism. These tran-
scripts are mostly members of gene families which participate
in diverse pathways. During evolution some family members
have acquired regulatory cis elements which trigger their expres-
sion in response to dehydration. In H. rhodopensis induc-
tion in gene expression upon dehydration was observed for a
gene encoding a putative protein phosphatase/hydrolase which
was not detected in hydrated/rehydrated samples indicating the
importance of phosphorylation and dephosphorylation during
dehydration (Gechev et al., 2013). Genes coding for transcrip-
tion factors, heat shock proteins, and components of signaling
cascades are among the transcripts expressed in response to
dehydration in all resurrection plants. In the transcriptome of
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H. rhodopensis, a broad range of transcription factors have been
identified such as MYB, NAC, WRKY, GRAS family members,
DREB2, NF-YA, MADS-box transcription factors, and several
heat shock transcription factors (Gechev et al., 2013). Some of
the regulatory transcripts are exclusively expressed in desiccated
samples, e.g., a receptor like protein kinase, kinases, phos-
phatases, a Ca2+ antiporter cation exchanger, and a phospholipase
D isoform.

The few examples cited above show that the transcriptome anal-
ysis provides a catalog of the regulatory genes that are up-regulated
during dehydration, but at present it is not understood how these
genes interact with other pathways and which target genes they
regulate.

PROTEOME ANALYSIS
Translational regulation of mRNA is an important step in the
control of gene expression. Changes in gene expression at
the transcript level need not always correspond to changes in
the protein level due to either transcript instability or post-
transcriptional modifications. Post-translational modifications
and protein degradation modulate the quality and quantity of
expressed proteins and thus affect the correlation of transcript
and protein levels. The main limitation of proteomics is the iden-
tification of the proteins due to absence of genome sequence
information in resurrection plants. Therefore, functions have
to be attributed according to homologies. Reports on proteome
analysis in resurrection plants are restricted to a few species.
A direct correlation between transcript and protein abundance
was observed for many of the dehydration-induced gene prod-
ucts in particular for gene products with protective functions
(Ingle et al., 2007; Jiang et al., 2007; Wang et al., 2010; Oliver et al.,
2011a).

Qualitatively proteome data correlate with transcript data and
confirm that the abundant proteins in the hydrated tissues are
related to photosynthesis and carbohydrate metabolism. Proteome
data demonstrated that the deactivation of photosynthetic activ-
ity and subsequent re-activation are major responses observed
upon sensing dehydration and after rewatering, respectively (Ingle
et al., 2007; Rodriguez et al., 2010; Wang et al., 2010; Oliver et al.,
2011a). The decline of photosynthesis coincided with the decrease
in chloroplast-localized photosynthetic proteins such as psbO,
psbP (the two components of luminal oxygen evolving complex
of PSII), the PSII stability factor HCF136, the α subunit of the
F-ATPase, and the Calvin cycle enzyme transketolase in X. vis-
cosa during dehydration at 35% relative water content (Ingle et al.,
2007). Similarly photosynthesis-related proteins that decreased in
abundance in Selaginella tamariscina during dehydration included
RuBisCO large sub unit, chlorophyll a/b binding protein, and
oxygen evolving complex protein (Wang et al., 2010).

During dehydration, LEA proteins accumulate abundantly in
resurrection plants supporting their protective roles (Michel et al.,
1994; Velasco et al., 1994; Alamillo and Bartels, 1996; Ingram and
Bartels, 1996; Ndima et al., 2001). Using two dimensional SDS-
PAGE coupled with a phosphoprotein specific stain at least two
LEA proteins CDeT11-24 and CDeT6-19 were shown to be phos-
phorylated in C. plantagineum (Röhrig et al., 2006). Although the
role of the protein phosphorylation in these two proteins is still

unclear, phosphorylation may increase the hydrophilic residues
necessary for interaction with other macromolecules or phos-
phorylation may be required for correct subcellular localization,
as it was shown for maize embryo LEA proteins (Goday et al.,
1988).

