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Multicellularity in green algae: upsizing in a walled complex
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Modern green algae constitute a large and diverse taxonomic assemblage that encom-
passes many multicellular phenotypes including colonial, filamentous, and parenchymatous
forms. In all multicellular green algae, each cell is surrounded by an extracellular matrix
(ECM), most often in the form of a cell wall. Volvocalean taxa like Volvox have an elaborate,
gel-like, hydroxyproline rich glycoprotein covering that contains the cells of the colony.
In “ulvophytes,” uronic acid-rich and sulfated polysaccharides are the likely adhesion
agents that maintain the multicellular habit. Charophytes also produce polysaccharide-
rich cell walls and in late divergent taxa, pectin plays a critical role in cell adhesion in
the multicellular complex. Cell walls are products of coordinated interaction of membrane
trafficking, cytoskeletal dynamics and the cell’s signal transduction machinery responding
both to precise internal clocks and external environmental cues. Most often, these activities
must be synchronized with the secretion, deposition and remodeling of the polymers of
the ECM. Rapid advances in molecular genetics, cell biology and cell wall biochemistry of
green algae will soon provide new insights into the evolution and subcellular processes
leading to multicellularity.
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INTRODUCTION
A multicellular organism consists of an organized aggregation
of cells that are products of geometrically patterned cell divi-
sions which maintain physical communication networks with
each other. The evolution of the multicellular form or phenotype
has occurred in multiple and diverse assemblages of eukary-
otes distributed over the kingdoms of life. It is widely accepted
that multicellularity evolved six times in modern photosyn-
thetic eukaryotes including twice in the red algae (Rhodophyta),
twice in the photosynthetic stramenopiles (e.g., brown algae or
Phaeophyta) and twice in the green algae (Niklas, 2014). The
multicellular phenotypes exhibited in modern day green algae
are quite diverse and are exemplified by colonies, unbranched
and branched filaments, and parenchymatous thalli (Graham
et al., 2009). The evolution of these multicellular forms in green
algae has been of profound importance to the natural history
of the planet. In the charophyte lineage (e.g., Streptophyta;
Leliaert et al., 2012) of green algae, one ancient multicellular form
emerged onto land approximately 450–500 million years ago
and ultimately yielded land plants, i.e., a transformative event
that changed the biogeochemistry of the planet. One of the
key cellular features of multicellular green algae as well as all
other multicellular photosynthetic eukaryotes is the presence of
an extracellular matrix (ECM) that is positioned on the exter-
nal face of the plasma membrane of each cell. Most often,
the ECM is expressed in the form of a highly complex com-
posite of fibrillar and matrix polymers called a cell wall. Each
cell of multicellular green algae and their descendants, the land
plants, produces a cell wall that must expand and chemically
modulate in coordination with neighboring cells. The produc-
tion of the cell wall during cell division requires significant
contributions of the cell’s membrane trafficking and cytoskeletal

networks that are carefully regulated by complex gene expression
programs and signal transduction cascades reacting to external
stresses (e.g., light, temperature, contact with a pathogen). The
cell division mechanism must also create and maintain intercel-
lular symplastic connections through the cell walls of adjacent
cells throughout the life cycle so as to establish an effective
intercellular communication network necessary for multicellular
life.

Recent investigations based on molecular, biochemical, devel-
opmental and cell biology-based studies have provided signif-
icant insight into the evolution of multicellularity in green
algae and the subsequent origin of land plants. Many out-
standing reviews are available that summarize these findings
(Niklas, 2004, 2014; Bennici, 2008; Leliaert et al., 2012; Pires
and Dolan, 2012; Niklas and Newman, 2013; Niklas et al.,
2013; Zhong et al., 2013). This paper focuses on the role
of the cell wall and its inclusive polymers in the devel-
opment and evolution of multicellular green algae. Signif-
icant differences exist in polymer composition of the cell
walls of the major green algal lineages expressing multi-
cellularity (e.g., volvocine forms from the chlorophyte line
vs. charophytes). However, recent studies have also demon-
strated that remarkable similarity exists in cell wall composi-
tion of late divergent charophyte green algae with land plants
(Domozych et al., 2007, 2012; Eder and Lütz-Meindl, 2008,
2010; Popper and Tuohy, 2010; Sørensen et al., 2010, 2011).
It is apparent that the evolution of the cell wall was criti-
cal in the evolution of the multicellular phenotype. Further-
more, pre-adaptation of cell wall composition and architec-
ture in ancient multicellular charophytes was most likely very
important to the colonization and exploitation of terrestrial
habitats.
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VOLOCINE MULTICELLULARITY AND THE GLYCOPROTEIN
ECM
One of the earliest studied examples of the unicellular-to-
multicellular transition in green algae is the chlorophyte group,
Volvocales (Miller, 2010; Leliaert et al., 2012). This is an assem-
blage of organisms that exhibit flagella-generated motility during
a major part of their life cycles. The Volvocales include both uni-
cellular and multicellular taxa. In the latter, multicellularity is
exhibited in colonies that have permanent or transient cytoplasmic
connections and coordinated communication networks between
cells.

