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Carbon and water cycling of forests contribute significantly to the Earth’s overall
biogeochemical cycling and may be affected by disturbance and climate change. As
a larger body of research becomes available about leaf-level, ecosystem and regional
scale effects of disturbances on forest ecosystems, a more mechanistic understanding
is developing which can improve modeling efforts. Here, we summarize some of the
major effects of physical and biogenic disturbances, such as drought, prescribed fire, and
insect defoliation, on leaf and ecosystem-scale physiological responses as well as impacts
on carbon and water cycling in an Atlantic Coastal Plain upland oak/pine and upland pine
forest. During drought, stomatal conductance and canopy stomatal conductance were
reduced, however, defoliation increased conductance on both leaf-level and canopy scale.
Furthermore, after prescribed fire, leaf-level stomatal conductance was unchanged for
pines but decreased for oaks, while canopy stomatal conductance decreased temporarily,
but then rebounded the following growing season, thus exhibiting transient responses.
This study suggests that forest response to disturbance varies from the leaf to ecosystem
level as well as species level and thus, these differential responses interplay to determine
the fate of forest structure and functioning post disturbance.
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INTRODUCTION
In recent decades the importance of disturbances on the forest carbon and water cycles have been
recognized as well as the effects of climate change in modulating these (Dale et al., 2001; Kurz
et al., 2008a; Reichstein et al., 2013; Gatti et al., 2014). Future predictions of forest recovery and
health depend on an understanding of current mechanisms of mortality and an understanding of
forest structure, function, and underlying mechanisms of species compositional dynamics under
disturbance regimes (Seidl et al., 2011a). To date, most models do not take into account physi-
ological changes, trade-offs in response to multiple forest disturbances (physical and biogenic),
feedback mechanisms between nutrients and forest species, or potential species shifts (Dietze et al.,
2011, 2013; Medvigy et al., 2012; Richardson et al., 2012). In addition, mechanisms of mortality
are not well understood and thus not incorporated into models (McDowell et al., 2008, 2011).
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KEY CONCEPT 1 | Forest disturbance

Any physical or biogenic agent that disrupts the structure and function of
forests, such as windthrow, insect pests or pathogens on an ecosystem
scale.

Ecosystem response to extreme climate events such as drought can
result in increases in defoliation, fire or wind-throw (Ayres and
Lombardero, 2000; Dale et al., 2001; Reichstein et al., 2013) and
a decrease in transpirable soil water content (Klein et al., 2014).
Forest functioning and species composition will likely be altered
by re-occurring droughts, insect infestations and windthrow,
while the changes in energy partitioning will likely have impacts
for regional climate in forest ecosystems (Roy and Avissar, 2002).
This, in turn, could increase fire risk (Smithwick et al., 2009; Seidl
et al., 2011b; Stephens et al., 2013). Conversely, climate extremes
can have delayed feedback impacts on soil water content, and
thus, ecosystem function (Reichstein et al., 2013). Additionally,
species may vary in their responses to such occurrences (Schäfer,
2011). Therefore, specific ecosystem responses are not well known
and are difficult to model due to a lag in response (Reichstein
et al., 2013).

Clearly, in order to build predictive models, the processes need
to be captured on the leaf and/or canopy scale. While canopy
net assimilation scaled via sapflux (see Schäfer et al., 2010) vis
a vis gross ecosystem production measured with eddy covari-
ance (see analysis in Amiro et al., 2010) show overall reduced
carbon uptake after insect attack, the process on the leaf-level
shows compensatory responses such as higher photosynthetic
activity (Heichel and Turner, 1983; Vanderklein and Reich, 1999)
or water use per unit leaf area (Meinzer and Grantz, 1991; Schäfer,
2011); even under drought conditions (Hawkes and Jon, 2001).
However, nutrient removal via defoliators could reduce photo-
synthetic capacity over time, thus effectively hindering recovery
(Krause and Raffa, 1996). Therefore, the overall reduction at the
canopy scale is mediated through leaf-level compensations rather
than just a function of reduced leaf area as it is implemented in
models (see Medvigy et al., 2012). In contrast, prescribed fires

KEY CONCEPT 2 | Prescribed fire

Management practice to reduce fuel load (forest floor litter and understory
brush) in order to prevent wildfires.