Proteome analysis also revealed the expression of unknown
proteins in resurrection plants. In Selaginella tamariscina, 138
dehydration-responsive protein spots representing 103 unique
proteins with unknown functions were identified (Wang et al.,
2010). The proteins down-regulated in Selaginella tamariscina
during dehydration included proteins involved in photosynthesis,
carbohydrate and energy metabolism, stress and defense proteins,
signaling, membrane transport, cell structure, and cell division.
The protein abundance increased for antioxidant enzymes (Wang
et al., 2010). From B. hygrometrica leaves more than 200 proteins
were analyzed out of which 78 (35%) increased in expression
in response to dehydration and 5% were induced in rehydrated
leaves and 60% showed decreased or unchanged levels (Jiang
et al., 2007). Several of the proteins related to antioxidant and
energy metabolism are constitutively expressed, indicating that
protective mechanisms exist constitutively which emphasize the
preparedness of the plant for stress. Dehydration-induced pro-
teins in B. hygrometrica are associated with energy metabolism,
GSH and polyphenol metabolism. This indicates that GSH may
serve as a major antioxidant in B. hygrometrica. Protein analysis
also indicated degradation of photosynthesis-related proteins. A
20-kDa fragment of the RuBisCO large subunit (RbcL) and a 23-
kDa polypeptide of the oxygen evolving complex of photosystem
II were identified in dehydrated leaf proteins. The appearance of
the 20-kDa RbcL protein fragment in B. hygrometrica is thought
to be the result of stress-induced proteolysis mediated through
ROS-induced chloroplast-localized protease activity (Jiang et al.,
2007). ABC transporters that mediate ATP-dependent transport
of solutes were also induced during dehydration in B. hygro-
metrica (Jiang et al., 2007). The induction of putative ATPase
subunits matching a vacuolar H+-ATPase A subunit during dehy-
dration may help in preparation for rehydration. Desiccated leaves
of Sporobolus stapfianus and X. viscosa showed similar protein
profiles as B. hygrometrica (Blomstedt et al., 1998; Marais et al.,
2004). Enzymes related to sugar metabolism, such as sucrose
synthase, ADP-glucose pyrophosphorylase, and GDP-mannose
3,5-epimerase were up-regulated during dehydration confirming
the importance of sugar metabolism.

The protein expression patterns observed in different res-
urrection plants lead to the conclusion that stress protective
proteins are rapidly and massively induced upon dehydration and
present throughout desiccation. The induced proteins are involved
in diverse functions such as scavenging ROS, accumulation of
sucrose, protective proteins, cell wall remodeling proteins, and
proteins with unknown functions.

There are examples in which mRNA levels do not correlate
with protein expression patterns. Although the transcript levels
of tkt3 are constitutively expressed in C. plantagineum vegetative
tissues, the protein levels are higher in hydrated tissues, which
suggest a high translation rate or slower protein turnover during
hydrated conditions. Similarly, the abundance of tkt7 mRNA dur-
ing late phases of rehydration in C. plantagineum does not match
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the protein abundance (Bernacchia et al., 1995). This may also
be true for regulatory genes like transcription factors, which are
often difficult to investigate due to the low abundance of these
proteins.

ENZYME ACTIVITIES
Many of the stress-induced proteins are enzymes and thus mea-
suring their enzyme activities indicates whether their activities are
maintained despite dehydration. Enzymes such as those involved
in antioxidant synthesis, carbohydrate and nitrogen metabolism
showed high enzymatic activities during dehydration/desiccation.
This confirms that the protein activities are not affected by dehy-
dration and are protected, e.g., by LEA proteins (Illing et al.,
2005; Farrant et al., 2007; Petersen et al., 2012). In X. viscosa, the
activities of ascorbate peroxidase, GSH reductase, and superoxide
dismutase increased during dehydration and declined during rehy-
dration whereas in C. wilmsii the activities of GSH reductase and
superoxide dismutase increased upon rehydration (Sherwin and
Farrant, 1998) indicating diversity of defense pathways in the poik-
ilochlorophyllous monocot plant and the homoiochlorophyllous
dicot plant.

Sucrose accumulation correlates with the up-regulation of
carbohydrate metabolic enzymes in desiccated tissues. During
dehydration, increased hexokinase activity is correlated with
sucrose accumulation and the decline in glucose and fructose
levels in both Sporobolus stapfianus and X. viscosa (Whittaker
et al., 2001). Sucrose-phosphate synthase activity in leaves of
C. plantagineum and Sporobolus stapfianus increases along with
sucrose accumulation during dehydration indicating the redirec-
tion of carbon flow to sucrose from reserve substances such as
starch and octulose (Whittaker et al., 2007). In Sporobolus stap-
fianus, increases in hexose sugars, sucrose, and amino acids
are associated with concomitant increases in sucrose-phosphate
synthase and pyruvate kinase (PK) activities, and maximal
activity levels of phosphoenolpyruvate carboxylase (PEPCase),
NADP-dependent isocitrate dehydrogenase (NADP-ICDH),
and NADH-dependent glutamate synthase (NADH-GOGAT;
Whittaker et al., 2007).

METABOLOMIC ANALYSIS
Metabolomic approaches deal with quantitative analysis of small
molecules giving a detailed analysis of the plant’s metabolic
state. Because of the large variety of chemical structures and
the different biochemical properties of molecules, no single
technique and no single metabolite extraction protocol will
identify all metabolites in a plant cell. Several approaches includ-
ing gas chromatography–mass spectrometry (GC–MS), liquid
chromatography (LC)–MS, capillary electrophoresis (CE)–MS,
and nuclear magnetic resonance (NMR) spectroscopy are com-
monly used in plant metabolomics research. Although large-scale
metabolomic studies have been reported for Arabidopsis plants
undergoing dehydration (Urano et al., 2009), metabolomic studies
have so far only been reported for two closely related Sporobo-
lus and Selaginella species which differ in desiccation tolerance
(Oliver et al., 2011b; Yobi et al., 2012). Metabolite changes dur-
ing dehydration/rehydration include carbohydrates, amino acids,
nucleotide derivatives, lipids, polyamines, antioxidants, and

defense compounds. Several key metabolites have been identi-
fied from the metabolome studies in resurrection plants and are
described below.

