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The cell cycle is defined by a series of complex events, finely coordinated through hormonal,
developmental and environmental signals, which occur in a unidirectional manner and end
up in producing two daughter cells. Accumulating evidence reveals that chromatin is not
a static entity throughout the cell cycle. In fact, there are many changes that include
nucleosome remodeling, histone modifications, deposition and exchange, among others.
Interestingly, it is possible to correlate the occurrence of several of these chromatin-related
events with specific processes necessary for cell cycle progression, e.g., licensing of
DNA replication origins, the E2F-dependent transcriptional wave in G1, the activation of
replication origins in S-phase, the G2-specific transcription of genes required for mitosis or
the chromatin packaging occurring in mitosis.Therefore, an emerging view is that chromatin
dynamics must be considered as an intrinsic part of cell cycle regulation. In this article, we
review the main features of several key chromatin events that occur at defined times
throughout the cell cycle and discuss whether they are actually controlling the transit
through specific cell cycle stages.
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INTRODUCTION
The cell division cycle is normally divided into phases with a
defined temporal order. These are G1, the first phase entered
upon completion of cytokinesis where cells commit for a new
cell division and prepare for genome duplication, S-phase where
chromosome replication occurs, G2, a time for checking genome
integrity and preparing for chromosome segregation, and mito-
sis (M), including cytokinesis, where both the replicated genome
and the rest of cytoplasmic components are divided into the
two newborn cells. This relatively simplistic view is actually
the result of an extraordinarily complex and regulated series
of events that lead to the characteristic unidirectionality of cell
cycle progression (Gutierrez, 2009). In fact, the many different
processes required for successful completion of the cell division
cycle are highly coordinated. In the case of plants, with a typi-
cal postembryonic and continuous organogenesis, development
relies mainly on cell proliferation and endoreplication, hence the
cell division potential is developmentally regulated (Gutierrez,
2005).

The two major transitions in cell cycle are the G1/S and
G2/M that initiate the genome duplication and segregation phases,
respectively. Both of them involve dramatic changes at the chro-
matin level that were thought to occur in a passive manner as a
consequence of cell cycle progression but recent data indicate that
they also determine the efficiency of cell cycle transitions. Con-
trary to the apparently repeated and monotonous organization of

eukaryotic chromatin as a string of nucleosomes, it is a highly
dynamic entity. In addition to differences in histone composi-
tion of each nucleosome unit due to the presence of variants
of the canonical histones H2A, H2B, H3, and H4, a large num-
ber of residues, particularly at the N-terminal tail of histone H3
can be modified by acetylation, methylation, phosphorylation,
ubiquitynation, and citrullination, among others (Kouzarides,
2007). This produces a high combinatorial complexity that,
we are learning, is at the basis of chromatin processes such
as replication, transcription, recombination, repair, splicing,
silencing, chromosome organization, etc. Moreover, nucleosomes
can be displaced and rearranged by chromatin remodeling com-
plexes, therefore modifying their position relative to genomic
features, e.g., transcriptional start sites, promoters, replication
origins, etc.

All these chromatin modifications have direct consequences on
the local accessibility of certain DNA regions by cellular factors,
e.g., transcription factors (TFs). Thus, histone composition of
nucleosomes, their precise location relative to gene features, as well
as histone and DNA modifications can have a profound effect on
transcriptional patterns (Nelissen et al., 2007; Probst et al., 2009;
Ingouff and Berger, 2010; Law and Jacobsen, 2010; Otero et al.,
2014). In fact, many of them occur in a cell cycle-dependent
manner. An attractive hypothesis is that some histone modifica-
tions actually drive certain stages of cell cycle (Sanchez et al., 2008;
Gondor and Ohlsson, 2009; Liu et al., 2010; Tardat et al., 2010).
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This connects directly to another feature associated with cell cycle
progression, transcriptional control of many genes. At a higher
level of complexity, genome organization within the 3D organi-
zation of the nucleus appears to be of primary relevance. Thus,
eukaryotic genomes, including plant genomes, are packed and
organized in a non-random manner within the nucleus, in such a
way that individual loci occupy specific sites in the nucleus (Paul
and Ferl, 1998). Furthermore, the physical proximity of genes that
can be far away in the linear scale of the chromosome creates chro-
matin microenvironments that allow or facilitate novel regulatory
combinations, increasing the plasticity of cellular response and
adaptability (Cao et al., 2014). Genome wide approaches to deter-
mine the spatial contacts of individual loci have recently applied in
plants (Grob et al., 2013). It would be extremely exciting to deci-
pher how such contacts influence cell cycle regulation, an aspect
that so far has been unexplored.