have only short-term effects on overstory trees or the ecosystem
at large (Clark et al., 2012; Renninger et al., 2013), given that
they mainly affect understory shrubs and forest floor fuel loading
(Boerner, 1981; Boerner et al., 1988). Any effect on overstory trees
or ecosystem scale carbon and water cycling are transient (Clark
et al., 2012; Renninger et al., 2013). Wildfires, however, have a
devastating effect on the water and carbon balance of forests, as
they often are stand replacing or largely more destructive to over-
story trees (Hurteau and North, 2008, 2009; Hurteau et al., 2008,
2011; Wiedinmyer and Hurteau, 2010). Furthermore, these wild-
fires as disturbance regimes can potentially play a huge role in
forest health and structure (Heinselman, 1973). Depending on
the burn regime, fires can lead to both horizontal and vertical
structural changes by altering canopy gaps, species composition,
and tree densities, which can then subsequently alter competi-
tive relationships (Heinselman, 1978; Boerner et al., 1988). It has

also been found that fire can have a direct impact on physical
and chemical properties of the soil (Granged et al., 2011), which
could potentially lead to altered physiological responses of the
overstory trees, further affecting the carbon and water budgets.
Thus, insight into hydrodynamics (Lopushinsky and Klock, 1980;
Bohrer et al., 2005; Thomsen et al., 2013), nutrient limitation
(Lovett and Tobiessen, 1993; Krause and Raffa, 1996; Vanderklein
and Reich, 2000) or enhancement of photosynthetic capacity
(Heichel and Turner, 1983; Haukioja et al., 1985; Hodgkinson,
1992; Vanderklein and Reich, 1999) in response to disturbances
such as drought, insect defoliation, and fire would help build
better predictive models to assess forest structure, function, and
species compositional shifts under disturbance regimes. This will
help improve predictions of water and carbon cycling of forest
ecosystems.

Capitalizing on a long-term data collection effort in a xeric for-
est of the Atlantic Coastal Plain, the New Jersey Pine Barrens,
insights into drought and prescribed fire (as a physical forcing
agent) and insect defoliation (as a biogenic forcing agent) plant
responses have improved our understanding of plant compen-
satory responses, potential mortality agents and species compo-
sitional shifts, thus enhancing predictions of water and carbon
cycling of forests (Schäfer et al., 2010, 2013; Schäfer, 2011; Clark
et al., 2012; Medvigy et al., 2012, 2013; Renninger et al., 2014b). It
is important to note differences in physical disturbances, such as
fire and windthrow that are non-species specific and biogenic dis-
turbances, such as defoliators or phloem feeders that are species
specific and thus have a larger impact on forest dynamics and
species compositional changes. Here, we provide a synthesis and
insights of the effects of physical and biogenic disturbance to
water and carbon cycling in upland forests of the New Jersey Pine
Barrens.

MATERIALS AND METHODS
SITE DESCRIPTION
For this study, a long-term research site in an upland oak/pine
forest in the New Jersey Pine Barrens was chosen that had a
nearby prescribed fire site about 800 m away, and two pine stands,
one prescribed fire and one control site, that we reported about
earlier (Renninger et al., 2013), which is about 8 km due south-
east from the long-term study site (see Figure 1). The sites are
located in the New Jersey Pine Barrens in southern New Jersey
(see Figure 1) with primarily sandy soil with characteristic low
nutrient retention and water holding capacity (Schäfer, 2011). In
the upland oak/pine forest in the Brendan T. Byrne State Forest
(see Figure 1, N 39◦ 55′ 0′′, W 74◦ 36′ 0′′), the dominant tree
species are Quercus prinus Willd. (chestnut oak), Q. velutina Lam.
(black oak), and Q. coccinea Münchh. (scarlet oak), with scattered
Q. stellata Wangenh. (post oak), and Q. alba L. (white oak), Pinus
rigida Mill. (pitch pine), and P. echinata Mill. (shortleaf pine). The
upland pine and pine/oak forest primarily consists of P. rigida
with scrub oak (Q. ilicifolia Wagenh., Q. marlandica Muenchh.)
in the understory (Clark et al., 2012; Renninger et al., 2013). At
the long-term experimental stand at the oak/pine upland forest,
a drought was observed in August of 2006 and in July of 2010,
as well as a total gypsy moth defoliation in June 2007 of 21% of
the upland forest in the NJ Pine Barrens and a partial defoliation
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FIGURE 1 | Map of New Jersey (insert) with the New Jersey Pine Barrens highlighted in the center. Large map shows the oak/pine sites and the pine
site. The long-term site is designated in orange (see also description in text).

