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Rust fungi include many species that are devastating crop pathogens.To develop resistant
plants, a better understanding of rust virulence factors, or effector proteins, is needed.Thus
far, only six rust effector proteins have been described: AvrP123, AvrP4, AvrL567, AvrM,
RTP1, and PGTAUSPE-10-1. Although some are well established model proteins used
to investigate mechanisms of immune receptor activation (avirulence activities) or entry
into plant cells, how they work inside host tissues to promote fungal growth remains
unknown. The genome sequences of four rust fungi (two Melampsoraceae and two
Pucciniaceae) have been analyzed so far. Genome-wide analyses of these species, as well
as transcriptomics performed on a broader range of rust fungi, revealed hundreds of small
secreted proteins considered as rust candidate secreted effector proteins (CSEPs).The rust
community now needs high-throughput approaches (effectoromics) to accelerate effector
discovery/characterization and to better understand how they function in planta. However,
this task is challenging due to the non-amenability of rust pathosystems (obligate biotrophs
infecting crop plants) to traditional molecular genetic approaches mainly due to difficulties
in culturing these species in vitro.The use of heterologous approaches should be promoted
in the future.
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THE KNOWN RUST FUNGAL EFFECTOR PROTEINS
Plant pathogens secrete effector proteins into host tissues to
promote infection through the manipulation of host processes
(Win et al., 2012). During host colonization, rust fungi form
haustoria that invaginate the host plasma membrane within the
host cell cavity. These structures mediate the molecular traffic
between the parasite and its host, and notably the delivery of
effector proteins into host cells (Rafiqi et al., 2012), although
other structures such as infection hyphae are also likely to be
involved in this molecular traffic (Rafiqi et al., 2010). Until
now, six effector proteins have been identified in three differ-
ent rust species: AvrM, AvrL567, AvrP123, and AvrP4 in the
flax rust fungus Melampsora lini, the Rust Transferred Protein
RTP1 in the bean rust fungus Uromyces fabae, and PGTAUSPE-
10-1 in the wheat stem rust fungus Puccinia graminis f. sp.
tritici (Table 1; Kemen et al., 2005; Ellis et al., 2007; Upadhyaya
et al., 2014). They are all secreted proteins expressed in hausto-
ria, with no clearly identified biochemical function. How they
promote fungal growth inside host tissues remains unknown
(Table 1). In contrast, their avirulence (Avr) properties (i.e., the
ability to trigger specific immune responses) and/or their traf-
ficking mechanisms (i.e., how they enter plant cells) are better
understood.

The four M. lini effector proteins were first identified as effec-
tors due to their Avr properties (Ellis et al., 2007). More recently,
a screen with a bacterial protein delivery system in wheat revealed
the P. graminis f. sp. tritici protein PGTAUSPE-10-1 which causes
cell death in the host line carrying the resistance gene Sr22;
PGTAUSPE-10-1 was thus considered as a candidate AvrRs22

effector (Upadhyaya et al., 2014). M. lini AvrL567 and AvrM
are model Avrs for the study of effector recognition by immune
receptors. Both proteins are recognized inside plant cells by spe-
cific immune receptors following a direct physical interaction
(Table 1; Dodds et al., 2004, 2006; Catanzariti et al., 2006, 2010).
For both effectors, 3D structure-driven amino acid substitutions
revealed multiple contact points mediating the interaction with
their cognate receptor (Wang et al., 2007; Ravensdale et al., 2011;
Ve et al., 2013). Amino acid residues within these contact points
are highly variable, suggesting that an arms race is taking place
between these effectors and their corresponding receptors. Such
knowledge of Avr-receptor interactions is valuable for engineering
improved immune receptors with expanded effector recognition
(Harris et al., 2013; Segretin et al., 2014), which may ultimately
help to develop broad-spectrum resistance in plants (Dangl et al.,
2013).

All six rust effector proteins are thought to be translocated
from haustoria into host cells (Table 1). RTP1 and AvrM have
been directly shown to traffic from haustoria to plant cells during
infection (Kemen et al., 2005, 2013; Rafiqi et al., 2010), whereas
the direct recognition of AvrM and AvrL567 by cytosolic plant
immune receptors indirectly demonstrates their internalization
in the plant cell (Ellis et al., 2007). Current mechanistic mod-
els based on pathogen-free assays suggest that AvrP4, AvrM, and
AvrL567 proteins can enter plant cells autonomously (Catan-
zariti et al., 2006; Kale et al., 2010; Rafiqi et al., 2010). Rafiqi
et al. (2010) further showed that AvrL567 and AvrM cell entry
is mediated by divergent N-terminal uptake domains, carrying
hydrophobic residues that are critical for cell entry in the case of
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Table 1 | Rust effector proteins.