Chlamydomonas is the most well-known and – studied uni-
cellular volvocine genus and contains approximately 600 species.
Chlamydomonas is a spherical unicell with two anterior flagella
(Hallman, 2006). Cell division in Chlamydomonas yields four
daughter protoplasts, each of which produces a cell wall before
being released through the ruptured parental cell wall. Multicel-
lular taxa of the Volvocales include Gonium, Pandorina and most
well-known, Volvox. A Volvox colony consists of two cell types.
First, approximately 2,000–4,000 bi-flagellated somatic cells, each
similar in morphology to Chlamydomonas, form a single layer
that lines the outer surface of the colony (Figure 1). These cells
beat their flagella in synchrony to produce a coordinated rolling
motility of the colony in liquid medium. The somatic cells are
terminally differentiated in that they do not undergo cell division.
Interior to this layer are up to 16 reproductive cells or gonidia.
Each gonidium will undergo 11–12 synchronized cell divisions to
form a daughter colony positioned in the parent colony (Hoops
et al., 2006). Gonidial cytokinesis is phycoplast-mediated (Green
and Kirk, 1981; Green et al., 1981) but is incomplete resulting in
multiple physical connections in the form of narrow cytoplasmic
bridges or strands between cells. In Volvox carteri, each bridge is
approximately 200 nm in diameter and separated from adjacent
bridges by 500 nm. The bridges are positioned in a concentric ring
on the inner surface of the colony and are believed to hold the
entire embryo together. Each of these strands is lined by plasma
membrane and contains cytoplasm often with transient cytoskele-
tal components that bridge adjacent cells (Hoops et al., 2006).
A daughter colony contains approximately 100,000 bridges with

FIGURE 1 | Multicellular Volvox globator. (A) A colony consists of over
2,000 cells. Biflagellated somatic cells line the exterior of the colony and
gonidia (arrow) are embedded within the extracellular matrix (ECM).
bar = 100 μm. (B) Intercellular bridges (arrows) connect the somatic cells
of colony and penetrate the surrounding ECM. bar = 6 μm. Differential
interference contrast (DIC) light microscopy (LM) images.

each cell connected to an adjacent cell by about 25 bridges. The
two flagella produced in each of the cells of the daughter colony
are positioned inward. Daughter colony release from the parent
colony entails an inversion process so that the flagella are ultimately
positioned on the outside of the colony. The cytoplasmic bridges
between the cells are retained during inversion and are believed
to serve as braces for holding cells together in the colony dur-
ing inversion. In about one-half of all colonial volvocine species,
these cytoplasmic connections remain intact, become broader and
number 4–6 between cells. The cytoplasmc bridges are thought
to be conduits for signal transduction in coordinating cell divi-
sion in the developing daughter colony. The cells of the colony are
embedded in a distinct ECM often consisting of a cell wall and a
gelatinous matrix.

The “cell wall” of volvocine algae is very different from those
found in the charophytes and land plants, most notably in that it is
devoid of large and complex networks of polysaccharides. Rather,
the wall consists of a complex network of 25–30 hydroxyproline-
rich glycoproteins (i.e., HRGPs), some similar to extensin, that
form a weak non-covalent wall lattice (Keskiaho et al., 2007; Lam-
port et al., 2011). These HRGPs self assemble into dense fibrous
meshworks that are stablilized by cross-linking (Ferris et al., 2005).
High resolution TEM imaging of cryo-processed Chlamydomonas
cell walls reveals a crystalline outer layer that can be extracted
by chaotropic agents and a thick, inner insoluble layer (Voigt
et al., 2007). In Volvox, the wall/ECM is composed of at least
four distinct geographic regions with some of the HRGPs elab-
orating into a gel-like sheath (Kirk et al., 1986; Ertl et al., 1989,
1992). One major family of HRGPs of the cell walls of volvocine
taxa is the “pherophorins” (Hallman, 2006). The proteins of this
family exhibit a hydroxyproline-rich rod-like domain with sur-
rounding globular domains at its two termini that is similar to the
Solanaceae lectin class of extensins. It is thought that this lectin-
like carbohydrate-binding ability provides cross-linking capability
in the wall/ECM (i.e., adhesion).