The metabolic profile of fully hydrated Selaginella lepido-
phylla is distinct from the dehydration state. The mapping of the
known metabolites (66.5%) into the general biochemical path-
ways revealed that the more prevalent metabolites are amino acids
(19%) followed by carbohydrates, lipids, cofactors, nucleotides,
peptides, and secondary metabolites. While the amino acids,
peptides, and nucleotide metabolites are overrepresented during
desiccation, carbohydrates such as 4C–6C containing sugars, sugar
alcohols, lipids, or lipid metabolites (with the exception of choline
phosphate), and cofactors are overrepresented in the hydrated
state (Yobi et al., 2013). Besides the known 251 metabolites that
were identified in Selaginella lepidophylla, 33.4% (84) represented
unknown metabolites. Seven of the unknown metabolites showed
greater abundance under dehydration conditions than in hydrated
conditions suggesting their role in desiccation tolerance. Sporobo-
lus stapfianus is metabolically primed for dehydration as it contains
high concentrations of osmolytes and nitrogen metabolites along
with low levels of metabolites associated with energy metabolism
in the hydrated state. Upon dehydration, the metabolism is
shifted toward antioxidant production, carbohydrate produc-
tion, nitrogen remobilization, and ammonia detoxification (Oliver
et al., 2011b). This appears to be different in C. plantagineum
where major metabolite changes are induced by dehydration
(see below).

CARBOHYDRATES
Carbohydrate metabolism plays a critical role in cellular pro-
tection in resurrection plants. Some carbohydrate metabolites
change drastically in abundance during dehydration and rehy-
dration. Table 2 displays a summary of the main carbohydrate
changes observed in various resurrection plants. Accumulation
of sucrose, trehalose, and short-chain oligosaccharides such as
raffinose has been observed during dehydration (Bianchi et al.,
1991b; Drennan et al., 1993; Norwood et al., 2000; Peters et al.,
2007; Table 2). Sucrose is the major carbohydrate in tissues of
angiosperm resurrection plants upon desiccation (Bianchi et al.,
1991b; Ghasempour et al., 1998; Norwood et al., 2000; Scott, 2000;
Whittaker et al., 2001; Cooper and Farrant, 2002; Zivkovic et al.,
2005). The importance of sucrose is demonstrated in a compara-
tive metabolic analysis of desiccation tolerant Eragrostis nindensis
and desiccation sensitive Eragrostis species. While E. nindensis
accumulates sucrose in desiccated leaves, desiccation sensitive
species of Eragrostis do not accumulate sucrose (Illing et al., 2005).
Although trehalose is a critical key compound of some lower order
desiccation tolerant organisms and yeast, it is a minor component
in a few desiccation tolerant angiosperm species (Ghasempour
et al., 1998).

In C. plantagineum and C. wilmsii an extremely high con-
centration of the unusual C8 sugar, 2-octulose accumulates in
well watered leaves (Bianchi et al., 1992; Norwood et al., 2000;
Cooper and Farrant, 2002) and upon dehydration, the level of
this sugar declines and the concentration of sucrose increases
(Bianchi et al., 1991b). This conversion accounts for up to 80% of
the carbohydrates in desiccated leaves of Craterostigma. According
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Table 2 | Carbohydrate metabolites in hydrated and dehydrated/desiccated conditions in vegetative tissues of resurrection plants.

Species Hydrated Dehydrated/desiccated Reference

Craterostigma plantagineum 2-Octulose Sucrose Bianchi et al. (1991b)

Craterostigma wilmsii Cooper and Farrant (2002)

Haberlea rhodopensis Sucrose, raffinose Sucrose, raffinose maltose, verbascose, stachyose Djilianov et al. (2011),

Gechev et al. (2013)

Myrothamnus flabellifolia Fructose, glucose Sucrose, arbutin, glucosylglycerol Bianchi et al. (1993)

Boea hygroscopica Glucose, fructose, sucrose, inositol Sucrose Bianchi et al. (1991a)

Sporobolus stapfianus Glucose, fructose, sucrose Sucrose, raffinose, stachyose Whittaker et al. (2001),

Oliver et al. (2011b)

Xerophyta viscosa Galactinol, myo-inositol Sucrose, raffinose Peters et al. (2007)

Selaginella lepidophylla Trehalose, sucrose, and glucose Trehalose, sucrose, glucose Yobi et al. (2013)

to Norwood et al. (2000), 2-octulose acts as a temporary stor-
age carbohydrate like starch that accumulates in leaves during
active photosynthesis and is mobilized at night. C. plantagineum
plants seem to depend on the available carbohydrate source
(2-octulose) for sucrose accumulation rather than relying on pho-
tosynthesis. Although C. plantagineum plants synthesize starch
during photosynthesis, the amount of carbon entering the starch
for storage compared to 2-octulose is small (Norwood et al.,
2000).