Effector

protein

aa residues

(mature)

Signal

peptide

Expression Localization in

infected tissues

Avr property

(immune receptor)

Biochemical

function

Role in

virulence

AvrM 284–347 Yes Haustoriuma Haustorium,

EHMx, plant

cytosola

Yes (M) nd nd

AvrL567 127 Yes Haustorium Plant cytosol Yes (L5, L6, L7) nd nd

AvrP123 94 Yes Haustorium Plant nucleus Yes (P, P1, P2, P3) nd nd

AvrP4 65 Yes Haustorium Plant cytosol Yes (P4) nd nd

RTP1 201 Yes Haustoriuma Haustorium/

EHMx/plant

cytosol/ plant

nucleusa

nd Protease

inhibitor/filament-

forming

nd

PGTAUSPE-

10-1

np np Haustorium nd yesb nd nd

The table details the rust fungi effector proteins reported so far.
Avr, Avirulence; aa, amino acid; EHMx, extra-haustorial matrix; nd, not determined; ND, not detected; np, not published.
aDirect evidence of the presence of the protein acquired by immunolocalization.
ba host-specific toxic effect was detected.

AvrM (Ve et al., 2013). This model and the assays used to build
it are currently debated, and the need to study effector traffick-
ing during the infection has been stressed (Petre and Kamoun,
2014).

Effector proteins are anticipated to be key molecules for
pathogenicity, although very little is known about how they
function within host tissues. Among the six characterized rust
effectors, none possess a clearly identified biochemical func-
tion or a detected virulence activity (Table 1). Indeed, M. lini
transgenic lines silencing AvrL567 did not show any reduced
growth on flax, suggesting that this effector is not required
for full virulence (Lawrence et al., 2010). As discussed by the
authors, this could be explained by a high functional redun-
dancy in the M. lini effector repertoire (Lawrence et al., 2010).
Such redundancy was also observed in the effector repertoires
of bacterial plant pathogens (Kvitko et al., 2009), and repre-
sents an obstacle for the functional characterization of virulence
effector functions through genetic approaches. However, recent
progresses have been made regarding RTP1, a conserved rust
effector that seems to work as a protease inhibitor (Pretsch
et al., 2013). On the other hand, Kemen et al. (2013) reported
that RTP1 accumulates within the host-parasite interface and
forms filaments. The authors proposed a role as a structural
effector, possibly stabilizing fungal structures during infection.
A model that integrates the different RTP1 localizations and
proposed functions remains to be drawn. Several methods for
the genetic transformation of M. lini and U. fabae, as well
as for host-induced gene silencing (HIGS) of Puccinia triticina
have been reported (Lawrence et al., 2010; Djulic et al., 2011;
Panwar et al., 2013). Such methods, although they are still at
various stages of development, represent valuable tools to inves-
tigate the contribution of individual effectors to virulence during
infection.

POST-GENOMIC APPROACHES IDENTIFY A PLETHORA OF
RUST SECRETED PROTEINS CONSIDERED AS CANDIDATE
EFFECTORS
In the past few years, a typical profile has emerged for plant
pathogen effectors. Fungal proteins are usually considered can-
didate secreted effector proteins (CSEPs) if they possess a
signal peptide for secretion, a small size and no other target-
ing sequence or transmembrane domains (Stergiopoulos and
de Wit, 2009; Rouxel and Tyler, 2012; Saunders et al., 2012).
Such CSEPs attract more attention when they are expressed
during infection or when they present signatures of rapid evo-
lution. Besides, expression in specific infection structures such
as haustoria, often considered as a major site of effector deliv-
ery, provides another level of information. Some authors also
take advantage of conserved amino acid motifs or predicted pro-
tein structures to establish large CSEP classes (Godfrey et al.,
2010; Pedersen et al., 2012). Homology to known rust effectors
and organization in gene families or in physical clusters have
also been considered to refine these sets of CSEPs (Hacquard
et al., 2012; Saunders et al., 2012). In rust fungi, such criteria
have been applied in the frame of effector mining pipelines that
combined genome-wide analyses and transcriptomics to reveal
amazingly rich catalogs of rust CSEPs (Cantu et al., 2011, 2013;
Duplessis et al., 2011a; Fernandez et al., 2012; Hacquard et al.,
2012; Saunders et al., 2012; Garnica et al., 2013; Zheng et al.,
2013; Bruce et al., 2014; Link et al., 2014; Nemri et al., 2014;
Table 2).