The common ancestor of unicellular and multicellular
volvocine algae diverged relatively recently, i.e., 50–200 million
years (Herron et al., 2009). Likewise, comparative molecular anal-
yses have shown that Chlamydomonas and Volvox genomes are
remarkably similar (Prochnik et al., 2010). These two features have
enhanced the identification of key characteristics that separate
extant unicellular and multicellular taxa and those that may have
been critical to the evolution of the multicellular form. The Volvox
genome is approximately 17% larger than that of Chlamydomonas.
This is due in part to Volvox’s greater transposon/repetitive DNA
content, but more significantly, to Volvox’s increased numbers
of proteins, primarily those associated with an expanded and
highly compartmentalized ECM/cell wall (Prochnik et al., 2010).
In fact, it is estimated that each Volvox cell produces an ECM that
is 10,000 times larger than the ECM/wall of a Chlamydomonas
cell (Abedin and King, 2010; Blaby et al., 2014). This strongly
suggests that major elaborations of the ECM/cell wall were criti-
cal in the evolution of the multicellular habit in volvocine algae.
ECM/wall components form the structural framework that pro-
vides the resistive force that counterbalances turgor pressure which
would otherwise make formation/maintenance of the cytoplasmic
bridges impossible. Likewise, the elaboration of the lectin-like
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pherophorins and their carbohydrate-binding capability in the
ECM may very well be the glue that keeps the multicell aggre-
gation of cells in the colony together. Interestingly, the HRGPs of
multicellular volvocine taxa are not highly cross-linked especially
when compared to extensins in land plants. Therefore, this ECM
framework cannot support large and complex networks of struc-
tural polysaccharides. This is believed to limit the size of expansion
of volvocine taxa (Lamport et al., 2011). It is also interesting to note
that some HRGPs of both multicellular and unicellular volvocine
taxa have evolved into key macromolecules used for sexual signal-
ing (e.g., sex inducers, sexual agglutinins; Ender et al., 1999; Ferris
et al., 2005; Lee et al., 2007). The number of these is also much
greater in Volvox than in unicellular volvocine taxa. This has led
to the supposition that during the evolution of the multicellular
form, ECM/cell wall proteins also diversified and most likely were
recruited into developmental processes (e.g., sexual reproduction),
thus representing a source of adaptive plasticity that is specific to
the volvocine algae (Prochnik et al., 2010).

MULTICELLULARITY IN OTHER CHLOROPHYTES: WALLED
The Volvocales represent just one of the many taxonomic groups
in the diverse chlorophyte line of evolution in the green algae.
Unlike the volvocine group though, there is a paucity of informa-
tion on, and comparative studies of, the chemical nature of the cell
wall of these algae (see Domozych et al., 2012) and few genomes
have been thoroughly analyzed. Multicellular thalli are found in
the chlorophytes including branched and unbranched filaments
as well as filamentous/parechymatous sheet-like thalli of the Ulva-
Ulotrichales-Trentopohliales group (Cocquyt et al., 2010; Leliaert
et al., 2012). Additionally, there are some taxa that produce large
thalli but represent multinucleate cells that are products of uncou-
pled cytokinesis and mitosis, i.e., the siphonocladous ulvophytes.
These organisms have external cell walls but no cross walls. How-
ever, cytoplasmic domains containing a nucleus are individualized.
Within the diverse group of multicellular chlorophytes, many cell
wall types exist. In the freshwater filamentous taxon, Oedogonium,
it has been shown that cellulose, pectins, including homogalac-
turonans (HGs) and rhamnogalcturonan I (RGI), and HRGPs
like extensin and arabinogalactan proteins (AGPs) are present in
the cell wall (Estevez et al., 2008). The role of these polymers in
cell–cell adhesion may be similar to the charophytes (see below)
but further studies are clearly needed to resolve this. In marine
green seaweeds, there is much diversity in cell wall chemistry.
For example in Codium, sulfated glucuronoxylomannans, glu-
curonoxylorhamnogalactans and) sulfated xyloarabinogalactans
are major cell wall components (Estevez et al., 2009; Fernandez
et al., 2010). In the related Bryopsis, sulfated galactans and rham-
nans are also major wall constituents (Ciancia et al., 2012). In
Ulva, a main constituent of the cell wall is ulvan whose backbone
structure includes sulfated rhamnose residues linked to uronic
acids, resulting in a repeated disaccharide unit β-D-glucuronosyl-
(1,4)-α-L-rhamnose 3-sulfate, called aldobiouronic acid (Lahaye
and Robic, 2010). This polysaccharide is found in spaces between
adjacent cells (Bobin-Dubigeon et al., 1997), i.e., putative cell–
cell adhesion zones. In the related genus, Monostroma, sulfated
rhamnans are also found in the cell walls (Mao et al., 2008). The
role of the cell wall and inclusive components in maintaining the