in 2008 (Schäfer et al., 2010). After the defoliation event in 2007,
the canopy re-flushed with 50% of the leaf area observed in previ-
ous years at the peak of the season. The prescribed fire at the pine
and oak/pine sites occurred in March of 2011 and March 2012,
respectively.

ENVIRONMENTAL DATA
In order to calculate vapor pressure deficit (VPD) of forest air,
environmental measurements such as air temperature (Tair) and
relative humidity (RH, HMP45C Vaisala, Helsinki, Finland) were
made about two-thirds of the canopy at the respective experi-
mental sites. Air temperature and relative humidity were used to
calculate vapor pressure deficit of the air (VPD) according to Goff
and Gratch (1946). In addition, precipitation throughfall (PT,
TE525, Texas Electronics Inc, TX, USA), and soil moisture from 0
to 30 cm (� m3 m−3, CS616, Campbell Scientific, Inc, Logan, UT,
USA) were recorded every half-hour using data loggers (CR3000
or CR1000, Campbell Scientific Inc, Logan, UT, USA). These
measurements are continuous at the long-term oak/pine site and
were conducted at the control pine site throughout the study
period (Renninger et al., 2013).

LEAF-LEVEL MEASUREMENTS
In order to measure leaf-level physiological responses, leaf-level
net photosynthesis and leaf stomatal conductance were measured
with a Licor 6400 XT with a red/blue light source attached (LiCor
Bioscience Inc., Lincoln, NE, USA) before and after drought

in the upland oak/pine forest (Schäfer, 2011), before and after
prescribed fire at a burned and a control plot in the upland
pine forest (Renninger et al., 2013) and in 2012 and 2013 at
the oak/pine stand at the long-term study site and at the pre-
scribed fire site close by (see Figure 1). The prescribed fire at
the oak/pine site was conducted in March 2012, thus results pre-
sented here, are the first and second growing season after the
fire. The conductance measurements were performed at 400 ppm
external CO2 concentration and at light saturating conditions
(>1500 µmol m−2 s−1).

CANOPY STOMATAL CONDUCTANCE
Canopy-level transpiration can be measured via sapflux and
scaled to canopy stomatal conductance (Schäfer et al., 2010). This
was done in five to seven Quercus prinus, and five to seven Q.
velutina in the long-term study stand and four individuals each
in the second stand, which underwent a prescribed fire in March
2012 (Renninger et al., 2014b), and in two Q. alba and in three
Pinus rigida at the oak/pine upland forest. At the pine site, eight
individuals of P. rigida were chosen for sapflux measurements at
each of the prescribed fire and control sites (Renninger et al.,
2013). Details about the setup and scaling for the upland oak/pine
sites can be found in Renninger and Schäfer (2012) and for the
pine site in Renninger et al. (2013). Briefly, sapflux is scaled to
canopy transpiration by multiplying with sapwood area per unit
ground area and to canopy transpiration per unit leaf area by mul-
tiplying with sapwood area per unit leaf area per individual (pine)
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and of the canopy per species (oaks). Sapwood area was measured
from tree cores and a relationship with canopy leaf area derived
with diameter at breast height (Renninger et al., 2013, 2014b). In
order to scale to canopy stomatal conductance, transpiration per
unit leaf area is divided by VPD assuming the canopy is well cou-
pled to the atmosphere and the water in storage contributing to
transpiration accounted for by lagging the driving force (VPD) to
transpiration (Schäfer et al., 2010; Schäfer, 2011).

BIOMETRIC MEASUREMENT
Every year, at the end of the growing season, diameter at breast
height (dbh) was measured in the experimental plot in the
upland oak/pine forest comprising 0.3 ha and the nearby fire
plot comprising 0.0225 ha. For the prescribed fire experiment
in the upland pine forest, two experimental plots were estab-
lished, each 0.0225 ha in size and dbh measured for all trees in
the plot. Using allometric relationships derived by Whittaker and
Woodwell (1968), leaf area was determined for scaling purposes
(see above) or measurements of light transmission (LAI 2000)
were conducted for the oaks to determine leaf area (Renninger
et al., 2014b).

