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Plants, along with other multicellular organisms, have evolved specialized regulatory
mechanisms to achieve proper tissue growth and morphogenesis. During development,
growing tissues generate specialized cell types and complex patterns necessary for
establishing the function of the organ. Tissue growth is a tightly regulated process that
yields highly reproducible outcomes. Nevertheless, the underlying cellular and molecular
behaviors are often stochastic. Thus, how does stochasticity, together with strict genetic
regulation, give rise to reproducible tissue development? This review draws examples
from plants as well as other systems to explore stochasticity in plant cell division, growth,
and patterning. We conclude that stochasticity is often needed to create small differences
between identical cells, which are amplified and stabilized by genetic and mechanical
feedback loops to begin cell differentiation. These first few differentiating cells initiate
traditional patterning mechanisms to ensure regular development.
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INTRODUCTION
During development, an organism acquires a characteristic shape
and size and establishes robust organ morphologies. To achieve
this, growing tissues undergo multiple rounds of growth, division,
and differentiation until a highly organized structure is formed.
For years, biologists have been fascinated with the idea of tightly
regulated developmental processes that yield highly reproducible
outcomes and have deemed seemingly random processes to be
unimportant. However, recent evidence suggests that the underly-
ing cellular and molecular mechanisms utilized to generate these
reproducible structures often contain stochastic elements (Raser,
2005; Johnston and Desplan, 2010). Thus, there is a resurgent
interest in randomness in biology.

Counterintuitively, stochasticity may be important for produc-
ing regular patterns. For instance, stochastic transitions between
growth and disassembly phases of individual microtubules is
critical for the rapid formation of ordered cortical microtubule
arrays guiding the anisotropic expansion of plant cells (Allard
et al., 2010; Eren et al., 2010). Dynamic instability allows the
microtubules to explore various configurations and arrive at the
optimal one (Holy and Leibler, 1994). Noise allows the disas-
sembly of suboptimal configurations and thus allows the quick
convergence on optimal ones.

In various plant tissues, cells exhibit an immense amount of
cell-cell variation. For instance, the Arabidopsis thaliana leaf epi-
dermis is composed of various cell types, which range in cell size,
shape, and DNA ploidy (Melaragno et al., 1993; Roeder et al.,
2010; Elsner et al., 2012). Nonetheless, these tissues retain the cor-
rect organ morphology. Here we raise the question: does stochas-
ticity at the cellular level contribute to reproducible tissue devel-
opment in plants? In this review we examine how stochasticity
is defined in biological systems and provide evidence that plants
undergo stochasticity at the cellular level. Stochastic fluctuations
of key regulators can initiate differences between equivalent cells.

Genetic and mechanical feedback loops can enhance and solid-
ify these differences to begin cell differentiation. Differentiating
cells promote traditional patterning mechanisms, such as lateral
inhibition, to further induce cell differentiation and patterning
for proper tissue development (Figure 1). While in this review,
our central focus is on regularity versus randomness in plant
development, we draw many illustrative parallel examples from
other systems with the intention of bringing further insight to the
phenomenon of stochasticity in plants. For further discussions
of the importance of stochasticity throughout plant develop-
ment, please see the other reviews in this “Stochasticity in Plant
Developmental Processes” research topic.

WHAT IS STOCHASTICITY IN A BIOLOGICAL CONTEXT?
Stochasticity is defined as “the quality of lacking any predictable
order or plan” (TheFreeDictionary1) and has been long used to
describe random or probabilistic events. For example, in the early
1900’s Albert Einstein and Marian Smoluchowski described the
zigzag behavior of Brownian particles (i.e., particles suspended in
a fluid) as stochastic (Góra, 2006). Furthermore, fields such as
mathematical finance use stochastic models to predict the behav-
ior of financial markets (Malliavin and Thalmaier, 2006). More
recently, stochasticity has been used to describe biological events,
particularly noise in gene expression (Raser, 2005). How do we
know what is stochastic, and how can we study stochasticity in a
biological context?

Currently there are two major approaches for investigating
stochasticity in biological systems. The first approach is to com-
pare experimental results with those achieved through a stochas-
tic computational model. If the model and experiments match,
we can have some confidence that stochasticity plays a role in the

1TheFreeDictionary, TheFreeDictionary.com. Farlex, Inc. Available online at:
http://www.thefreedictionary.com/stochasticity (Accessed May 26, 2014).
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FIGURE 1 | Schematic model of the importance of stochasticity in

promoting regular plant development. (A) During early tissue
development, cell start out as being morphologically equivalent (all white
cells). (B) Equivalent cells exhibit initial differences from one another
through stochastic fluctuations in gene expression (variation of blue cells).
(C) Differences between cells will be stabilized by regulatory mechanisms
such as genetic or mechanical feedback loops (blue cells with diamonds).
(D) As the cell’s fate is stabilized, it triggers non-random patterning
mechanisms (e.g., lateral inhibition) (E) Patterning mechanisms promote
regular tissue development (orange cells).

process. The second approach is to test experimentally for differ-
ences in the behaviors of two identical systems due to stochastic
noise. The difficulty with this approach is to be sure that the sys-
tems are truly identical. Therefore, this approach has been used
primarily to study stochasticity of gene expression in single cells.

For instance, Elowitz et al. (2002) tested how stochastic gene
expression influences cellular variability in Escherichia coli. To
do this, Elowitz et al. constructed a strain of E. coli in which
two fluorescent alleles (cyan and yellow) are integrated into
equivalent chromosomal loci under the control of the same pro-
moter (Figure 2). Elowitz et al. subsequently analyzed fluorescent
intensities of these reporters using fluorescence microscopy and
computerized image analysis. Using these analyses, they found
differences in expression between the cyan and yellow alleles
within a single cell, indicating the presence of intrinsic noise,
noise caused by the inherent randomness in transcription and
translation of a particular gene (Figure 2B). Furthermore, they
found variation in the overall fluorescent intensity between cells,
suggesting the presence of extrinsic noise, noise attributed to
fluctuations in environment (Figure 2A).