Therefore, the interface between cell cycle and exit to differ-
entiation, with or without endoreplication events (De Veylder
et al., 2007; Edgar et al., 2014), and chromatin dynamics can

be summarized in the following processes: cell cycle-dependent
transcriptional waves, genome duplication, and genome com-
paction and segregation (Figure 1). Thus, in this review we
will focus on the accessibility of TFs to their targets and how
chromatin modification enzymes and histone chaperones may
affect transcriptional control during the cell cycle. Also, we
will discuss aspects of genome duplication with an epigenetic
perspective, that is, the role of chromatin status and modi-
fications on replication factor binding, specification of repli-
cation origins, regulation of replication timing, prevention of
re-replication, and the role of DNA replication factors in gene
silencing.

CHROMATIN LICENSING (EARLY G1)
One of the earliest events in the cell cycle is chromatin licensing,
which is the process that allows various proteins and complexes to
get access to chromatin. These include primarily DNA replication
factors and chromatin modification proteins related to cell fate
decisions.

FIGURE 1 | Schematic view of chromatin processes intimately

coordinated with cell cycle progression. Changes in chromatin
accessibility, which in many cases depend on histone modifi-
cations, histone exchange, and nucleosome reorganization, and

transcriptional waves are depicted. Histone modifications are
color-coded according to the cell cycle phase. Arrows in front
of histone modifications denote changes associated with the
corresponding cell cycle stage.

Frontiers in Plant Science | Plant Genetics and Genomics July 2014 | Volume 5 | Article 369 | 2

http://www.frontiersin.org/Plant_Genetics_and_Genomics/
http://www.frontiersin.org/Plant_Genetics_and_Genomics/archive


Desvoyes et al. Chromatin and the cell cycle

Genome replication in eukaryotes requires the activation of
thousands of replication origins, which are the genomic locations
where initiation complexes bind to DNA and initiate DNA repli-
cation. This is a primary regulatory stage and the first event, that
already started shortly after the two newly formed nuclei separate
in late telophase, is the association of the pre-replication com-
plex (pre-RC) at each of all potential replication origins. This is
known as licensing and relies on a local increase of chromatin
accessibility at potential origins (Sanchez et al., 2012; MacAlpine
and Almouzni, 2013). Once formed, licensed origins contain the
heterohexameric ORC, CDC6, CDT1, and the heterohexameric
MCM2-7 complex. However, pre-RCs are not formed at ran-
dom locations but rather there are sites that show a preference
for pre-RC assembly (Karnani et al., 2010; MacAlpine et al., 2010;
Costas et al., 2011a). The mechanism of origin specification is
far from being understood (Mechali, 2010; Costas et al., 2011b;
Sanchez et al., 2012; MacAlpine and Almouzni, 2013; Mojardin
et al., 2013). In fact, purified mammalian ORC binds DNA in vitro
with no sequence specificity (Vashee et al., 2001; Remus et al.,
2004; On et al., 2014). This suggests that in higher eukaryotes,
both animals and plants, the local chromatin environment is
a primary determinant of pre-RC formation. More specifically,
loading of the replicative helicase MCM in G1 in human cells
seems to be affected by Hbo1, a histone acetylase that interacts
and acetylates Orc2, Cdc6, and Mcm2 in vitro (Iizuka and Still-
man, 1999; Burke et al., 2001; Iizuka et al., 2006; Miotto and Struhl,
2010). Arabidopsis contains two Hbo1 homologs, the HAM1
and HAM2 acetylases of the MYST family that may play a sim-
ilar role in specifying pre-RC binding sites and/or stabilizing the
complex.

Due to the developmental strategy and body organization of
plants, organogenesis and cell differentiation, including cell fate
decisions in response to developmental cues, must be highly
coordinated with cell proliferation and growth (Fletcher, 2002;
Gutierrez, 2005; DeVeylder et al., 2007; Scheres, 2007). The pre-RC
component CDT1 takes relevance here since in Arabidopsis it seems
to be a multifunctional factor. It stimulates endoreplication in cells
genetically programmed to undergo differentiation-associated
endocycles and cell division in cells with certain stem cell potential
(Castellano et al., 2004). In addition, it is also known to increase
the expression of GL2 (GLABRA2; Caro et al., 2007), a homeobox
gene crucial for cell fate specification of atrichoblasts in the root
epidermis (Schiefelbein et al., 2014). Chromatin at the GL2 locus
changes in a cell cycle-dependent manner. Thus, fluorescence in
situ hybridization (FISH) experiments have demonstrated that a
positive FISH signal is detected as early as in anaphase in epider-
mal cells at the GL2 locus and it is soon afterward in early G1
that epidermal cell fate is decided (Costa and Shaw, 2006): chro-
matin remains highly accessible in atrichoblasts and consequently
GL2 is expressed while it becomes much less accessible in tri-
choblasts where GL2 expression is shut off. Therefore, the activity
of a pre-RC component, e.g., CDT1, in DNA chromatin licensing
appears to coincide in time with cell fate decisions. Although pre-
liminary data suggest that changes in H3 acetylation and H3K9
tri- and dimethylation occur in a cell cycle dependent manner at
the GL2 locus (Caro et al., 2007), further experiments are needed
to determine in detail the changes in chromatin accessibility and

histone modifications associated with the process of cell fate deci-
sion in the case of root epidermal cells as well as in other cellular
settings.