STATISTICAL ANALYSIS
Comparisons of leaf- and canopy-level stomatal conductance
between fire and control sites were made using ANOVA in
R version 2.5.1 (The R Foundation for Statistical Computing;
http://www.R-project.org). P-values less than 0.05 were deemed
significant.

RESULTS
Measurements of transpiration, ecophysiological parameters,
biometric variables and eddy covariance measurements in an
oak/pine ecosystem in the Atlantic Coastal Plain (New Jersey
Pinelands) showed a relative conservatism of water use (Clark
et al., 2012) on an ecosystem level, but longer lasting effects on
carbon balance after insect defoliation. While post-defoliation
(2012) transpiration and evapotranspiration are similar to pre-
defoliation levels (2006), post-defoliation carbon fluxes have not
returned to pre-disturbance levels after 5 years of recovery due to
a 25% reduction in basal area following tree mortality (Schäfer
et al., 2013). Defoliation frequency also affects recovery, with
modeled carbon fluxes under various defoliation scenarios show-
ing pronounced reduction in productivity under frequent defo-
liation, but no effect if defoliation occurs at a rate of >15 years
(Medvigy et al., 2012).

Despite a relatively consistent seasonal water use through var-
ious disturbances, defoliation and drought affected water use
differently. For example, canopy transpiration (EC) after defolia-
tion and subsequent re-sprouting, was reduced by 25% compared
to pre-defoliation levels, even though only half of the leaf area was
replaced. However under severe drought conditions in 2006 and
2010, EC was only reduced by 8 and 18% respectively (Table 1,
Schäfer et al., 2013). Therefore, prolonged drought had a lesser
effect on EC than reduced foliage or episodic defoliation, suggest-
ing these trees have access to deeper soil moisture. These data
also suggest that defoliation may make trees more sensitive to
drought over time as evidenced by the higher reduction of EC

Table 1 | Summary of responses to disturbances in the New Jersey

Pine Barrens.

Anet AnC GEP gS GC LAI Leaf N Soil N Soil CO2

Defoliation ↑ ↓ ↑ ↑ ↓ ↓ ? ±
Drought ↓ ↓ ↓ ↓ ± ± ± ?
Prescribed fire ± ± ± ± ± ± ± ±
Anet , net assimilation at the leaf level; AnC , canopy net assimilation; GEP, gross

ecosystem production; gS, stomatal conductance at the leaf level; GC , canopy

stomatal conductance; LAI, leaf area index; Leaf N, leaf nitrogen concentra-

tion; soil N, soil nitrogen concentration; soil CO2, soil carbon dioxide efflux; ↑,

increase; ↓, decrease; ±, no change; ?, not known. Details and references see

text.

during a 2010 drought period (post-defoliation) compared to a
2006 drought (pre-defoliation) (Schäfer et al., 2013).

Differential physiological responses of the various oak species
as well as pitch pine may also create a species shift in an
ecosystem that is also prone to fire (Table 2). In this ecosys-
tem, Quercus prinus showed consistently lower stomatal conduc-
tance, photosynthesis and maximum carboxylation rate com-
pared to Quercus velutina, however both oak species displayed
similar water and nutrient use efficiencies (Renninger et al.,
2014b). Likewise, Pinus rigida, a predominant species in the
Pinelands, showed comparable water– and nutrient use efficien-
cies to the oak species investigated signifying similar strategies
in this ecosystem with respect to their efficiencies. However,
Q. velutina had higher mortality rates than Q. prinus suggest-
ing a possible shift in oak species with more frequent defolia-
tion events (Schäfer, 2011). Likewise, P. rigida may be released
from competition if more oaks species face mortality due to
gypsy moth defoliation occurrences (Medvigy et al., 2012).

KEY CONCEPT 3 | Water use efficiency

Amount of carbon dioxide uptake per unit water lost, or per stomatal
conductance.

KEY CONCEPT 4 | Nitrogen/Nutrient use efficiency

Amount of carbon dioxide uptake per unit nitrogen in the leaf or per unit
nitrogen per unit area of the leaf.