The results from these experiments suggest that both intrinsic
and extrinsic noise in gene expression have a significant impact on

FIGURE 2 | Measuring intrinsic and extrinsic noise in E. coli. Intrinsic
noise can be differentiated from extrinsic noise by measuring the activity of
two allelic GFP variants, YFP (shown in red) and CFP (shown in green),
under control of the same promoter. (A) When intrinsic noise is absent
within a single cell, the fluorescence intensity of YFP and CFP should be
identical (represented by yellow cells). Extrinsic noise will cause different
cells within the population to exhibit variations in overall fluorescent
intensity. (B) Intrinsic noise within a single cell will cause the fluorescence
intensity of YFP and CFP to differ, resulting in some green and some red
tinted cells. Reproduced from Elowitz et al. (2002). Reprinted with
permission from AAAS.

promoting phenotypic diversity. For example, in Bacillus subtilis
noise in the genetic network allows a few cells to stochastically
and transiently become competent to take up extracellular DNA
in response to stress while most other cells sporulate (Süel et al.,
2006). By creating a diversity of cellular responses the survival of
the population is optimized. Many have used this dual reporter
system to demonstrate how stochastic gene expression influences
phenotypic diversity in single-cell systems (Elowitz et al., 2002;
Ozbudak et al., 2002; Rao et al., 2002; Blake et al., 2003; Raser and
O’Shea, 2004; Pedraza and van Oudenaarden, 2005; Raser, 2005;
Rosenfeld, 2005; Bar-Even et al., 2006; Newman et al., 2006).

Multicellular organisms may utilize stochastic mechanisms
similar to those seen in unicellular organisms. However, the
biological techniques necessary to assess how stochasticity con-
tributes to cell behavior within a multicellular system are limited.
Inventing new techniques to biologically assess and manipulate
stochasticity will be important to advance our understanding of
the role of randomness in biology in the future.

STOCHASTICITY IN PLANT CELL GROWTH AND DIVISION
Plants undergo continuous development throughout their lifes-
pan and thus have specialized mechanisms to carefully control
organ size and structure even when exposed to extreme environ-
mental conditions. However, despite the regularity observed on
an organ level, plant cells exhibit a high degree of variability in
growth and division, suggesting that stochasticity is present and
even maintained in tissues.

Elsner et al. (2012) have found considerable variability in
the growth rate of individual cells in the Arabidopsis thaliana
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FIGURE 3 | Leaf epidermal cells exhibit growth variability. Cellular
growth heterogeneity is apparent from (A) serial scanning electron
micrographs (SEMs) of a growing Arabidopsis leaf over 96 h. The analysis
columns show the (B) areal growth rate and (C) growth rate in length. Cells
that change their areal growth rate in time are outlined in black. Reprinted
from Elsner et al. (2012) with permission from Oxford University Press.

leaf epidermis. Using time-lapse imaging and statistical analysis,
they demonstrate that neighboring cells have dramatically dif-
ferent growth rates (Figure 3). Remarkably, individual walls of
the same cell often have different growth rates (Figure 3C). In
addition, cells were found to be highly dynamic, often changing
their growth rates over time (Figure 3B, outlined in black). Elsner
et al. found no correlation between growth rate and cell size,
nuclear size, or anisotropy, suggesting that there is no obvious
external cause for differences in growth rate. Similarly to leaves,
cell growth variability has been observed in the plant meris-
tem, suggesting that growth variability may be a general trend
(Kierzkowski et al., 2012; Uyttewaal et al., 2012). Is cell growth
variability due to stochasticity, or has the source for promoting
variability not yet been identified? The answer requires further
investigation.

Substantial variability in the timing of cell division has been
observed in the Arabidopsis sepal epidermis (Roeder et al., 2010).

Live imaging of sepal development and tracking of cell lineages
have revealed two sources of variability. First, in dividing cells,
the length of the cell cycle ranged from about 12 h to more than
60 h (Figure 4D). Second, differences were found in the time at
which cells stop dividing (i.e., exit the mitotic cell cycle) and enter
endoreduplication, a cell cycle in which cells grow and replicate
their DNA but bypass division (i.e., become polyploid). As a con-
sequence, mature sepals contain cells with a range of ploidies from
2 to 16C. A similar pattern of cells with ploidy varying from 2 to
16C is present in the leaf epidermis, suggesting that variability in
the timing of endoreduplication occurs broadly (Melaragno et al.,
1993). The cells continue to grow while they endoreduplicate,
such that the 16C cells become giant, stretching about one-fifth
the length of the sepal. Giant cells are distributed between smaller
cells with a wide range of sizes and ploidies (Figure 4A).

Are cell cycle length and timing of entry into endoreduplica-
tion stochastic in the sepal epidermis? A stochastic computational
model can reproduce the in vivo sepal cell size distribution, which
reflects both cell cycle length and endoreduplication state, indi-
cating that stochasticity is a plausible scenario (Figures 4A,E;
Roeder et al., 2010). In the model, cells make random decisions
shaped by probability distributions that reflect the experimen-
tal data about cell cycle length and endoreduplication timing
(Figure 4D).

The model was further tested to determine whether it could
reproduce the effects of biological perturbations in the cell
cycle (Roeder et al., 2010). Altering the expression of cell
cycle regulators, such as cyclin-dependent kinase inhibitors, was
shown to change the probability of endoreduplication, indicat-
ing that stochasticity can be genetically regulated. When cyclin-
dependent kinase inhibitors were overexpressed, the number of
highly endoreduplicated giant cells found on the sepal epider-
mis increased; however, the outcome was still probabilistic, as
not all cells endoreduplicated (Figure 4B). Changing the proba-
bility distribution in the model replicated the mutant (Figure 4B
model), suggesting that the underlying decision is still stochas-
tic. Conversely, in a cyclin-dependent kinase inhibitor mutant,
the most highly endoreduplicated giant cells are absent, but the
remaining cells still exhibit considerable variability (Figure 4C).
Again, the phenotype of the mutant could best be modeled as a
shift in the probability distribution of the timing of endoredupli-
cation (Figure 4C model). Further, the finding that the epidermal
specification pathway in Arabidopsis promotes this variability
in sepal cell size suggests that developmental regulators some-
times promote stochasticity in cell behavior (Roeder et al.,
2012). Interestingly, overall sepal organ size does not significantly
change when mutations that alter a cell’s ability to endoredu-
plicate are introduced (Roeder et al., 2010). How organ mor-
phology is robust to the stochasticity in cell size requires future
investigation.