In Sporobolus stapfianus, equimolar levels of fructose and glu-
cose are present in fully hydrated tissues, dehydration causes
a rapid increase in glucose levels thereby increasing the glu-
cose to fructose ratio (Whittaker et al., 2001), which may be
indicative of amylolytic starch breakdown during mild dehydra-
tion. However, upon desiccation both glucose and fructose levels
decreased concomitant with an increase in sucrose (Ghasem-
pour et al., 1998). Apart from high accumulation of sucrose and
raffinose, stachyose, maltotetraose, and myo-inositol have also
been reported to accumulate during desiccation. Maltotetraose
and myo-inositol are likely to be synthesized from glucose-6-
phosphate that stores phosphate during dehydration (Oliver et al.,
2011b).

In H. rhodopensis, constitutive high accumulation of sucrose
and raffinose seems to be an adaptive feature to survive dehydra-
tion. This supports the notion that H. rhodopensis is primed for
desiccation as it was observed for antioxidants (Djilianov et al.,
2011). Upon dehydration sucrose increases to even higher levels
together with an increase in maltose, verbascose, and stachyose
(Djilianov et al., 2011; Gechev et al., 2013).

The shrub M. flabellifolia synthesizes some interesting car-
bohydrates and the uncovering of the biosynthetic pathways
of these carbohydrates could be utilized for the production of
these substances in vitro. Besides sucrose, the glucoside arbutin,
and glucosylglycerol (glucopyranosyl-β-glycerol) are synthesized
during dehydration whereas fructose and glucose are decreased
(Bianchi et al., 1993). Trehalose is present in both hydrated and
dehydrated conditions. Glucosylglycerol acts as an osmoprotec-
tant in cyanobacteria (Ferjani et al., 2003). Arbutin possesses
anti-parasitic properties toward fungal and herbivore attack. The

presence of the arbutin, glucosylglycerol, and trehalose appear to
be specific for M. flabellifolia.

The carbohydrate profile of Selaginella lepidophylla resembles
lower organisms like yeast. In Selaginella lepidophylla, trehalose,
sucrose, and glucose are the most abundant metabolites and
account for 50% of the total metabolites. The relative level
of trehalose is higher than sucrose and glucose and does not
change upon desiccation (Yobi et al., 2013). Several sugar alco-
hols such as sorbitol, xylitol, arabitol, erythritol, myo-inositol,
and mannitol are abundant in Selaginella lepidophylla under
hydrated conditions. They have been suggested to act as osmo-
protectants by stabilizing protein structures against denaturation
(Yobi et al., 2013). In Selaginella lepidophylla, many of the
glycolysis/gluconeogenesis intermediates (glucose-6-phosphate,
fructose-6-phosphate, maltose-6-phosphate, glycerate, and
pyruvate), and tricarboxylic acid intermediates (oxaloacetate,
fumarate, succinate, and alpha-ketoglutarate) accumulate during
dehydration suggesting the importance of these metabolites for
the metabolic flux through these pathways during dehydration or
in preparation for rehydration (Yobi et al., 2013).

Sugars that accumulate during dehydration in resurrection
plants, are proposed to have protective functions such as replacing
water on membranes and macromolecules by formation of anhy-
drous glass (Crowe et al., 1998; Hoekstra et al., 2001), vitrification
of the cytoplasm (Leopold and Vertucci, 1986; Vertucci and Far-
rant, 1995), filling and stabilization of vacuoles (Farrant, 2000),
and stabilization of membrane proteins (Hartung et al., 1998;
Oliver et al., 1998). A correlation exists between the accumulation
of oligosaccharides like raffinose, stachyose, and verbascose with
desiccation tolerance in seeds which supports the importance of
carbohydrates for acquisition of desiccation tolerance (Horbowicz
and Obendorf, 1994; Hoekstra et al., 1997).