Prescribed fire in this ecosystem had a short-term effect on
leaf-level and canopy-level stomatal responses (Figure 2, Table 2).
Leaf-level stomatal responses remained unchanged in relation to
the coupled control site for P. rigida, directly following the fire
(Figure 2). Comparing the pine site with the upland oak/pine
site, increased water use by overstory pines was observed, while
at the oak/pine site, the fire decreased stomatal conductance
the summer after the fire. Therefore, there could be differing
effects depending on stand type with the pine-dominated stand
being positively affected by fire and the oak-dominated site being
negatively affected. For example, pre-fire canopy stomatal con-
ductance (Gc) at the pine fire site was significantly higher than
the control site (P = 0.01). However, following the fire, the con-
trol and fire site exhibited no statistical difference (P = 0.3). In
this forest ecosystem, prescribed fire, therefore, has little effect
on the leaf-level physiological responses of overstory pitch pines
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Table 2 | Comparison of leaf- and canopy-level stomatal conductance in an oak-pine forest that experienced a prescribed fire.

Leaf-level stomatal conductance (mol m−2 s−1) Canopy-level stomatal conductance (mol m−2 s−1)

Fire Control P-value Fire Control P-value

YEAR OF FIRE GROWING SEASON

Pinus 0.072 (0.0099) 0.11 (0.018) 0.11 0.10 (0.0023) 0.12 (0.0019) <0.001

Q. alba 0.17 (0.011) 0.28 (0.033) <0.001 N/A

Q. prinus 0.14 (0.031) 0.23 (0.013) 0.05 0.071 (0.0035) 0.11 (0.0031) <0.001

Q. velutina 0.23 (0.019) 0.41 (0.043) <0.001 0.089 (0.0034) 0.13 (0.005) <0.001

ONE YEAR POST-FIRE

Pinus 0.16 (0.019) 0.25 (0.01) 0.18 0.18 (0.028) 0.19 (0.011) 0.74

Q. alba 0.32 (0.017) 0.22 (0.017) 0.14 N/A

Q. prinus 0.21 (0.020) 0.20 (0.017) 0.75 0.10 (0.0055) 0.13 (0.0052) 0.008

Q. velutina 0.36 (0.044) 0.42 (0.023) 0.2 0.12 (0.011) 0.18 (0.018) 0.08

P < 0.05 are shown in bold.

FIGURE 2 | P. rigida canopy and leaf level stomatal responses to

prescribed fire at the 2011 fire site, Brendan T Byrne Forest, see also

Renninger et al. (2013).

(Figure 2, Table 2). While some initial trends were noticed in
discrete cases, these responses did not hold true across the two
prescribed fires sites and thus show differential responses across
different stands with different species composition. However, a
common trend that did seem to develop was a transient response
to a prescribed fire. In some cases, such as carboxylation efficiency
and maximum assimilation with respect to increase in carbon
dioxide concentration, there was an initial increase following the
fire, which subsided by the first or second summer after the fire
(Renninger et al., 2013). Another common trend was a delayed
response in which physiological differences from late winter/early
spring prescribed fires were not seen until the summer growing
season. For example, no initial increase in either photosynthetic
capacity (Vcmax) or intrinsic water use efficiency was noted in the
weeks post fire, indicating a lag of response until new needles are
produced capitalizing on release of nitrogen post-fire. However, a
large increase in these two parameters was measured by the sum-
mer growing season. These trends suggest that prescribed fires
affect stands differently depending possibly on fire intensity, fuel
loading and species composition.