GENOME-WIDE ANALYSES OF CSEPs
The genome sequences of four rust species have been pub-
lished so far: Melampsora larici-populina (poplar leaf rust fun-
gus; Duplessis et al., 2011a), M. lini (flax rust fungus; Nemri
et al., 2014), P. graminis f. sp. tritici (wheat stem rust fungus;
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Duplessis et al., 2011a) and Puccinia striiformis f. sp. tritici (wheat
stripe rust fungus; Cantu et al., 2011, 2013; Zheng et al., 2013).
Genome-wide effector mining in these four species revealed hun-
dreds of genes encoding CSEPs. In M. larici-populina, 1,184 CSEPs
have been identified from 1,898 genes encoding predicted secreted
proteins (Duplessis et al., 2011a). In M. lini, 762 priority CSEPs
were selected from 1,085 genes encoding predicted secreted pro-
teins (Nemri et al., 2014). In P. graminis f. sp. tritici, 1,106 CSEP
genes were selected from 1,934 genes encoding predicted secreted
proteins (Duplessis et al., 2011a). In P. striiformis f. sp. tritici, dif-
ferent reports of selected sets of CSEPs have been published. In this
rust fungus, a total of 2,092 CSEP coding genes were considered in
isolate CY-32 (Zheng et al., 2013) while the draft genome of iso-
late PST-130 led to 1,088 filtered CSEPs out of 1,188 genes coding
predicted secreted protein (Cantu et al., 2011). However, genome
re-sequencing of four other isolates and cross-comparison with
PST-130 has led to a revision of gene numbers and to a larger set
of 2,999 predicted CSEPs (Cantu et al., 2013).

All rust fungi genomes are marked by expansions of gene fam-
ilies, particularly those encoding secreted proteins. For instance,
the largest CSEP gene family in M. larici-populina includes 111
members (Duplessis et al., 2011a). Noteworthy, a part of these
genes were not predicted by algorithms but rather found by man-
ual curation, highlighting the importance of expert annotation
of these atypical gene families of small proteins (Duplessis et al.,
2011a; Hacquard et al., 2012). This last observation is impor-
tant to consider when performing cross-comparison between
genomes showing different degrees of annotation. Since RXLR
or LXLFLAK conserved motifs found in oomycetes helped defin-
ing large effector families (Win et al., 2007), a particular focus on
motif search was given in rust CSEPs. The motif [YFW]xC has
been reported in the genomes of obligate biotrophic pathogens of
cereals, including P. graminis f. sp. tritici (Godfrey et al., 2010). In
M. larici-populina, this motif is common, eventually with posi-
tional constraints, but with no restriction to the N-terminus of
CSEPs (Hacquard et al., 2012). Nonetheless, functional and struc-
tural characterization for the [YFW]xC motif is lacking at the
moment, and no evidence for a role in translocation has been
provided so far.

Another common trend observed in rust candidate effec-
tor repertoires is the large proportion of species-, family- or
order-specific CSEPs (Duplessis et al., 2014a). A large majority
of species-specific CSEP genes (nearly 70%) were first observed in
M. larici-populina. With the sequencing of the flax rust genome
this number has reduced, as only 4% of the M. lini CSEP
genes were found to be species-specific and more than half had
a homolog in one of the three other sequenced rust genomes
(Nemri et al., 2014). Interestingly, M. lini Avr genes homologs
are only found in M. larici-populina and thus could be con-
sidered family-specific effectors, whereas other genes such as
Uromyces spp. RTP1 or some Haustorially Expressed Secreted
Proteins (HESPs) identified in M. lini are conserved across rust
fungi (Fernandez et al., 2012). Sequencing more genomes among
Pucciniales, particularly in uncovered taxonomic families, will def-
initely help defining the common set of core rust effectors and
those that may be related to host adaptation (Duplessis et al.,
2014b).

Frontiers in Plant Science | Plant-Microbe Interaction August 2014 | Volume 5 | Article 416 | 4

http://www.frontiersin.org/Plant-Microbe_Interaction/
http://www.frontiersin.org/Plant-Microbe_Interaction/archive


Petre et al. Effector proteins of rust fungi

TRANSCRIPTOMICS IDENTIFY CSEPS IN MANY RUST SPECIES
Rust fungi have rather large genomes (89–190 Mb) and an impor-
tant content in repetitive elements (>43% of total genomes),
which impedes the systematic sequencing and assembly of targeted
species (Duplessis et al., 2014b). Indeed, genome size estimates
for certain rust species go beyond the numbers given above
(Leonard and Szabo, 2005; Tavares et al., 2014). Whole-genome
oligoarrays or RNA-Seq has thus proven to be useful in gather-
ing relevant information about the transcriptomes of rust fungi.
A strong stage specific regulation of protein secretion has been
demonstrated in U. fabae (Link and Voegele, 2008), and novel
high-throughput approaches confirmed a coordinated expression
of CSEPs during host infection, in a temporal (expression at spe-
cific time-points) or spatial (expression in specific structures)
manner (Table 2). For instance, transcripts profiling during time-
course infection of poplar leaves by M. larici-populina revealed
waves of expression for more than 500 CSEP transcripts (Hac-
quard et al., 2010; Duplessis et al., 2011b; Petre et al., 2012).
Moreover, such temporal succession of expression patterns has
been confirmed in other rust species such as Hemileia vasta-
trix (Fernandez et al., 2012), P. striiformis f. sp. tritici (Cantu
et al., 2013), and Puccinia triticina (Bruce et al., 2014). This
highlights the need for a better understanding of expression
regulation in rust fungi, whether by transcription factors or
via epigenetic control, such as reported in Phytophthora infes-
tans or in Leptosphaeria maculans (Judelson, 2012; Soyer et al.,
2014).