AMINO ACIDS
Protein breakdown and amino acid accumulation are observed in
many resurrection plants during dehydration (Tymms and Gaff,
1978; Gaff and McGregor, 1979). While glycine, alanine, and the
amino acid-related metabolite quinate are abundant in the fully
hydrated tissue of Selaginella lepidophylla, amino acids such as
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glutamine, glutamate, arginine, aspartate, citrulline, asparagine,
N-6-trimethyllysine, trans-4-hydroxyproline, as well as the inter-
mediate metabolites 3-(3-hydroxyphenyl)propionate, the tripep-
tide ophthalmate (L-Y-glutamyl-L-α-aminobutyrylglycine) are
prominent in desiccated tissues (Yobi et al., 2013). Similarly in
Sporobolus stapfianus, amino acids such as asparagine, arginine,
glutamate, glutamine, and the amino acid precursor quinate accu-
mulated during desiccation (Martinelli et al., 2007; Oliver et al.,
2011b). These amino acids could function as compatible solutes
or as mobile nitrogen reserves for the rehydrating tissues. In
Selaginella lepidophylla citrulline, a non-proteinogenic amino acid
and a structural analog of arginine, is the only amino acid that is
more abundant in desiccated tissues than in hydrated tissues. In
C. plantagineum, amino acid composition did not change signif-
icantly during dehydration/rehydration (Bianchi et al., 1992). In
a number of species, γ-glutamyl amino acids accumulate during
desiccation (Oliver et al., 2011b; Yobi et al., 2013). Addition of
glutamyl residues to amino acids prevents their degradation. The
amino acid derivative 3-(3-hydroxyphenyl) propionate is more
abundant in dehydration and desiccation states in Selaginella
lepidophylla than in the hydrated tissue. Several aromatic amino
acids such as tryptophan and the derivatives acetyltryptophan or
phenylalanine which serve as biosynthetic precursors for primary
and secondary metabolites accumulate in Sporobolus stapfianus
and Selaginella lepidophylla during dehydration (Oliver et al.,
2011b; Yobi et al., 2012). The amino acids phenylalanine and
tyrosine accumulate during dehydration in vegetative tissues of
H. rhodopensis suggesting the activation of the shikimate path-
way (Gechev et al., 2013) which can result in the synthesis of
antioxidants.

NUCLEOTIDE METABOLITES
Besides amino acids, the relative abundance of other nitrogen-rich
metabolites within the purine and pyrimidine nucleotide pathways
is altered during the dehydration/rehydration cycle in Selaginella
lepidophylla (Yobi et al., 2013). Some nucleotides [e.g., allan-
toin, 1-methyladenosine, and uridine 5′-monophosphate (UMP)]
were more abundant in desiccated tissues than in hydrated tis-
sues. Inosine, a purine nucleoside containing the purine-base
hypoxanthine and the sugar D-ribose, accumulated during desic-
cation in Selaginella lepidophylla, whereas 2′-deoxyadenosine was
more abundant in fully hydrated Selaginella lepidophylla. These
results are similar to those observed for Sporobolus stapfianus,
in which allantoin increased during dehydration (Oliver et al.,
2011b).

LIPIDS
Maintenance of membrane integrity plays a pivotal role in des-
iccation tolerance (Hoekstra et al., 2001) and therefore, changes
in lipid compositions are essential for desiccation tolerance. A
detailed lipid analysis was recently reported for C. plantagineum
and some closely related species (Gasulla et al., 2013). Although
the total lipid content remained constant during desiccation,
remarkable changes in lipid composition were observed in C.
plantagineum and L. brevidens (Gasulla et al., 2013). An interest-
ing observation was the removal of monogalactosyldiacylglycerol
(MGDG) from the thylakoid membranes during desiccation.

MGDG was either converted to digalactosyldiacylglycerol or it was
hydrolyzed and the resulting diacylglycerol was used for phospho-
lipid and triacylglycerol production (Gasulla et al., 2013). Accu-
mulation of phosphatidylinositol is a specific response observed
in desiccation tolerant C. plantagineum and L. brevidens but not in
desiccation sensitive plants suggesting its importance for desicca-
tion tolerance (Gasulla et al., 2013). A common response observed
in plants is the increase of phosphatidic acid upon dehydration.
Phosphatidic acid is considered to be a signaling molecule which
may regulate down-stream processes. The increase in phosphatic
acid is due to the activation of phospholipase D under desicca-
tion in C. plantagineum (Frank et al., 2000). Lysolipids and fatty
acids which are natural products formed by the hydrolysis of
phospholipids are accumulated during dehydration. In Sporobolus
stapfianus, accumulation of lysolipids suggests the scope for mini-
mal damage to lipid membranes during dehydration (Oliver et al.,
2011b). In Selaginella lepidophylla out of the 32 lipid metabolites,
only choline phosphate accumulated in response to dehydration.
Membranes are protected during dehydration in Selaginella lepido-
phylla as polyunsaturated fatty acids and markers of lipoxygenase
activity increased (Yobi et al., 2013). A decrease in the relative
amounts of various unsaturated lipids upon dehydration has been
reported for the desiccation tolerant Sporobolus stapfianus (Quar-
tacci et al., 1997) and Ramonda serbica (Quartacci et al., 2002).
These alterations in unsaturated fatty acid concentrations are sup-
posed to contribute to membrane fluidity to allow for recovery
after dehydration (Upchurch, 2008).