THE G1 TRANSCRIPTIONAL WAVE (MID G1)
E2F-DEPENDENT TRANSCRIPTION OF CHROMATIN GENES
A characteristic feature of plant cells is that transcriptional con-
trol is of primary relevance in regulating the availability of
cell cycle proteins and, in general terms, of proteins that are
required in a cyclic manner during the cell cycle. Typically,
the G1 transcriptional wave depends on the activity of the
Rb/E2F module (Gutierrez et al., 2002; Berckmans and De Veylder,
2009), which in Arabidopsis consists of the RETINOBLASTOMA-
RELATED (RBR) protein and various RBR-interacting E2F pro-
teins, the so-called typical E2F (A, B, and C; Ramirez-Parra
et al., 2007; Desvoyes et al., 2014; Kuwabara and Gruissem,
2014; Figure 1). The burst in E2F-mediated gene expression
occurs only after the repressive action of RBR is abolished by
phosphorylation of several residues in this protein that pro-
vokes its release from E2F complexes at the target promoters.
Genome-wide data are now available from asynchronous and
synchronous cell cultures that constitute a valuable resource to
study E2F target genes expression (Menges et al., 2002, 2003,
2005; Ramirez-Parra et al., 2003; Vandepoele et al., 2005; Naouar
et al., 2009). The presence of RBR favors the recruitment of
various chromatin modification enzymes, such as histone deacety-
lases (HDAC), histone methyltransferases (HMTases), and DNA
methyltransferases (Dnmt; Zhang and Dean, 2001; Macaluso et al.,
2006).

In mammalian cells, expression of E2F target genes corre-
lates with an increase in certain histone modifications such as
H3K4me3 and H3ac (Takahashi et al., 2000; Taubert et al., 2004).
Also, some of the chromatin modification enzymes associated
with the G1 progression are themselves E2F targets or cell cycle
regulated by other factors, thus acting as a positive regulatory
loop. Among these, the MET1 (Vlieghe et al., 2003) and CMT3
Dnmt are examples of E2F-mediated gene expression, which are
required at a later stage in the cell cycle since MET1 acts in
coordination with DNA replication and CMT3 is a maintenance
methylase. MET1 expression is up-regulated in plants overex-
pressing E2Fa (Vlieghe et al., 2003) and repressed by RBR in
cooperation with MSI1, clearly demonstrated in the female game-
tophyte central cell where it is required for proper heterochromatin
maintenance (Johnston et al., 2008; Jullien et al., 2008). Regarding
CMT3, data available from synchronized cells show an increase
of expression coinciding with the G1/S transition (Menges et al.,
2003). However, it is worth noting that CMT3 may have a role
later in the cell cycle since its mRNA accumulation is maximal
in late G2 (Sanchez et al., 2008), although expression of the de
novo Dnmt DRM2 is not cell cycle regulated (Law and Jacobsen,
2010).

Other genes that are up-regulated in G1, and in a large propor-
tion through the RBR/E2F pathway, are those encoding proteins
required for genome duplication in S-phase such as all CDC6,
CDT1, MCM3 and all pre-RC factors, except ORC5 (Castellano
et al., 2001, 2004; Stevens et al., 2002; Diaz-Trivino et al., 2005),
the large subunit of chromatin assembly factor CAF-1, FAS1, that
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deposits histone H3.1–H4 dimers in a DNA replication-dependent
manner (Ramirez-Parra and Gutierrez, 2007a), and the ASF1 H3
chaperone (Lario et al., 2013).

A remarkable observation in regard to TF availability is that
binding sites for various TF frequently colocalize with transpos-
able elements (TE). In animal cells this is the case for OCT4 and
NANOG, Sox2, c-Myc, and CTCF, among others (Bourque et al.,
2008; Kunarso et al., 2010; Lynch et al., 2011; Schmidt et al., 2012;
Jacques et al., 2013) and recently for E2F in several Brassicaceae,
including Arabidopsis (Henaff et al., 2014). Thus, up to 85% of
the sequences that fit the E2F consensus sequence in Arabidopsis
are amplified in TEs and ChIP experiments show that they bind
E2Fa in vivo, indicating that the overall availability of E2F can
be affected by E2F binding to TEs. These data suggest that TEs
located in the proximity of gene promoters may directly partic-
ipate in their expression level and those in other locations affect
the effective nuclear concentration of E2F and its transcriptional
network (Henaff et al., 2014).