In addition to cell growth and division, the orientation of the
new cell wall is somewhat variable. Recently, both Dupuy et al.
(2010) and Besson and Dumais (2011) have used mathematical
modeling to predict the probability with which a cell will divide
along a given plane for a variety of plant cells. Their models sug-
gest that the probability with which a cell chooses a given division
plane is related to differences in the geometry of the choices.
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FIGURE 4 | Timing of Arabidopsis sepal epidermal cell division and

entry into endoreduplication is variable. (A) Wild type sepals (the
outermost, green, floral organs) have a diversity of cell sizes on the outer
epidermis ranging from giant cells (false colored red in SEMs) to small
cells (not colored). A stochastic computational model that accounts for cell
cycle length and entry into endoreduplication can accurately predict the
distribution of sepal cell sizes from wild-type plants. In the model, cells are
colored according to the number of endocycles they have undergone (red
= 3, purple = 2, green = 1, and blue = 0). (B,C) Changing the expression
of cyclin dependent kinase inhibitors (CKI) alters the probability of entry
into endoreduplication and the resulting cell size distribution. As the model

predicts, (B) plants overexpressing cyclin-dependent kinase inhibitor KRP1
form ectopic giant cells, but islands of small cells remain between giant
cells. Note that the sepals curve outward. (C) Likewise the model predicts
that plants mutant for cyclin-dependent kinase inhibitor LGO continue to
have variable smaller cell sizes. Note that the sepals curve slightly inward.
(D) The duration of the cell cycle amongst sepal cells is highly variable and
ranges from 12 to more than 60 h. (E) A histogram of the cell sizes
produced in the random model (red dashed line) is not significantly
different from measured cell sizes in the sepal (blue line). This figure is
modified and reprinted from Roeder et al. (2010) under the Creative
Commons Attribution license.

In the 1880s, Errera suggested that the new cell wall takes on
the configuration that minimizes its surface area. If two possi-
ble planes of cell division have nearly equal surface areas, the cell
will adopt each plane with nearly equal frequency (Besson and
Dumais, 2011). If one possible plane of cell division has a much
lower surface area than the second possibility, the first plane has
a much higher probability of being chosen. Besson and Dumais
demonstrated that plant cells do in fact divide probabilistically as
predicted: the second, third, and even fourth most optimal divi-
sion planes can be observed. Complementary to those results,
it has recently been demonstrated that auxin transcriptional
response is important in breaking the default geometric rule

to promote asymmetric cell divisions in the developing embryo
(Yoshida et al., 2014). This suggests that genetic components can
influence the probability that a cell will adopt a particular division
plane.

The examples presented above imply that plants utilize
stochastic mechanisms throughout their lives. Nevertheless, even
when cell growth, division and orientation are altered, a plant still
has the ability to create organs with robust morphology. Thus,
does stochasticity in cellular development really matter? We next
look to examples from other systems to see how regularity can
emerge from stochasticity and assess the implications of these
studies for plant development.
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STOCHASTICITY CAN PRODUCE REGULAR PATTERNS
DURING DEVELOPMENT
Frequently during development, cells differentiate and form
highly organized patterns to determine the finalized function
of a tissue. Recent studies are now finding that noisy cel-
lular processes often initiate these robust developmental pro-
cesses. Thus, how does a tissue reach the same reproducible
developmental outcomes when the events leading to them are
stochastic? Here we will discuss examples in which stochastic-
ity has been demonstrated to facilitate reproducible phenotypic
outcomes.

STOCHASTICITY PROMOTES CELLULAR PHENOTYPIC HETEROGENEITY
Stochasticity can be instrumental in producing regular develop-
ment through initiating a diversity of cell types from a uniform
population of cells. For example, cancer cell populations often
exhibit subpopulations of different phenotypic cell types, where
the proportions of each subpopulation remain remarkably con-
stant over time. The ability for cancer cells to maintain this
cell-state equilibrium has been the subject of immense research
and debate for many years, but recent studies counterintuitively
implicate stochasticity in the maintenance of equilibrium (Gupta
et al., 2011; Wang et al., 2014). For example, in human breast
cancer cell populations, cells trend toward equilibrium among
three morphologically distinct cell subtypes: stem cell-like, lumi-
nal, and basal, where luminal or basal cells make up the majority
of the population and stem cell-like cells make up the minor-
ity (Fillmore and Kuperwasser, 2008; Mannello, 2013). Although
stem cell-like cells only constitute a small percentage of total can-
cer cell population, researchers have assumed that they are likely
to be the most important cell type because of their ability to self-
renew and differentiate into the other cancer cell types (Mannello,
2013).

Gupta et al. (2011) demonstrated that stochastic processes are
necessary to promote breast cancer cell-state equilibrium. Using
fluorescence-activated cell sorting, Gupta et al. purified stem cell-
like, basal, and luminal cells from two breast cancer cell lines
(SUM149 and SUM159) and saw that after 6 days, these isolated
cell types regenerated populations containing all three cell types
in their original proportions, thus returning to a state of equi-
librium (Figures 5A–C). Given the behavior of these cells, Gupta
et al. proposed that cells undergo stochastic interconversions
between different cell-states. Using a Markov-based approach—
which assumes that the probability for a cell to transition is
based solely on its current state and not its previous state—they
modeled probabilistic transitions between cancer cell subtypes
(Figure 5D).

Through experiments Gupta et al. show that in returning
to equilibrium, cultured cancer cells and mouse models actu-
ally undergo the cell state transitions that are predicted by the
stochastic model, some of which are unexpected. For exam-
ple, the model predicts that approximately 1 day after sorting,
a sharp spike of luminal differentiation will occur from stem
cell-like SUM159 cells. As predicted, this spike is observed exper-
imentally. The most insightful prediction of the model is that
luminal and basal cells can de-differentiate back into cancer stem
cells, a process observed in the sorted populations. These results

imply that killing cancer stem cell-like cells is not an effective
strategy because differentiated cells may revert back into stem
cell-like cells. Thus, stochasticity is not only needed to maintain
phenotypic diversity in cancer cells but may also serve as a valu-
able mechanism for maintaining phenotypic equilibrium during
development.