POLYAMINES
Polyamines are low molecular weight polycationic compounds
involved in cellular processes, such as membrane stabilization,
enzyme activity modulation, plant growth and development,
nitrogen assimilation, and respiratory metabolism (Alcázar et al.,
2010). Polyamines are able to bind to negatively charged molecules
like DNA, proteins, or membrane phospholipids and thus are
able to protect these macromolecules. A positive correlation
exists between the abundance of polyamine levels and stress
tolerance in plants (Alcázar et al., 2010). In agreement with
this, putrescine, spermidine, and spermine were found to be
at higher levels after drought treatment in C. plantagineum
than in Arabidopsis putrescine levels along with spermidine
and spermine increased after 96 h of dehydration in C. plan-
tagineum (Alcázar et al., 2011). This implies an early drought
response phenomenon in C. plantagineum and indicates that stim-
ulation in spermidine and spermine biosynthesis occurs with
concomitant reduction of putrescine precursor levels. It sug-
gests a metabolic canalization of putrescine to spermine in C.
plantagineum. In drought sensitive Arabidopsis, although the
putrescine to spermine canalization occurs under dehydration,
the spermidine and spermine levels do not increase and this is
due to conversion of spermine to putrescine thereby forming a
polyamine recycling-loop during drought acclimation (Alcázar
et al., 2011).

ANTIOXIDANTS
Most of the cellular damage occurs through the activity of
ROS (Smirnoff, 1993). ROS are particularly prevalent during
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desiccation of photosynthetic tissues because chlorophyll retains
the ability to transfer electrons while carbon fixation does not
take place. Under light conditions a flow of electrons and energy
is passed from chlorophyll molecules to ground state oxygen
thus generating singlet oxygen. To detoxify the ROS plant cells
contain a wide array of reactive oxygen scavenging antioxidant
enzymes (superoxide dismutase, catalase, ascorbate peroxidase,
etc.) along with low molecular weight antioxidants. Both desicca-
tion sensitive and tolerant plants up-regulate antioxidant synthesis
to detoxify ROS upon dehydration. A major difference between
resurrection plants and desiccation sensitive plants appears to
be in the ability to maintain the antioxidant levels during the
later stages of desiccation where oxidative stress prevails (Mowla
et al., 2002; Illing et al., 2005). The importance of low molecular
weight antioxidants (ascorbate and GSH), tocopherols, pheno-
lic acids, or polyphenols (galloylquinic acid) has been deduced
from metabolic analyzes (Kranner et al., 2002; Moore et al., 2005).
Ascorbate–GSH cycle metabolites are often elevated during des-
iccation in resurrection plants (Navari-Izzo et al., 1997; Jiang
et al., 2007). M. flabellifolia contains large amounts of antioxi-
dants in the hydrated state suggesting that the antioxidant-based
protection mechanisms are constitutively expressed. However,
desiccation still leads to increased levels of reduced GSH and
oxidized GSH (GSSG; Kranner et al., 2002). Unlike GSH, both
ascorbate and dehydroascorbate levels decreased during desic-
cation in M. flabellifolia, and were completely depleted after
four months of desiccation, which compromised the survival
mechanism (Kranner et al., 2002). A similar pattern is observed
in H. rhodopensis leaves where the total GSH levels and the
GSSG/GSH ratio increased upon desiccation (Djilianov et al.,
2011). In Sporobolus stapfianus, γ-glutamyl dipeptides that are
involved in GSH recycling via the γ-glutamyl cycle and GSSG were
increased during desiccation (Oliver et al., 2011b). In T. ruralis, the
most abundant dehydration-responsive γ-glutamyl dipeptides are
γ-glutamylisoleucine, γ-glutamylleucine, γ-glutamylvaline, and
γ-glutamylphenylalanine.

Apart from common antioxidants like GSH or ascorbate,
polyphenols such as 3,4,5-tri-O-galloylquinic acid accumulated in
M. flabellifolia, and seed-associated antioxidants, e.g., 1-Cys perox-
iredoxin and metallothioneins occurred in X. viscosa (Ndima et al.,
2001; Mowla et al., 2002; Moore et al., 2005). Polyphenols are pow-
erful detoxifiers of ROS and are present in some resurrection plants
(Veljovic-Jovanovic et al., 2008). In Selaginella lepidophylla, phe-
nolics (e.g., caffeate), flavonols (e.g., apigenin and naringenin),
and phenylpropanoids (e.g., coniferyl alcohol) accumulated in
desiccated tissues (Yobi et al., 2013). In H. rhodopensis, phenols
reached around 15–20% of the total dry weight of the desiccated
plant. In contrast, the phenolic acids in Ramonda serbica decreased
under desiccation and increased upon rehydration (Sgherri et al.,
2004; Veljovic-Jovanovic et al., 2008) suggesting the operation of
different mechanisms. In Sporobolus stapfianus, both alpha and
beta-tocopherols are induced during desiccation whereas they are
at low levels in M. flabellifolia and Selaginella lepidophylla (Kran-
ner et al., 2002; Oliver et al., 2011b; Yobi et al., 2013). The examples
described demonstrate diversity in the antioxidants in resurrection
plants. This might be determined by the environmental factors at
the habitat of the species.