HISTONE MODIFICATIONS AND NUCLEOSOME REMODELING IN G1
Histone acetylation must be also properly coordinated with the
G1 transcriptional wave. Accordingly, several histone acetylases
(collectively named HATs) are cell cycle regulated and exhibit a
burst of expression in mid G1 (Sanchez et al., 2008). This step
is normally associated with an increase in histone deacetylation
carried out by HDACs. Given the similarity between mammalian
and plant RB proteins, it is likely that the RB-HDAC interaction
that occurs in mammalian cells (Brehm et al., 1998; Magnaghi-
Jaulin et al., 1998) by binding to E2F target promoters (Lai et al.,
1999; Ferreira et al., 2001) also takes place in plants. RBR phos-
phorylation may abolish interaction with HDACs, favoring HAT
activity that relieves gene repression (Rayman et al., 2002). Such
balance has been demonstrated in several plant species (Ach et al.,
1997; Nicolas et al., 2001; Rossi and Varotto, 2002; Rossi et al.,
2003).

Nucleosome remodeling carried out by SWI/SNF complexes
that change the location of nucleosomes relative to genomic
elements, e.g., promoters, also affects gene expression of the
G2 transcriptional wave. In mammalian cells, Brm and Brg1,
members of the SWI/SNF family, interact with RB and con-
trol the timely expression of cyclin A and E before initiation
of S-phase (Dunaief et al., 1994; Zhang et al., 2000). Although
Arabidopsis contains several SWI/SNF complexes, an interac-
tion between RBR and BRM has not been demonstrated. Since
BRM is highly expressed in dividing cells (Farrona et al., 2004;
Knizewski et al., 2008; Efroni et al., 2013), it is tempting to spec-
ulate that SWI/SNF complexes may affect the G1 transcriptional
wave, perhaps through RBR interaction.

GENOME REPLICATION EVENTS AND CHROMATIN
MODIFICATIONS (S)
IS SPECIFICATION OF REPLICATION ORIGIN UNDER EPIGENETIC
CONTROL?
Initiation of genome replication marks the beginning of S-phase
that lasts until the entire genome is duplicated. There are sev-
eral processes required for proper initiation and completion of
genome replication that, interestingly, have revealed an intimate

relationship with chromatin-related events. These include pri-
marily chromatin accessibility and likely nucleosome remodeling,
changes in specific histone modifications, and the participation
of histone chaperones. The function of these factors is crucial for
replication timing, origin specification and activity, and the re-
replication control that restricts initiation at replication origins to
once and only once per cell cycle. This is not surprising since not
only the DNA has to be replicated during S-phase but also chro-
matin, quite importantly all the DNA and histone modifications
that are present before replication (Costas et al., 2011b; MacAlpine
and Almouzni, 2013).

A relatively small proportion of all origins marked with bound
pre-RC are actually activated at the G1/S transition. The fea-
tures that determine origin activation are not known although
it seems clear that a local chromatin landscape, in addition to
DNA sequence characteristics, are involved (Costas et al., 2011b;
Sanchez et al., 2012; Mechali et al., 2013). A genome-wide map
of origins (the “originome”) is now available for Arabidopsis cul-
tured cells (Costas et al., 2011a). This dataset revealed a negative
correlation between origins and CG methylation as well as a
positive correlation with histone modifications frequently asso-
ciated with active genes, such as H3K4me2, H3K4me3, H3ac, and
H4ac, coinciding with data obtained in animal cells (Cadoret et al.,
2008; Sequeira-Mendes et al., 2009; Karnani et al., 2010). They
also tend to be located in genomic places enriched for nucleo-
somes and the histone H2A.Z variant. This genome-wide data
is fully consistent with previous results from immunofluores-
cence analysis. Thus, progression through S-phase is associated
with an increase in H3K18ac, H4K5ac, H4K8ac, H4K12ac, and
H4K16ac in various plant species (Jasencakova et al., 2001, 2003;
Mayr et al., 2003). This appears to be a general feature since
it has been found also in animal species, including Xenopus,
Drosophila, and human cells (Danis et al., 2004; Hartl et al., 2007;
Schwaiger et al., 2009). One of these marks is enriched in active
origins (Costas et al., 2011a) and in early replicating chromatin
regions of Arabidopsis chromosome 4 (Lee et al., 2010; see also
below).

It seems clear that origins tend to be associated with genomic
regions enriched for histone modifications and variants present in
active genes. However, it is worth noting that also large genomic
regions with a low or fully repressed nature are replicated in
S-phase and therefore must contain origins, perhaps with a dis-
tinct signature. In an effort to define chromatin domains that
can be characterized by specific epigenetic landscape we have
recently identified 9 major chromatin states in the Arabidop-
sis genome based on different combinations of 16 chromatin
features including DNA sequence elements, CG methylation, his-
tone variants, and histone modifications (Sequeira-Mendes et al.,
2014). These studies have also revealed the topographical rela-
tionship between different states, which are not randomly placed
next to each other but instead they follow a pattern of rel-
atively few chromatin motifs. This information is of primary
relevance for future studies aimed at defining chromatin sig-
natures that are associated with replication origins and other
regulatory elements in the genome. In any case, the major
challenge ahead is to determine whether the various histone mod-
ifications are a cause of replication activity or if they actually
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determine origin activation. The use of various genetic and
genomic tools available for Arabidopsis should be instrumental
for this purpose.