Based on this study, we might similarly hypothesize that
stochasticity within plant cell division is necessary to maintain
cell size diversity in the epidermis. Similar to the cancer model,
transitions in sepal cell state have been modeled probabilistically
(Figure 5E; Roeder et al., 2010), but it should be noted that sepal
epidermal cells are unable to interconvert or revert once a cell
size has been established. Despite the variability, sepals typically
have similar proportions of cells in each size class, and having
the correct proportions of these cells is necessary for the organ’s
final function. Forming the correct number of highly endoredu-
plicated giant cells is critical for controlling the curvature of
the sepal (Figure 4A). Arabidopsis sepals curve inward to pro-
tect the developing flower bud and then straighten to allow the
flower to bloom. In plants in which the cell cycle has been altered
to increase the number of giant cells, the sepals curve exces-
sively outwards (Figure 4B) (Roeder et al., 2010, 2012). However,
when there are no giant cells, the sepals curve excessively inwards
(Figure 4C). Thus, although the overall size of the sepal is not
affected by changes in the distribution of cell size, the curvature
is, which likely affects the sepals’ ability to protect the developing
floral organs. Thus, we see that stochasticity can be important for
regular development through ensuring a diversity of cell types.
Next, we consider the mechanism through which stocasticity
can initiate this cellular diversity and its regulation to generate
patterns.

PATTERNING MECHANISMS ARE INITIATED THROUGH
STOCHASTICITY
Biologists oftentimes regard cell fate determination in well-
defined systems as being highly regulated. For example, during
multicellular development, a cell must acquire a specific cell fate
in contrast to its neighbor to create cell patterns in order to define
a tissue’s final structure and function. One common patterning
mechanism is lateral inhibition, in which one cell sends out an
inhibitory signal to prevent its neighbors from adopting the same
identity. Although lateral inhibition has been well-studied, the
mechanism by which it is initiated is still a mystery. However,
increasing evidence suggests that stochasticity is required to ini-
tiate many of these lateral-inhibition patterning mechanisms,
one of which has been explored experimentally in Notch-Delta
signaling.

The Notch-Delta signaling pathway is an excellent model of
lateral inhibition in animals, where it induces cell pattering in a
variety of development processes, including neural differentiation
in Drosophila and vertebrates (Morrison et al., 2000; Wakamatsu
et al., 2000; Kubu et al., 2002). Notch is a transmembrane recep-
tor protein. Activation occurs when Notch, which resides on the
membrane of one cell, interacts with a Delta ligand that resides on
the neighboring cell (i.e., trans-activation). This activation causes
proteolytic cleavage of the intracellular Notch domain, which
translocates into the nucleus and acts as a transcription factor
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FIGURE 5 | Stochasticity maintains phenotypic diversity in cell

populations. (A) Cancer cell subpopulations [stem cell-like cells (SL; red),
basal (green), and luminal (blue)] were sorted using fluorescence-activated
cell sorting (FACS) to isolate cell type specific populations. After 6 days
post-sorting, each of the isolated populations expanded to contain all
three cell subtypes, suggesting that all three cell types can interconvert
stochastically between different cell states. (B) Graph showing the
proportion of SL, basal, and luminal cells in two cancer cell lines before
sorting. (C) Cells were FACS sorted to produce populations with a single
pure cell type. The graph shows the that 6 days after sorting the
proportion of SL, basal, and luminal cells in each of these populations
has returned nearly to the starting proportions. (D) Schematic diagrams
depicting the stochastic cell state transitions between cell types for each
cell line. Reprinted from Cell, 146/4, Gupta et al. (2011) Copyright, with
permission from Elsevier. (E) A probabilistic model for the

endoreduplication of a population of Arabidopsis epidermal cells. A 2C
cell (blue) may either randomly decide with the probability p1 to either
enter endoreduplication or mitotically divide. If the cell enters
endoreduplication in the first cell cycle, it will continue to endoreduplicate
until it becomes a 16C giant cell (red). If the cell undergoes mitotic
division, then each daughter cell has a random probability p2 of entering
endoreduplication. If a cell enters endoreduplication in the second cell
cycle, then it will continue to endoreduplicate until it becomes an 8C cell
(purple), whereas if it mitotically divides, then each daughter cell will
once again have a random probability p3 of entering endoreduplication or
dividing. If in the third cell cycle a cell enters endoreduplication, then it
will become a 4C cell (green), whereas if it doesn’t it will remain a 2C
(blue) cell. Those final 2C cells have the probability ps to become a
stomatal cell (yellow). This figure is reprinted from Roeder et al. (2010)
under the Creative Commons Attribution license.
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to activate Notch-responsive genes (Figure 6A; del Álamo et al.,
2011).

The Delta ligand has additionally been implicated in inhibiting
Notch activity within its own cell (i.e., cis-inhibition) (Figure 6B).
Cis Notch-Delta interactions are thought to mutually inhibit
one another, where Notch inactivates expression of Delta and
vice versa. This inhibitory interaction is assumed to make a cell
less receptive to receiving trans-Delta signals from its neighbor-
ing cells (del Álamo et al., 2011). The ability for Notch to be
trans-activated and cis-inhibited by Delta suggests that a cell’s
responsiveness to Delta signaling depends on Notch-Delta con-
centration ratios. During patterning, how does an imbalance in
Notch and Delta expression occur between identical neighboring
cells such that one cell expresses more Delta whereas the other cell
expresses more Notch?

To explore this question, Sprinzak et al. (2010) investigated the
transcriptional response of Notch when subjected to different lev-
els of either cis or trans-Delta in cell culture. The authors observed
that when Notch is exposed only to varying levels of trans-Delta,
Notch responds in a graded manner. Conversely, when Notch
is exposed to a strong pulse of cis-Delta, Notch is inactivated.
As the cis-Delta concentrations become diluted over time, Notch
remains inactivated until cis-Delta reaches a particular dilution
threshold, which then prompts a sharp spike of Notch activation.