COMPARATIVE OMICS STUDIES BETWEEN DESICCATION
TOLERANT AND SENSITIVE SPECIES
Two types of comparisons can be performed to analyze the changes
in gene expression, protein, or metabolite levels across species. The
ancestor-descendent comparison depends on the reconstruction
of the evolutionary history of the gene and its association with
desiccation tolerance. The sister group comparison can be made
for two closely related species that differ in desiccation tolerance.
Both approaches have been applied. The aim of these compara-
tive approaches is to identify components which are linked with
desiccation tolerance. Illing et al. (2005) compared the expres-
sion profiles of different genes in vegetative tissues of desiccation
tolerant X. viscosa with Arabidopsis seed specific genes from avail-
able expression data. The expression profiles of various LEA genes
and antioxidant genes that are induced during desiccation in
X. viscosa vegetative tissues are also induced during seed develop-
ment in Arabidopsis suggesting similarities between the response
to desiccation in the resurrection plant and in seeds. In another
study, a comparative analysis of antioxidant gene expression was
performed between the two desiccation tolerant species C. plan-
tagineum and L. brevidens and the desiccation sensitive species
L. subracemosa, all belonging to the same family. Antioxidant
genes were either constitutively expressed or up-regulated dur-
ing desiccation and rehydration in desiccation tolerant species
but down-regulated in the desiccation sensitive L. subracemosa
(Dinakar and Bartels, 2012). Comparative lipid profiles in the
same species identified phosphoinositol as a compound associated
with desiccation tolerance (Gasulla et al., 2013; see also Section
“Lipids”). Phosphoinositol could replace water due to the hydroxyl
groups and therefore could contribute to maintain structures of
macromolecules. Species specific sequencing of EST clones from
the desiccation tolerant Selaginella lepidophylla and the desicca-
tion sensitive Selaginella moellendorffii identified ESTs associated
with desiccation tolerance (Iturriaga et al., 2006). ESTs for trans-
porters, cell structure, molecular chaperones, and LEA genes
were more abundant in Selaginella lepidophylla than in Selaginella
moellendorffii.

Comparative metabolomic analysis between desiccation tol-
erant and sensitive species has been performed in Sporobolus
stapfianus vs Sporobolus pyramidalis and Selaginella lepidophylla
vs Selaginella moellendorffii respectively (Oliver et al., 2011b; Yobi
et al., 2012). Metabolomic comparison between desiccation tol-
erant Sporobolus stapfianus and desiccation sensitive Sporobolus
pyramidalis demonstrated that Sporobolus stapfianus is metabol-
ically primed for desiccation by accumulating osmoregulatory
metabolites (Oliver et al., 2011b). Sporobolus stapfianus has higher
levels of osmolytes, nitrogen source compounds and lower con-
centrations of compounds related to energy metabolism and
growth than Sporobolus pyramidalis (Oliver et al., 2011b). Sev-
eral of the polyols are also more abundant in Sporobolus stapfianus
under hydrated conditions than in Sporobolus pyramidalis sug-
gesting that constitutive expression of these polyols is a strategy to
combat oxidative stress (Oliver et al., 2011b). Like Sporobolus stap-
fianus, desiccation tolerant Selaginella lepidophylla retained higher
amounts of sucrose, mono- and polysaccharides, and sugar alco-
hols (sorbitol, xylitol) than desiccation sensitive Selaginella moel-
lendorffii (Yobi et al., 2012). Another common feature between
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Sporobolus stapfianus and Selaginella lepidophylla is the abundancy
of the amino acids alanine and leucine in hydrated conditions and
their increase during dehydration (Oliver et al., 2011b; Yobi et al.,
2012). However, both species differ in the accumulation of other
amino acids (asparagine, aspartate, arginine, and glutamate),
which are higher in Sporobolus stapfianus than in Sporobolus pyra-
midalis under hydrated conditions, and vice versa in Selaginella
(Oliver et al., 2011b; Yobi et al., 2013). The desiccation tolerant
Selaginella lepidophylla accumulates more γ-glutamyl amino acids
during dehydration than Selaginella moellendorffii (Yobi et al.,
2013). This feature is also observed in desiccating T. ruralis and
Sporobolus stapfianus which suggests that it has been conserved
during evolution (Oliver et al., 2011b). Some differences between
Sporobolus and Selaginella could also be related to the difference
in the life cycle of the plants.