DISCUSSION
The major knowledge gap to understand and thus model distur-
bance, recovery and resilience are that most terrestrial or demo-
graphic vegetation models [such as BIOME-BGC (Running and
Gower, 1991), ED2 (Medvigy et al., 2009) etc.] do not take into
account disturbances such as fire, insect defoliation, hurricane or
snow load disturbance (McCarthy et al., 2006) and their physi-
ological impacts. In addition, physiological responses in general
and parameterization thereof are ill defined in models (Rogers,
2014). Defoliation, for example, has only been implemented
through leaf area reduction, but does not take into account com-
pensatory photosynthetic responses (Medvigy et al., 2012). Since,
often, photosynthetic capacity (Rogers, 2014) or stomatal con-
ductance are ill-defined in these models [meteorological driven
models such as the Ball-Berry Model, (Ball et al., 1987; Medvigy
et al., 2013)], it is difficult to incorporate changes due to distur-
bances that have physiological effects (see Table 1) that are known
to be important (Thornton et al., 2002; Rogers, 2014). Likewise,
species compositional changes are unknown after disturbance,
and at the ecosystem level, responses may be delayed and cannot
be measured until years after a disturbance or extreme climatic
event (Boerner, 1981; Runkle, 1981, 2000; Reichstein et al., 2013).
In addition, recent reports suggest that the Southern Pine Bark
Beetle will invade the NJ Pine Barrens potentially increasing
mortality to pine species (Gillis, 2013). Therefore, future species
composition in this forest depends on a range of insect distur-
bances, which are driven by climate change making the species
dominance outcome unclear. Generally, species composition after
physical disturbance changes very little, as the forest gaps are filled
with species already present (Runkle, 1981, 1982, 1984; Frelich
and Reich, 1999). However, as biogenic disturbances are more
species specific, the dynamics are less clear (Kurz et al., 2008b;
Seidl et al., 2011a).

Measured plant compensatory responses can confound ecosys-
tem level responses to disturbances, particularly if they lead
to delayed responses (Sala et al., 2010). In addition, release
from competition can confound or enhance plant physiological
responses to disturbances (Wickman, 1980; Runkle, 1981; Runkle
and Yetter, 1987; Tilman et al., 1997; Frelich and Reich, 1999;
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Vanderklein and Reich, 1999). Plant compensatory responses
have been well documented and are similar to our findings (Reich
et al., 1993; Vanderklein and Reich, 1999; Clinton et al., 2011;
Schäfer, 2011), however the incorporation into models is still
lacking. Thus, devising strategies to manage forests are yet ham-
pered by this limitation (Seidl et al., 2011a). In addition, the
effects of disturbances are not necessarily perceived in a matter
of years but rather decades (Baker, 1941) with potentially com-
pounding effects (Stevens and Beckage, 2009; Gaylord et al., 2013;
Schäfer et al., 2013). Even if management of disturbances is imple-
mented, such as species compositional changes, the outcome may
take decades to take effect (Seidl et al., 2008, 2009).

In the case of prescribed fire (Table 2, Figure 2), the pine site
has been positively effected by the prescribed fire, because of a
thicker duff layer, surface roots and microbes may have not been
damaged (Boerner, 1981; Boerner et al., 1988). However, at the
oak/pine site, a thinner duff layer may have led to higher temper-
ature effects at the soil surface, thus potentially damaging some
of the surface roots and microbes (Varner et al., 2009). Therefore,
plant functional types play an important role in the structure and
function of these forests. However, since the responses are short-
term and transient (Clinton et al., 2011), the long-term impact on
the carbon and water cycling in these forest ecosystems are likely
to be small.

While there may be a general framework to assess tree mortal-
ity in response to drought and insects (McDowell et al., 2011),
ecosystem responses to drought and insect attack (folivory or
phloem feeding) are contingent on individual tree trade-offs,
which are themselves contingent on tree ontogeny. Barbeta et al.
(2013) found that larger trees survived a long-term drought treat-
ment better than smaller trees, presumably because as the smaller
trees died, they freed up soil moisture for the larger trees, which
may have a combination of deeper root systems and a higher
water storage capacity. However, the mortality of the smaller trees
must be the result of trade-offs between growth and ability to
respond to drought. If smaller trees have higher root to shoot
ratios (Kearsley and Whitham, 1989; Boege and Marquis, 2005),
yet are more susceptible to drought, then carbon stores and the
ability to utilize those stores must be more important for sur-
vival than drought resistance per se. On the other hand, higher
resistance to drought may result in lower maximum assimilation
and water use efficiencies (Limousin et al., 2010). Interestingly,
this may not be the case in xeric environments, such as the New
Jersey Pine Barrens in the Atlantic Coastal Plain investigated here
(Schäfer, 2011; Renninger et al., 2014b). Furthermore, larger trees
and trees growing in arid regions have larger non-structural car-
bohydrate pools (Sala et al., 2010) suggesting that they should
be less vulnerable to mortality as a result of carbon starvation.
Likewise, results from defoliation research using seedlings show
that trees may retain a minimum amount of carbon regardless
of defoliation intensity (Chapin et al., 1990; Reich et al., 1993;
Vanderklein and Reich, 1999). Thus, a distinction needs to be
made between total carbon pools and available carbon pools
(McDowell et al., 2011).