These observations were modeled with the major assump-
tion that Notch and cis-Delta mutually inhibit each other. In this
model, Sprinzak et al. found that mutual inactivation between
Notch and Delta induces a sensitive “switching” environment.
In other words, small stochastic concentration changes of either
Notch or Delta will lead to a cell being in a “sending state” (i.e., a
cell exhibits high Delta concentrations and low Notch concentra-
tions) or a “receiving state” (i.e., high Notch concentrations but
low Delta concentrations) (Figure 6C). The validity of this model
was tested through simulations that mimicked cellular wing-vein
boundaries in Drosophila. These simulations not only successfully
recapitulate the developmental processes seen in wild type, but
also the phenotypes seen Notch and Delta mutants. This model
demonstrates that a small amount of random noise is sufficient
to induce a genetic switch, causing one cell to become different
from its neighbor. Once a cell adopts either a sending or receiving
state, typical Notch-Delta lateral inhibition intercellular signaling
propagates throughout the tissue to produce a regular pattern of
spaced specialized cells. Thus, regular patterning could not occur
without stochastic fluctuations in Notch and Delta to initiate the
process (Figure 1D).

Although Notch-Delta signaling is not present in plants, lateral
inhibition is an important patterning mechanism, particularly
in the spacing of trichomes (hair cells) on leaves and non-
root hair cell files in the root (Hülskamp and Schnittger, 1998;
Lee and Schiefelbein, 2002; Schellmann et al., 2002; Scheres,
2002; Schiefelbein, 2003). The mechanism of trichome spacing
is thought to follow an Alan Turing reaction-diffusion model
(Meinhardt and Gierer, 1974; Hülskamp, 2004; Benítez et al.,
2007; Morelli et al., 2012). According to the model, during
leaf development, equivalent cells will start to express low lev-
els of trichome-specific transcriptional activators. The activators

FIGURE 6 | Stochasticity initiates lateral inhibition-based patterning.

(A) A simplified model of the Notch-Delta pathway. When
transmembrane receptor Notch on one cell interacts with ligand Delta on
the neighboring cell, Notch is cleaved and intracellular domain
subsequently moves to the nucleus to trans-activate Notch-responsive
genes (NRG). (B) However, if Delta interacts with Notch in the same cell,
Notch is inhibited and unable to activate NRGs. Additionally, Notch
becomes less responsive to trans-Delta. (C) When Notch and Delta are
present in the same cell, they mutually inactivate one another. This
creates a “switching” environment, where small concentration
imbalances between Notch and Delta due to stochastic fluctuations will
either cause a cell to transition to a sending state (high delta, low notch)
or a receiving state (low delta, high notch) thus activating the patterning
process. Reprinted with permission from MacMillan Publishers Ltd:
Sprinzak et al. (2010). (D) Computational models of de novo trichome
patterning based on Meinhardt’s model, which suggests that trichome
patterning is initiated via small stochastic changes in activator and
inhibitor concentrations in equivalent cells (left to middle). Regulatory
positive feedback loops to amplify small concentration differences. In
addition inhibitor factors prevent surrounding cells from differentiating
into trichomes producing a spaced pattern (middle to right). Reprinted by
permission from MacMillan Publishers Ltd: Hülskamp (2004).
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up-regulate their own expression forming a positive feedback
loop. These activators also activate a set of rapidly diffusing
inhibitors, which will move to the neighboring cells and inhibit
expression of the activators. Since all cells initially start with
equal concentrations of activators and inhibitors, stochastic fluc-
tuations in activator concentration are required to initiate the
autoregulatory feedback loop in a few cells that leads to the
accumulation of activators and the specification of trichome iden-
tity (Figure 6D; Benítez et al., 2008; Bouyer et al., 2008; Dupuy
et al., 2008). Simultaneously, the inhibitors diffuse rapidly to
accumulate in surrounding cells blocking trichome identity in
the neighbors. Thus—similar to lateral inhibition with Notch-
Delta signaling—stochasticity in the levels of regulatory proteins
is required to initiate the patterning mechanisms that break the
symmetry of identical cells and to allow neighboring cells to adopt
different identities.

REGULATION OF STOCHASTIC MECHANISMS
While stochasticity is often needed to initialize cellular decisions,
regulatory mechanisms are often utilized to stabilize those deci-
sions. For instance, in Saccharomyces cerevisiae, yeast cells must
determine a single bud site in order to produce a new daughter
cell. Normally, this occurs via the accumulation of polarity-
regulating factors, such as GTP-Cdc42p and its effectors, at spe-
cific locations marked by immobile landmark proteins (e.g., Rsr1)
(Bender and Pringle, 1989; Toenjes et al., 2004). Remarkably, in
the absence of landmark proteins, yeast still select a single site
for bud polarization and emergence, but the selection occurs at
random (Irazoqui et al., 2003; Wedlich-Soldner et al., 2003).

In this case, regulatory feedback loops are needed to ensure
that only one bud site is chosen. Initial studies using mathemat-
ical modeling suggest that accumulation of polarity complexes
occurs via a positive feedback loop that eventually leads to deter-
mining the polarization axis (Kozubowski et al., 2008; Howell
et al., 2009). However, these models do not fully explain the
observed behavior of polarity factors. Oftentimes, polarity com-
plexes are observed accumulating and re-locating at multiple sites
before a final site is picked. Thus, it is hypothesized that polar-
ity regulator complexes compete with one another until only one
complex is victorious (Goryachev and Pokhilko, 2008; Howell
et al., 2009).