INTEGRATING THE OMICS RESPONSES AND NEW INSIGHTS
IN UNDERSTANDING THE MECHANISM OF DESICCATION
TOLERANCE
Integration of the data obtained from transcriptomic, proteomic,
and metabolomic studies in resurrection plants is important for
decoding the desiccation tolerance mechanisms (Figure 1). The
summary of the omics studies and sister group comparisons is
shown in Table 1. Eventually the knowledge on pathways lead-
ing to desiccation tolerance could be used for improving drought
tolerance in crops (Figure 1). Evidence from omics studies in
resurrection plants suggests that some protective strategies are
constitutively active in resurrection plants and do not require

induction like in dehydration sensitive plants. This indicates pre-
paredness of the plant for dehydration stress (Gechev et al., 2013).
The comparative metabolomic analysis of desiccation tolerant and
sensitive Sporobolus and Selaginella species demonstrates that sen-
sitive plants loose water more rapidly during dehydration than
desiccation tolerant plants suggesting that slowing down the rate
of water loss might allow more time for the synthesis of protective
molecules and important for acquisition of desiccation tolerance
(Oliver et al., 2011b; Yobi et al., 2012).

The common observation from the metabolomic analysis is the
abundance of amino acids, sugar alcohols, and other compatible
solutes in hydrated vegetative tissues of desiccation tolerant plants
thereby reducing the speed of water loss from the plants allowing
the plant to synthesize compounds required for desiccation tol-
erance. Comparative omics studies have aided in differentiating
the responses of tolerant and sensitive species thereby giving an
overview of the molecular processes that contribute to desiccation
tolerance (Rodriguez et al., 2010; Gechev et al., 2013).

Reduction in photosynthesis, accumulation of LEA proteins
and carbohydrates, increased antioxidants along with increased
enzymatic activities are commonly observed in taxonomically
distant resurrection plants. Both desiccation sensitive and desicca-
tion tolerant plants share mechanisms of drought perception and
responses such as induction of LEA proteins, heat shock genes,
or adjustment of carbohydrate metabolism. However, quantita-
tively levels seem to vary. In addition, some resurrection plants
seem to express unique metabolites such as the eight-carbon sugar
octulose, and the CDT1 gene in C. plantagineum, or the phenolic
antioxidant 3,4,5-tri-O-galloylquinic acid in M. flabellifolia.

FIGURE 1 | Comparative studies of desiccation tolerant and sensitive plants using omics approaches and integration of the data to identify target

genes for generating drought tolerant plants.
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FIGURE 2 | Diagrammatic representation of the responses of resurrection plants to desiccation/rehydration as analyzed by omics approaches.

Indicated are the main classes of transcripts/metabolites characteristic for the different stages of the dehydration/rehydration cycle.

CONCLUSIONS AND FUTURE PERSPECTIVES
Elucidation of the molecular mechanism of desiccation toler-
ance in resurrection plants is difficult due to the lack of genetic
approaches and due to the complexity of the phenomenon.
However, with the realization of omics technologies it is possi-
ble to provide a comprehensive description of changes on the
transcript, proteome, and metabolome levels during a dehy-
dration/rehydration cycle (Figure 2). The combination of the
data should lead to a systems biology approach and identify
target genes and critical metabolic pathways. The studies car-
ried out with resurrection species to date show that similarities
exist in dehydration-induced gene expression as well as in pro-
tein and metabolite accumulation in resurrection plants pointing
toward the presence of common mechanisms of desiccation
tolerance. It is proposed that the tolerance to desiccation in vas-
cular resurrection plants is due to the combinatorial effect of
accumulation of high levels of antioxidants together with var-
ious osmoprotective compounds such as sugars, in particular
sucrose and raffinose, and hydrophilic proteins, most promi-
nently LEA proteins. The mechanisms in vascular resurrection
plants appear to be different from lower plants like mosses.
Desiccation tolerance mechanisms in seeds and vascular plants
share many components, but they differ in the regulation of
accumulation of components (Farrant and Moore, 2011). In
seeds, the expression of desiccation tolerance is strictly devel-
opmentally regulated while it is expressed throughout most
of the life cycle in resurrection plants. Therefore, the eluci-
dation and intensive study of regulatory expression networks
should be subject of future research. There are a number of
questions which have hardly been experimentally addressed like
which components allow the cells to shrink during desicca-
tion and expand again during rehydration or how are thylakoid
membranes functionally re-assembled during rehydration. These

processes probably require very specific membrane and cell wall
compositions.

A remarkable finding in the transcriptome studies in C. plan-
tagineum and H. rhodopensis is the fact that a high number of
transcripts exist which could not be assigned to known sequences
from other species. This suggests that some parts of the tran-
script coding genome has evolved very recently leading to unique
genes possibly by genome rearrangements, genome duplication,
and activity of transposable elements and/or retro-elements. It
appears from studies in C. plantagineum that not only protein cod-
ing sequences are unique but also non-protein coding RNAs, which
are present in many copies in the genome and are abundantly
expressed during dehydration (Furini et al., 1997; Giarola and Bar-
tels unpublished). Genome plasticity may be required for extreme
adaptation, as it was already observed for genomes of halophytes
(Bartels and Dinakar, 2013). The studies on these orphan genes are
essential for understanding mechanisms of desiccation tolerance.
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