The interactions and possible trade-offs between tree
responses to insect attack and drought are unknown (Agrawal,
2007; Jactel et al., 2012), whereby carbon used for defense against

insects cannot be used for repair (i.e., of cavitation induced
by drought). Plants may also reduce their carbon demand
by reducing respiration rates and/or shedding plant parts in
response to drought (Sala et al., 2010). Functionally, shedding
plant parts should be similar to defoliation depending on what
is shed. On the other hand, a possible trade-off for increased
drought resistance could be higher susceptibility to insect attacks
(Mattson and Haack, 1987). However, as was also shown here in
an upland oak/pine forest in NJPB, Q. prinus not only withstood
drought better, but also sustained less mortality after gypsy
moth disturbance compared to Q. velutina (Schäfer, 2011). The
differences in mortality may be due to different resource use
strategies, whereby Q. velutina was shown to have higher photo-
synthetic capacity and nitrogen (N) per unit leaf area, thus was
more vulnerable to N removal through insects (Renninger et al.,
2014b). Thus, as has been shown before, different species respond
differently to drought (Schäfer, 2011; Wu et al., 2011; Renninger
et al., 2014b) and may adapt over time to it (Wu et al., 2011)
or may become more susceptible to drought over time (Hacke
et al., 2001; Anderegg et al., 2013). However, ecosystem function
depends not only on biotic or abiotic factors but also sociological
and economic factors. The New Jersey Pine Barrens are managed
forests in relatively close proximity to large, urban centers, thus
how they are managed has consequences for ecosystem processes
that can also affect carbon and water dynamics as was shown here
with regard to prescribed fires. However, adaptive management
practices may take decades to have a perceptible impact (Seidl
et al., 2009), thus a forward leaping approach is needed that
allows proper management decisions to be made since corrective
measures will be difficult (Seidl et al., 2008).

Forest management practices have to be persistent in order to
recover forest health (Seidl et al., 2008; Gormley et al., 2012), but
also need to be able to address forest mortality, and thus loss in
carbon sequestration potential (McCarthy et al., 2006). Research
will need to improve our understanding of a) species responses
to a particular disturbance, b) mechanisms leading to mortality
and c) how to include this mechanistic understanding into mod-
els that, in turn, will help to predict future changes and responses
of forests. As this study suggests, forest response to disturbance
varies from the leaf to ecosystem level as well as species level and
thus, these differential responses interplay to determine the fate
of forest structure and functioning.

CONCLUSIONS
Forest functioning will likely be altered by re-occurring droughts,
gypsy moth defoliation and windthrow of already weakened trees.
However, prescribed fire has only transient responses to the car-
bon and water balance in this ecosystem. In this forest ecosystem,
precipitation variations exerted an overriding effect on the hydro-
logical budget compared to biological changes in this forest, thus
it is likely that climate change will cause more changes to the
groundwater table and therefore water supply to regional pop-
ulations. However, changes in energy partitioning due to canopy
gaps after mortality will likely have impacts for regional climate
in forest ecosystems. Also, in a study on snags and coarse woody
debris, carbon pools that quadrupled after gypsy moth-drought
mortality suggests that, in a back of the envelope calculation, it
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will take at least 18 years before current dead wood will have
respired, making the carbon balance in this forest uncertain
(Renninger et al., 2014a). Thus, while the water balance in this
forest ecosystem seems to recover faster within this ecosystem
(Clark et al., 2012), the carbon balance has still not recovered
to pre-defoliation levels. However, prescribed fire has only tran-
sient responses to the carbon and water balance in this ecosystem.
Gaining a better understanding and developing a mechanistic
underpinning of these responses and incorporating them into
larger scale models to improve carbon and water cycle modeling is
essential (Dietze et al., 2013). Of particular importance is the abil-
ity to incorporate into models the physiological responses on the
leaf level and potential compensatory responses on the ecosystem
level or vice versa.
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