H3K56 ACETYLATION AND REPLICATION TIMING
Not all origins fire at once at the beginning of S-phase. There is
a strict control of the time of origin activation, whereby some
genome regions replicate early while others replicate late. As in
most systems studied, two waves of genome have been observed in
Arabidopsis, the early and late waves where euchromatin and hete-
rochroatin, respectively, are replicated (Lee et al., 2010). However,
the mechanism controlling timing is not understood. Although
various mechanisms have been proposed to control replication
timing, including a stochastic model (Bechhoefer and Rhind,
2012), a plausible mechanism that cooperates with random timing
control is the association with certain chromatin features. Sup-
porting this view, H3K56ac is frequently associated with early
replication in Arabidopsis (Lee et al., 2010), as it is the case in
animal cells (Kaplan et al., 2008; Gondor and Ohlsson, 2009).
Whether the presence of H3K56ac is determinant of early replica-
tion is not known since the replication pattern of cells lacking this
histone modification has not been studied. However, it is worth
noting that heterochromatin, which replicates late in S-phase, does
not contain detectable amounts of this mark.

HISTONE MODIFICATIONS CONTROL THE RE-REPLICATION
AVOIDANCE MECHANISM
When a given origin initiates replication multiple times within
the same S-phase, genomic regions around that origin become
re-replicated, a cause of chromosomal aberrations in mitosis
(Arias and Walter, 2007; Drury and Diffley, 2009; Costas et al.,
2011b). Several mechanisms have evolved in eukaryotic cells to
prevent the deleterious consequences of re-replication, includ-
ing selective proteolysis of pre-RC components, changes in their
subcellular localization, and inhibitors of pre-RC (Saha et al.,
2006; Drury and Diffley, 2009; Havens and Walter, 2009; Ding
and MacAlpine, 2010; Miotto and Struhl, 2010; Wong et al.,
2010). In addition, novel mechanisms involving the presence
of certain histone modifications at origins have been identi-
fied. In animal cells, pre-RC assembly at origins depends on
the presence of H4K20me1, which levels are cell cycle regulated
and very low in S-phase (Yang and Mizzen, 2009; Tardat et al.,
2010). The amount of H4K20me1 depends on the coordinated
action of the Set7 methylase and the PHF8 demethylase: Set7
is absent in S-phase because after origin firing it is degraded by
a PCNA- and Cul4-Ddb1-dependent process in the proteasome
(Oda et al., 2009; Liu et al., 2010; Tardat et al., 2010). The pres-
ence of any form of H4K20 methylation has been questioned in
Arabidopsis (Zhang et al., 2007), although immunofluorescence
results indicate that H4K20me1 is associated with chromocen-
ters whereas H4K20me3 with euchromatin (Fuchs et al., 2006;
Sanchez et al., 2008; Desvoyes et al., 2010), pointing to a poten-
tial role of H4K20me3 in origin function. Less speculative is
the role of H3K27me1 in controlling re-replication in Ara-
bidopsis heterochromatin. This has been demonstrated using
mutant plants lacking the ATXR5 and ATXR6 genes encoding
the Trithorax-related H3K27 monomethyltransferases that exhibit

abnormal re-replication control of the heterochromatin domains
(Jacob et al., 2009, 2010). Furthermore, decreased methylation
of cytosines suppresses the phenotype of the double atxr5, atxr6
mutant (Stroud et al., 2012a). In this context, the enrichment of
H3.1 variant in heterochromatin is a crucial part of the mech-
anism since H3.1 methylation by ATXR5 is selective due to a
sterical hindrance in ATXR5 by the presence of a threonine residue
at position 31 in H3.3 (instead of alanine in H3.1; Jacob et al.,
2014). Interestingly, the defects in heterochromatin condensa-
tion of the atxr5, atxr6 mutant are enhanced by overexpression of
KRP5, a CDK inhibitor that plays a role in endoreplication control
and cell elongation (Jegu et al., 2013), suggesting a link between
heterochromatin status and endocycle control (Edgar et al., 2014).