Howell et al. (2012) used high-resolution filming, modeling,
and genetic analyses to investigate the formation of polarity-
regulating complexes in vivo. Howell et al. found that in some
yeast cells, not only do multiple polarity complexes form and
compete with one another, but also that concentrations of these
complexes oscillate, suggesting that these factors may be regulated
via a negative feedback loop. To test this hypothesis, Howell et al.
developed a series of models that tested the consequences of vari-
ous feedback loops on polarity. They saw that when models only
incorporated a positive feedback loop, stochastic concentrations
of polarity regulators were amplified, making cells very sensi-
tive to protein concentration changes and often causing regula-
tors to disperse throughout the plasma membrane (Figure 7A).
Whereas, if negative feedbacks were added to the positive feed-
back in the model, the polarization was more robust because
the negative feedback decreased a cell’s sensitivity to stochastic

FIGURE 7 | Regulatory mechanisms stabilize cellular decisions initiated

by stochasticity. (A) Yeast must select a single bug site and when landmark
proteins are absent the site is selected stochastically. Computational
modeling suggests that both positive and negative feedback loops are
necessary to amplify and yet constrain this random bud polarization to ensure
that a single bud site is selected. In models with only positive feedback
loops, stochastic fluctuations in polarity regulating complexes increase,
causing polarity regulators to either disperse on the plasma membrane or
form large patches (left). However, when negative feedback is added to the
positive feedback model, a cell becomes less susceptible to noise, causing
proper polarization (right). Reprinted from Howell et al. (2012) Copyright, with
permission from Elsevier. (B) BASL undergoes polarity switching during
asymmetric cell division in Arabidopsis. BASL (green) accumulates on the
cell periphery farthest from the intended division plane. Once asymmetric
division occurs, BASL disappears (gray) and re-accumulates on the farthest
cell periphery of the newest daughter cell. When two equivalent locations in
the periphery of the cell are available for BASL accumulation, BASL appears
to pick one randomly. This raises the question of whether BASL accumulation
is regulated by a similar stochastic mechanism to that observed in bud site
selection in yeast. The blue dot represents the formation of a guard mother
cell, the red dot represents nuclei with BASL accumulation, and the yellow
dot represents nuclei without BASL accumulation. Adapted from Robinson
et al. (2011). Reprinted with permission from AAAS.

concentration changes (Figure 7A). This suggests that even if a
cell employs stochastic mechanisms, the overall noise may be
partially filtered through feedback loops (Figure 1C). Filtering
stochasticity via genetic regulation has also been observed in other
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biological systems. For example, during Caenorhabditis elegans
development, skn-1 normally buffers stochasticity in the intestinal
specification gene network. Mutations in skn-1 cause downstream
genes to become susceptible to random fluctuations of expres-
sion, which consequently generates phenotypic variation during
intestinal cell differentiation (Raj et al., 2010).

Conversely, models of phyllotaxy (i.e., the spacing pattern of
primodia emerging from the meristem) emphasize how robust
patterns can emerge from cellular interactions that retain a high
level of stochasticity (Jeune and Barabé, 2006; Jönsson et al.,
2006; Smith et al., 2006; Stoma et al., 2008; Mirabet et al., 2012).
However, careful analyses of phyllotactic patterning reveal that
noise at the local level can have visible consequences at the
whole-organism scale. For instance, fluctuations in the tempo-
ral sequence of organ initiation can cause permutations in the
sequence of primordia initiations, leading to new phyllotactic
angles between successive siliques along the stem (Mirabet et al.,
2012; Besnard et al., 2014). Altogether, this suggests that stochas-
ticity is not simply buffered out, but plays a regulatory role in
pattern formation in both plants and animals.

In plants, an analogous example of cell polarity generation
is BASL-mediated asymmetric division in stomatal patterning.
BASL polarizes as a crescent in the periphery of the cell located
opposite the position where the next asymmetric stomatal lin-
eage division will occur (Dong et al., 2009). BASL also localizes
dynamically to the nucleus (Dong et al., 2009).

Interestingly, in stomata lineage cells, BASL has been shown
to undergo polarity switching to establish the orientation of the
asymmetric cell divisions in a similar manner to Cdc24—one of
the polarity regulating proteins needed for yeast bud site selec-
tion. In stomatal precursor cells, BASL is initially localized in
the nucleus and the cell periphery farthest from the future site
of the asymmetric division plane (Dong et al., 2009; Robinson
et al., 2011). Once asymmetric division occurs, BASL will re-
localize once again to the cell periphery farthest from this new
cell wall, switching polarity post-mitosis (Figure 7B; Dong et al.,
2009; Robinson et al., 2011). In a few instances, however, stom-
atal precursor cells have symmetric geometry with respect to the

new cell wall, in which case BASL has equal probability of local-
izing on either side of the cell (Figure 7B; Robinson et al., 2011).
In this case, only one polarity site is chosen, and it has been sug-
gested that small stochastic fluctuations of BASL are instrumental
in the random choice of wall.

How BASL localizes and undergoes polarity switching is cur-
rently unknown. However, deletion variant studies have shown
that the C-terminal region of BASL is needed for peripheral cell
wall localization and is sufficient to rescue the basl-1 phenotype
(Dong et al., 2009). As more information about BASL is revealed,
it will be interesting to see whether it is subjected to regulated
stochasticity as observed in yeast bud site selection.

STOCHASTIC PROCESSES ARE MODULATED VIA MECHANICAL
PROPERTIES
The cellular arrangement of the interfollicular epidermis is
another example of how regular patterns can arise via stochas-
tic processes. In the mouse ear, the epidermis is arranged into
columnar structures of hexagonal keratinocytes. Keratinocytes
differentiate from the underlying cells, which are produced by
the proliferative cells in the basal cell layer (Figure 8; Solanas and
Benitah, 2013).

It has long been hypothesized that the interfollicular epidermis
is organized into “epidermal proliferative units.” The epidermal
proliferative units hypothesis assumes that underlying the cen-
ter of each keratinocyte column, there is a slow-cycling stem cell
in the basal layer, which will give rise to transient amplifying
daughter cells. These daughter cells will then eventually differen-
tiate into keratinocytes (Allen and Potten, 1974; Potten, 1981).
This model assumes that epidermal proliferative units are spa-
tially constrained because each keratinocyte must be supported
by an underlying basal cell.