Interestingly, different reports showed that U. fabae RTP1
homologs may have different localizations (Kemen et al., 2005;
Hacquard et al., 2012). RTP1 also exhibits a dynamic pattern of
localization in the extra-haustorial matrix and within host cells
during the infection process (Kemen et al., 2013), illustrating once
more that rust effectors deployment is probably finely regulated
in time and space. In this regard, a major issue with in planta
expression study is the occurrence of different fungal cell types
(germ tubes, appressoria, substomatal vesicles, infection hyphae,
haustoria, sporogenous hyphae, and newly formed spores), which
implies that the observed expression levels are often a mixture of
different cell types at different stages. After the seminal paper that
described a method to purify haustoria from the bean rust fun-
gus (Hahn and Mendgen, 1997) and the one reporting on M. lini
HESPs that included several Avr genes (Catanzariti et al., 2006),
haustoria purification has been combined with RNA-Seq studies
to prioritize CSEPs likely delivered by these infection structures
(Cantu et al., 2013; Garnica et al., 2013, Link et al., 2014). Laser
capture microdissection has also been coupled to transcriptomics
to distinguish between biotrophic and sporogenous areas in poplar
leaves infected by M. larici-populina (Hacquard et al., 2010). This
study demonstrated that CSEPs are predominantly and highly
expressed in the area containing infection hyphae and haustoria.

In order to complete their life cycle, heterecious rust fungi
infect two unrelated host species. To do so, it is likely that they
express host-specific effector sets. However, except for the wheat
leaf rust P. triticina (Xu et al., 2011), only a small portion of
the life cycle has been surveyed in most rust species. Recently,
in order to expand our understanding of the transcriptome of
M. larici-populina, gene expression analyses were conducted on

rust telia collected from decaying leaves (Hacquard et al., 2013).
This study revealed that CSEP-encoding genes were expressed in
these tissues, suggesting that CSEPs might have additional roles
unrelated to the interaction with the living host plant (Hacquard
et al., 2013). Ongoing transcriptome profiling studies in differ-
ent rust species will help to determine the sets of CSEP genes
expressed along the life cycle. Such studies may reveal CSEPs with
a host-specific expression, which represent host-adapted effectors
(Duplessis et al., 2014b).

TOWARDS UNIFIED EFFECTOR MINING AND
EFFECTOROMICS PIPELINES
Various studies combined genome sequencing and transcrip-
tomics to provide sets of CSEPs. Automated pipelines for effector
mining should be unified and systematically applied to forthcom-
ing rust fungi genomes to provide a solid foundation for future
comparative analyses in Pucciniales. However, an important point
to consider is the need for an accurate curation of CSEP-encoding
genes in these genomes and the screening of additional time points
in time-course studies and/or spore stages. Some early genome-
wide surveys of CSEPs in plant interacting fungi arbitrarily focused
on small proteins because of the commonly observed small size
of effectors and in order to reduce manual gene curation efforts
(Stergiopoulos and de Wit, 2009, Duplessis et al., 2011a). Con-
sidering that rust fungi effectors can exhibit greater size (e.g., M.
lini AvrM), such an arbitrary cut-off should not be considered in
future analyses of rust CSEPs.

To face the growing number of CSEPs made available by effec-
tor mining studies, and to better understand their functions in
plant cells, we need tools to study them directly in planta. This
relies on the ability to genetically transform the plant to perform
high-throughput functional analyses (also referred to as “effec-
toromics”). Rust fungi hosts (e.g., wheat, soybean, flax, or poplar),
are not easily amenable to molecular genetic approaches. How-
ever, non-host model plants can be used to characterize and
screen CSEPs. For instance, the Agrobacterium-mediated tran-
sient genetic transformation of Nicotiana benthamiana has proven
useful to rapidly express effector proteins into plant cell, but
has been largely ignored in rust effector biology. This system
allows combining many different approaches (cell-biology, pro-
tein biochemistry, hypersensitive response and infection assays)
all in one. Thus, such approaches may help in (1) determining
the sub-cellular localization of candidate effector proteins using
effector-fluorescent protein fusions, (2) identifying interacting
partners within protein complexes, (3) detecting candidate effector
capacity to enhance susceptibility during infection with selected
N. benthamiana pathogens (thus validating a role in virulence),
and (4) testing their recognition by specific immune receptors.
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