HISTONE DYNAMICS DURING GENOME REPLICATION
Genome replication is intimately coordinated with chromatin
duplication, a process that needs continuous deposition of histone
octamers on the newly synthesized DNA. This step is catalyzed by
histone chaperones such as NAP1 (and NAP1-related protein),
which transfers H2A-H2B dimers (Galichet and Gruissem, 2006;
Zhu et al., 2006), ASF1 that loads H3-H4 dimers onto HIRA and
CAF-1 (Zhu et al., 2011), and CAF-1 that brings H3.1–H4 dimers
(Polo and Almouzni, 2006; Das et al., 2010). In the latter case,
it is important to note that CAF-1 is evolutionarily conserved
(Ramirez-Parra and Gutierrez, 2007b). This implies that an active
exchange of H3.1 for H3.3 must be carried out by the specific
exchange HIRA chaperone in the genome locations where it is
required (Tagami et al., 2004). This is important because H3.1
and H3.3 are preferentially enriched in repressed and active chro-
matin, respectively, both in animal and plant cells (Stroud et al.,
2012b; Wollmann et al., 2012). In addition, proper incorpora-
tion of H3.1 and its maintenance is crucial for heterochromatin
silencing (Kirik et al., 2006; Schonrock et al., 2006; Stroud et al.,
2012a; Jacob et al., 2014). Correct CAF-1 activity is also required
during male gametogenesis in Arabidopsis (Chen et al., 2008b).
Although plants are more tolerant to defects in CAF-1 function
than mammals, alteration in the H3.1/H3.3 balance seems to
be highly deleterious for plant development, as revealed by the
pleiotropic phenotype of fas1, fas2, and msi1 mutants, encoding
each of the three CAF-1 subunits (Kaya et al., 2001; Hennig et al.,
2003; Ramirez-Parra and Gutierrez, 2007a). Thus, fas1 mutants
show increased homologous recombination, limited TE silenc-
ing, telomere shortening, and loss of 45S rDNA repeats (Endo
et al., 2006; Kirik et al., 2006; Ono et al., 2006; Schonrock et al.,
2006; Mozgova et al., 2010; Jaske et al., 2013). Likewise, asf1a,
b double mutants exhibit a S-phase delay and up-regulation of
checkpoint genes, such as ATM, ATR, and PARP1 (Zhu et al., 2011).
Together, these data indicate that the location of H3.1 across the
genome is finely controlled and very important for growth and
development.

A major issue that needs to be taken into consideration is that
chromatin is disassembled while replication proceeds and then
reassembled past each replication fork during the entire S-phase.
This requires the restoring of post-translational modifications in
the newly formed chromatin in order to maintain the epigenetic
states (Probst et al., 2009). For example, most of newly synthe-
sized and deposited H4 contain H4K5ac and H4K12ac (Sobel
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et al., 1995; Loyola et al., 2006), frequently associated with active
chromatin, but clearly these marks are not maintained in the
entire set of H4 molecules in replicated chromatin. It has been
speculated that these modifications serve to mark the location
of newly formed chromatin for further processing (MacAlpine
and Almouzni, 2013). Another histone mark that is characteris-
tic of newly synthesized histones is the acetylation of lysine 56 in
the core domain of H3 (H3K56ac). In yeast, these new histones
are incorporated during S phase, together with the maternal his-
tones that are transferred to the new daughter DNA strands. The
H3K56ac mark is then erased during G2/M by Hst3 and Hst4
HDACs (Celic et al., 2006; Maas et al., 2006). This modification
has been associated with DNA replication-coupled nucleosome
assembly in several eukaryotes (Han et al., 2007; Kaplan et al.,
2008; Li et al., 2008) and also with DNA damage response and
chromatin assembly following DNA repair (Masumoto et al., 2005;
Chen et al., 2008a). As already mentioned, in Arabidopsis, H3K56ac
levels strongly correlate with early replicating regions (Lee et al.,
2010), suggesting an association with nascent DNA behind the
replication forks. Likewise, newly deposited H3 is very poor in
lysine methylation in mammalian cells (and likely also in other
systems), again a situation that needs to be modified past the repli-
cation fork to restore the local H3 methylation pattern. A genomic
region where these changes are particularly evident is heterochro-
matin, on which the normal low levels of H3ac and H4ac and
high levels of H3 methylation and CG methylation need to be
restored quickly after fork progression (MacAlpine and Almouzni,
2013).

THE G2 TRANSCRIPTIONAL WAVE
The G2 phase has been traditionally considered a period of time
where the cell with a duplicated genome (and other cellular com-
ponents) prepares for mitosis. This relatively passive view is far
from what actually occurs during G2 since various complex and
crucial processes are actively regulated, including some chromatin-
related events. Thus, G2 progression requires several specific
events such as a new transcriptional wave to generate the gene
products required mainly in mitosis, histone modifications nec-
essary to mark G2/M targets, the triggering of the DNA damage
checkpoint, and the deposition of the centromere-specific histone
CENH3.

Microarray data of synchronized Arabidopsis cultured cells
demonstrated that during G2 a characteristic and well-defined
transcriptional wave occurs (Menges et al., 2005). Genes with a
G2-specific expression have been identified to contain in their
regulatory regions the so-called M specific activator (MSA) DNA
binding motifs (Ito et al., 1998), such as several CYCB1 genes,
required for G2 progression, and KNOLLE (Haga et al., 2007;
Berckmans and De Veylder, 2009), required for cell plate for-
mation. In addition, it has been demonstrated that the hub1-1
mutants show a longer G2 and a characteristic mis-expression
of G2 marker genes (Fleury et al., 2007), such as various CYCA,
CYCB, and CDKB genes. Interestingly, the HUB1 gene encodes
for a RING E3 ligase that mono-ubiquitinates H2B at residue
K143 in plants (K123 in yeast and K120 in vertebrates). This
function is similar to that of the yeast homolog of HUB1,
which is a requisite to increase H3K4me3 (and concomitantly

H3K36me3 and H3K79me3) in G2 expressed target genes (Xiao
et al., 2005; Zhu et al., 2005). In addition, H2Bub is required
for other cellular functions some of them with a likely relation-
ship with cell proliferation, e.g., the balance between vegetative
and reproductive development (Lolas et al., 2010), the circa-
dian clock (Himanen et al., 2012), and photomorphogenesis
(Bourbousse et al., 2012). In other cases such as in the regu-
lation of flowering through FLC expression (Cao et al., 2008;
Gu et al., 2009) or the plant immunity (Dhawan et al., 2009;
Zou et al., 2014), a connection with cell proliferation is less
evident.