Recently, a new model—which challenges the epidermal pro-
liferative unit model—maintains epidermal homeostasis without
use of a slow-cycling stem cell. This model suggests that all cells in
the basal layer are equivalent and can give rise to daughters with
three random cell fates: (1) two proliferating basal cells, (2) two
cells differentiating into keratinocytes, or (3) one proliferating

FIGURE 8 | Stochasticity promotes tissue reproducibility in mouse ear

epidermis. In the mouse interfollicular epidermis, regular columns of
keratinocytes in the stratum corneum differentiate from cells in an
underlying basal layer. A new model suggests that the daughters of
mitotically dividing basal cells within the basal layer adopt three potential
fates in a stochastic but probabilistic manner: (1) two mitotically dividing

basal cells, (2) two post-mitotic differentiating basal cells, or (3) one
mitotically dividing basal cell and one post-mitotic differentiating basal cell.
Post-mitotic cells differentiate into flattened hexagonal keratinocytes and
the mechanical properties of the cell shape ensure the regularity of the
stratum corneum. Reprinted with permission from MacMillan Publishers
Ltd: Solanas and Benitah (2013).
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basal and one differentiating keratinocyte (Figure 8; Clayton
et al., 2007). In this model, each fate exists with equal probabil-
ity, creating a balance between cells undergoing proliferation and
differentiation. One of the key predictions of this model is that the
spatial arrangement of basal cells is random and doesn’t correlate
with that of the keratinocytes above it (Clayton et al., 2007).

Doupé et al. (2010) investigated whether the spatial arrange-
ment of mouse ear epidermal cells was random. Using quantita-
tive genetic cell lineage tracing and 3D imaging, the authors saw
that basal cells often crossed the columnar boundaries and gave
rise to the three proposed random cell fates. Additionally, by look-
ing at the time distribution of the cell cycle, the authors showed
that entry into cell cycle varied stochastically. These results over-
all imply that tissue organization within the mouse ear epidermis
follows the stochastic model. Thus, if basal cell fate and division
is random, how is tissue reproducibility achieved?

The authors propose that the morphological and physical
constraints caused by the flattened hexagonal shape of the ker-
atinocytes causes them to pack into regular columns, thus filtering
out the stochasticity in the underlying basal cells (Figure 8).
Furthermore, the authors suggest that undifferentiated basal cells
may be regulated through contact inhibition and only divide
when a cell leaves the layer through differentiating as a ker-
atinocyte. These constraints allow for the generation of new
keratinocytes without the presence of slow-cycling stem cells or
transient amplifying cells. This model is very attractive for main-
taining epidermal tissue homeostasis and easily explains how the
epidermis is able to recover after injury. In several other biolog-
ical systems, mechanical constraints also ensure tissue regularity
despite stochasticity of cellular actions (Martin et al., 2009; Pouille
et al., 2009; Marinari et al., 2012).

Mechanical feedback loops can also amplify stochastic differ-
ences between cells to promote organogenesis in the plant shoot
apical meristem. The shoot apical meristem is an organized pro-
liferating structure that generates all the aerial plant tissues and
organs. The SAM is made up of three zones: (1) the central zone,
which consists of a small population of stem cells needed to main-
tain the meristem, (2) the surrounding peripheral zone, where
primordia grow to give rise to successive organs, and (3) the rib
meristem, which gives rise to the stem (Murray et al., 2012). In the
meristem, the cells generally start out isotropic but transition into
being anisotropic as the primordia emerge. Cortical microtubule
dynamics have been shown to play an important role in facili-
tating this transition. The cortical microtubules orient along the
principal direction of tensile stress in cells (Hamant et al., 2008;
Sampathkumar et al., 2014). Cellulose synthase complexes track
along the cortical microtubules to deposit new cellulose microfib-
rils in the cell wall (Paredez et al., 2006), which reinforce the wall
to resist stress and orient growth.

Uyttewaal et al. (2012), used a cell-based 2D model to show
that a cell’s response to mechanical stress (mediated by corti-
cal microtubules) influences growth homeostasis by modulating
intercellular growth variability. The Uyttewaal et al. model is
based upon four major assumptions: (1) each cell has its own
intended growth rate; however, the actual growth rate of one cell
must partially compensate for the intended growth rates of its
neighboring cells; (2) because cell activity is inherently noisy, each

cell’s intended growth rate is subjected to stochastic fluctuations
causing cellular heterogeneity amongst a population of cells; (3)
cell growth is symplastic; cells do not migrate or detach from
one another; (4) differential growth rates between adjacent cells
generate a local pattern of mechanical stress, triggering cortical
microtubules and cellulose microfibrils to reorient themselves to
promote local anisotropic growth.

Through testing different growth scenarios in the model, the
authors observed in silico that increasing the ability of a cell to
respond to mechanical stresses (i.e., those caused by differential
growth) decreases the potential for a population of cells to have
variable growth rates, thus promoting homogeneous cell growth.
In other words, contiguous cells with distinct intended growth
rates can reach a growth compromise via mechanical interactions,
thus buffering stochasticity in the growth rate. However, if the
mechanical stress feedback surpasses a particular threshold, cells
switch from having a homogenized growth rate to a highly vari-
able growth rate (Figure 9A). As cells respond strongly to growth-
derived stresses, the rapid reorientation of their microtubules
leads to a modification of their anisotropic growth, which fur-
ther increases the growth heterogeneity between adjacent cells
in a positive feedback loop, thus amplifying stochastic differ-
ences to promote differences between cells. Overall, this model
predicts that local mechanical stresses—induced by differential
growth—can either reduce or promote growth heterogeneity.

Analysis of growth in real meristems rather supports the lat-
ter scenario—that mechanical stress feedback amplifies stochastic
differences between cell growth rates. For example, regions where
stress levels are the most directional (e.g., the boundary between
the meristem and an emerging organ) are also the regions where
growth is the most heterogeneous (Figure 9B). Conversely, reduc-
ing the ability for meristematic cells to respond to mechanical
stress in the microtubule-severing mutant katanin results in more
homogeneous growth. Remarkably, stochasticity, in relation to
mechanical stress, acts as an instructing signal that actively main-
tains a level of variability. Such high variability may promote
cells to undergo differential growth rates at a lower cost and
thus potentiate organogenesis (Figure 9B; Uyttewaal et al., 2012).
Further work is required to analyze whether a similar scenario is
occurring in other plant and animal contexts.