Centromeres contain an atypical histone H3 both in sequence
and size, called CENH3 in plants and CENP-A in animals which
is a H3 variant quite different from other H3 proteins, such as
the canonical H3.1 and the H3.3 variant (Muller and Almouzni,
2014; Otero et al., 2014). CENH3 is present in different plant
species (Nagaki et al., 2012) and in the case of Arabidopsis it
is encoded by the HTR12 gene (Talbert et al., 2002), which
is an E2F target gene with a peak of expression in mid-late
G2 (Heckmann et al., 2011). In animal cells CENH3 deposition
depends on the HJURP chaperone and it largely occurs in G1,
where HJURP-CENH3-H4 complexes are active (reviewed in
Muller and Almouzni, 2014). The timing of CENH3 incorpo-
ration in plants seems conserved in dicot and monocot plants
(Nagaki and Murata, 2005; Lermontova et al., 2007) but it differs
considerably from animal cells. Experiments using fluorescently
tagged CENH3 have demonstrated that in Arabidopsis deposi-
tion occurs in late G2 and it does not depend on the centromeric
DNA repeats (Heun et al., 2006; Mendiburo et al., 2011; Teo et al.,
2013). While a HJURP homologue has not been identified in
plants, other members of the pathway, such as Mis18 binding
protein 1 (De Rop et al., 2012), have been recently identified in
Arabidopsis as the KINETOCHORE NULL 2 (KNL2) gene prod-
uct (Lermontova et al., 2013). Interestingly, KNL2 is also an E2F
target expressed in G2 (Lermontova et al., 2013), reinforcing the
importance of E2F-dependent transcriptional waves both in G1
and G2.

MITOSIS
Mitosis marks the phase where newly formed chromosomes are
segregated to the daughter cells. From the chromatin perspective,
enormous changes are required for correct chromatin compaction,
a process that is necessary to convert the relaxed and expanded
genetic material present in interphase in compact chromoso-
mal units that can be managed for segregation during mitosis.
The N-terminal tail of H3 is the location where, at least, four
major phosphorylations occur: H3T3ph, H3S10ph, H3T11ph,
and H3S28ph. This set of phosphorylation events is largely con-
served in animals and plants, although the pattern in meiosis
differs (Manzanero et al., 2000; Houben et al., 2007; Rossetto et al.,
2012). H3 phosphorylation at threonine (T) residues appears to
be specific for mitotic compaction whereas phosphorylation at
serine (S) residues also occurs in meiosis (Houben et al., 1999,
2005; Kaszas and Cande, 2000; Manzanero et al., 2000). H3T11ph,
which in animal cells is predominant in centromeric regions, is
present along the chromosomes in plants (Houben et al., 2007).
Phosphorylation is not exclusive of canonical H3 since it is also
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detectable in CENH3 where it serves to demarcate the boundaries
of pericentromeric chromatin (Zhang et al., 2005). In human cells,
H3 phosphorylation is associated with chromatin compaction in
mitosis and is accompanied by a generalized shut-down of tran-
scription and a decrease in histone acetylation, not only at residues
H3K18 and H3K23 but also in H4 (residues K5, K8, K12, and K16;
Bonenfant et al., 2007). Detailed studies in this direction are not
available in plants.

A plethora of kinases present in human cells are known to use
all histones as substrates, e.g., more than 15 kinases phosphory-
late different residues of H3 (Rossetto et al., 2012). Among them
some are present in plant cells and it is conceivable that they play
a similar role, the Aurora kinases being major players in histone
H3 phosphorylation. Arabidopsis contains three AUR genes that
have a characteristic expression pattern depending on the kinase
(Demidov et al., 2005; Kawabe et al., 2005). The α-type AUR1 and
AUR2 accumulate in the nuclear membrane in interphase and in
the mitotic spindle during mitosis whereas the β-type AUR3 is
uniformly associated with chromatin in anaphase (Kawabe et al.,
2005). This pattern coincides with the level of H3S10ph in mitosis
(Demidov et al., 2005; Kawabe et al., 2005). Similar conclusions
are derived from studies in tobacco cells (Kurihara et al., 2006).
In vitro experiments have served to determine that AUR1 specifi-
cally phosphorylates histone H3 at S10 but neither at S28 nor at T3
and T11. The latter two phosphorylation sites are the substrate of
Haspin, another mitotic kinase required for the accumulation of
AUR3 at centromeres in metaphase (Kurihara et al., 2011). Inter-
estingly, AUR1 activity on H3S10 is facilitated by H3K9ac and
inhibited by H3K14ac, while H3S10ph interferes with H3K9me2,
revealing a complex crosstalk between different H3 modifications
(Demidov et al., 2009). At the organismal level, AUR1 and AUR2
activities play a role in formative cell divisions during organo-
genesis as revealed by the severe phenotype of aur1 and aur2
mutants related with positioning the cell plate (Van Damme et al.,
2011) and establishing the primary root meristem (Petrovska et al.,
2012).