A TRANSCRIPTION FACTOR PROMOTES STOCHASTICITY IN PLANT
CELL DIVISION
Genetic mechanisms can also enhance stochasticity to promote
regularity in organogenesis. Schiessl et al. (2012) demonstrated
that the transcription factor JAGGED promotes stochasticity in
the cell division and isotropic growth in initiating sepal primor-
dia on the flanks of the floral meristem. Schiessl et al. performed
dynamic 3D analysis of cell geometry, growth and DNA syn-
thesis of wild type and jagged-1 mutant sepal primordia and
compared it to the isotropically growing floral meristem. In this
study, Scheissl et al. found that without JAGGED, the sepal pri-
mordium loses its ability to grow anisotropically, resembling the
floral meristem. Additionally, Schiessl et al. discovered that in
both the floral meristem and jagged-1 sepal primordia, cell cycle
and cell volume are linked, where a certain cell volume must be
attained to initiate entry into S phase of the cell cycle. Whereas
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FIGURE 9 | Mechanical stress and genetics can enhance stochasticity

to promote heterogeneous growth. (A,B) Mechanical feedback loops can
amplify variability in cellular growth rates to direct morphogenesis. (A)

Microtubule (green) orientation is initially random when little mechanical
force is exerted on cells. If some cells grow more rapidly than their
neighbors (top and bottom cells in the left panel), they exert a force on the
slower growing cells (in the middle). Once force surpasses a particular
threshold (red arrows), microtubules will re-orient in a parallel manner to
induce anisotropic growth that resists the mechanical stress. This further
amplifies differential growth between neighboring cells. (B) On the organ
scale, mechanical stress can amplify differences in growth rates to promote
tissue morphogenesis. The shoot apical meristem (blue) endures increased
mechanical stress and anisotropic growth in the peripheral zone, where the
organ primordium is emerging (orange to red). Cortical microtubules (green)

(Continued)

FIGURE 9 | Continued

orient parallel to the emerging organ. Reprinted from Uyttewaal et al.
(2012), Copyright, with permission from Elsevier. (C) JAGGED promotes
variability by uncoupling cell size from the cell cycle in the organ primordia.
In the floral meristem, cells grow isotropically and must reach a certain size
to divide. This figure was reproduced from Schiessl et al. (2012), Copyright
Elsevier. (D) JAGGED represses expression of the cyclin-dependent kinase
inhibitors KRP2 and KRP4 to promote variability. Double and triple mutants
with jag-1, krp4-1, and krp2-3 partially rescue the jag-1 phenotype,
suggesting that JAG initiates cellular variability partially through repression
of KRPs. Reprinted from Schiessl et al. (2014).

in wild-type sepal primordia, no correlation is found between S
phase and cell volume (Figure 9C). This suggests that JAGGED is
needed to uncouple the cell cycle from cell volume, which overall
leads substantial variability in sepal cells.

Interestingly, mutations in JAGGED have no major influence
on sepal primordia emergence. This suggests that cellular hetero-
geneity is not a prerequisite for initial organ outgrowth in the
flower. However, jagged-1 mutants generate shorter and narrower
petals and sepals. This raises the intriguing possibility that cell
heterogeneity may be important for proper organ growth and
morphology.

In 2014, Schiessl et al. performed Chip-Seq to identify
gene targets of JAGGED. In their analysis, they found that
JAGGED repressed various genes, including cyclin-dependent
kinase inhibitors KRP2 and KRP4, which have previously been
shown to control G1 to S-phase transitions during the cell cycle.
This finding supports the argument that JAGGED induces cell
proliferation during floral development. Furthermore, Schiessl
et al. created double and triple mutants with jagged-1, krp4-1 and
krp2-3. Remarkably, these mutants resulted in a partial rescue of
the jagged-1 phenotype (Figure 9D). Thus, JAGGED promotes
cellular variability—partially through repression of KRPs—and
the regular growth of the floral organs. We have a lot more to learn
about how this cellular heterogeneity contributes to the regularity
of organ growth.

CONCLUSION AND PERSPECTIVES
It is not always easy to recognize stochasticity because it is often
underlies regulated biological events. Nevertheless, many mecha-
nisms take advantage of stochasticity to initiate important deci-
sions necessary for proper development (Figure 1). Stochasticity
is critical for creating small differences between identical neigh-
boring cells. This does not suggest that deterministic regulation
is not important during development. On the contrary, genetic
and mechanical feedback loops are essential for amplifying this
noise to solidify developmental decisions as well as for suppress-
ing excess noise that could lead to deleterious developmental
outcomes. These feedback loops are often instrumental in induc-
ing patterning mechanisms that ensure regular development of
the tissue. Thus, regular development often requires stochasticity
to initiate the process.

As the role of stochasticity during multicellular development
becomes more apparent, it is necessary to develop new quan-
titative technology to study it, notably to assess and compare
averages together with standard deviations. In unicellular systems,
the development of single-cell fluorescence assays has led to the

www.frontiersin.org September 2014 | Volume 5 | Article 420 | 11

http://www.frontiersin.org
http://www.frontiersin.org/Plant_Evolution_and_Development/archive


Meyer and Roeder Stochasticity in plant cellular development

rapid progression of knowledge about stochasticity in gene regu-
lation. However, in multicellular systems, we need to create new
techniques to effectively study stochasticity.

Studying stochasticity is challenging because it is a behavior,
not a gene function, and therefore you cannot simply knock out
or overexpress it to analyze its function. Thus, techniques that
abate or enhance stochastic behavior must be developed to study
the consequences of stochasticity during development. In a recent
paper from Dar et al. (2014), noise-modulating compounds (e.g.,
chromatin remodeling factors) were successfully used to enhance
or reduce noise. Therefore, using noise-modulating compounds
to manipulate stochasticity seems promising for studying the
role of stochasticity in asymmetric cell response and should be
explored in other biological systems.
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