CHROMATIN DYNAMICS DURING THE MEIOTIC CELL CYCLE
Meiosis is a complex process, highly conserved in eukaryotes and
crucial for sexual reproduction since it ends up with the produc-
tion of gametes. In this highly specialized cell cycle, two successive
events of chromosome segregation occur in the absence of any
intervening genome replication, thereby leading to the reduc-
tion in the ploidy level and the production of haploid gametes.
The prophase of the first meiotic division, a long, structurally
and functionally complex stage, is when recombination events
take place. The location of meiotic crossovers (CO) hot spots
is epigenetically determined. They are enriched in marks asso-
ciated with open chromatin, such as H2AZ and H3K4me3, and
present low level of DNA methylation (Choi et al., 2013). More-
over, met1 mutant, present an anormal increase of CO in the
pericentromeric regions (Yelina et al., 2012). Less considered, it is
the interphase period prior to entering meiosis, where a S-phase,
originally identified in Liliaceae (Taylor and McMaster, 1954),
occurs and that in Arabidopsis has been shown to be longer than
in the mitotic cell cycle and with the eu-and heterochromatin
uncoupled (She et al., 2013). In A. thaliana, the entire meiosis,

spanning from the premeiotic S-phase to tetrad production, takes
∼36 h (Armstrong and Jones, 2003). During this period changes
at the chromatin level occur, both in terms of chromosome con-
densation and histone modifications, which have been primarily
revealed by immunofluorescence microscopy (reviewed in She and
Baroux, 2014).

Given the significant condensation and decondensation events
characteristic of meiosis, it is not surprising that the histone
H3S10ph shows a cyclic labeling pattern in meiotic chromatin.
Thus, H3S10ph-positive chromatin is first detectable in diplotene
and chromosomes remain strongly and uniformly labeled until
anaphase I is finished. Then the labeling disappears until initia-
tion of the second meiotic division, when the H3S10ph signal again
becomes apparent (Oliver et al., 2013). A largely similar pattern is
also observed in various cereal species (Manzanero et al., 2000).
Other histone modifications associated with active chromatin
(H3K9K14ac, H3K4me2/me3), heterochromatin (H3K9me2),
and Polycomb chromatin (H3K27me3) do not exhibit very signif-
icant changes in pollen mother cells (Oliver et al., 2013). However,
the situation is different in megaspore mother cells where repro-
gramming involves depletion of H1 linker histones and changes
in histone variants and post-translational modifications (see She
and Baroux, 2014; for a detailed discussion). It is worth not-
ing that H3K9K14ac appears rather constantly through different
meiotic stages in spite of that histone deacetylation has been asso-
ciated with chromosomal packaging (Xu et al., 2009). The only
differences observed between dicotyledonous and monocotyle-
donous plants are derived from the distinct chromosomal location
of certain chromatin regions, e.g., H3K9me2 and repetitive
sequences.

CONCLUDING REMARKS
The relevance of chromatin for cell cycle regulation has been high-
lighted based on accumulating evidence that significant chromatin
modifications are associated with cell cycle events (Sanchez et al.,
2008). A major question is whether these modifications trigger
specific cell cycle events or are required for specific cell cycle
transitions. There are a few examples, reviewed in this article,
supporting the idea that this seems to be the case. The current
available information points to the existence of, at least, sev-
eral cell cycle events intimately linked to and/or dependent on
specific chromatin changes such as, replication origin licensing,
G1-specific gene expression, replication origin specification and
activation, chromatin replication, centromere maturation, G2-
specific gene expression, and chromatin compaction. However,
the number of cell cycle processes with a direct relationship with
DNA and chromatin dynamics is increasing as new lines of evi-
dence emerge. The better knowledge that is being acquired on
the enzymatic activities that modify chromatin will be crucial
in the near future to delineate the mechanisms of chromatin-
mediated cell cycle progression. Thus, analysis of cell cycle kinetics
under conditions where chromatin functions are impaired should
illuminate the field. In this context, research in plant systems
should contribute very positively to the advancement in the
chromatin basis of cell cycle control since a large amount of
mutants are available with known defects in chromatin-related
enzymatic activities. Furthermore, given the significant growth
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plasticity of plants bearing mutations in key genes, it would
be possible to analyze cell cycle regulation during organogene-
sis, an aspect that is far more complex to approach in animal
models.
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