cell–cell adhesive network in multicellular chlorophytes awaits fur-
ther study. However, the abundance of uronic acid-rich and/or
sulfated polysaccharides in the cell wall matrix may indicate that
they are key components in maintenance of wall microarchitecture
and forming the framework of the multicellular thallus.

CHAROPHYTE MULTICELLULARITY AND THE JOURNEY TO
LAND PLANTS
The charophyte or streptophyte (Streptophyta) clade is the lin-
eage of green algae that is ancestral and most closely related
to land plants (Leliaert et al., 2012). Modern charophytes
exhibit a wide range of morphological forms including uni-
cell (Mesostigma), sarcinoid packet (aggregations of 4–8 cells
but with no intercellular connections; Chlorokybus) and diverse
multicellular thalli that includes unbranched filaments (Kleb-
sormidium, Spirogyra, Mougeotia, filamentous desmids), branched
filaments (Coleochaete nitellarum), filamentous aggregates that
form 3-dimensional thalli (Chara) and pseudoparenchymatous
forms (Coleochaete orbicularis). Many multicellular charophytes
also exhibit notable structural and developmental characteris-
tics that are also found in land plants. For example, in many
multicellular charophytes, intercellular connections in the form
of plasmodesmata penetrate cell walls and join adjacent cells
(Cook and Graham, 1999). The plasmodesmata are primarily
formed during cell division, specifically due to interruptions to
the phragmoplast-cell plate mechanism in a process similar to
that of land plants. Some charophytes exhibit developmental pro-
cesses that also lead to dorsiventral symmetry, a morphogenetic
process that is commonly found in land plants. Some taxa of the
late divergent clades, i.e., the Coleochaetales and Charales, also
produce multicellular gametangia such as oogonia and antheridia
that are quite similar in construction to gametangia of land plants.
Finally, recent molecular studies of charophytes have identified
the biosynthetic pathways for the synthesis and perception of sev-
eral hormones that were previously thought to be found only in
land plants (e.g., strigolactones, ethylene; De Smet et al., 2010;
Delaux et al., 2012; Hori et al., 2014). All of these characteris-
tics demonstrate that charophyte multicellularity is quite complex
and that several ancient taxa evolved pre-adaptive mechanisms for
the exploration, invasion and conquest of land 450–500 million
years ago.

All multicellular charophytes possess cell walls that are com-
posed of an assortment of neutral and acidic polysaccharides along
with various glycoproteins, i.e., a condition very different than the
wall composition of volvocine taxa. Taxa of the late divergent
charophyte clades (e.g., Zygnematales, Coleochaetales, Charales)
have remarkably similar polymer composition to the cell walls
of many land plants (Sørensen et al., 2010, 2011) and it is cur-
rently presumed that these polymers are most likely incorporated
into the basic microarchitectural design of the wall in a similar
fashion to the cell walls of land plants. The current microarchi-
tectural model of the cell wall is one of a fibrous composite with
cellulose microfibrils forming the load-bearing component of the
wall (Cosgrove and Jarvis, 2012). The microfibrils are tethered
by various hemicelluloses and embedded in a matrix of pectins
and proteins including extensin and AGPs (Burton et al., 2010).
Various enzymes (e.g., pectin methylesterase or PME, Xyloglucan
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Endotransglycosylase or XET, wall-associated kinases, WAKS),
non-enzymatic proteins (e.g., expansin), ions (e.g., Ca2+) and
water also contribute to the structure and development of the
wall (Cosgrove, 2005; Eklof and Brumer, 2010; Jolie et al., 2010;
Frankova’ and Fry, 2013; Fry, 2011; Liu et al., 2013).

It is quite apparent that the outer layers of the wall of any cell in
a multicellular system represent the physical contact points with
the cell walls of adjacent cells and accommodate cell–cell adhesion.
In the thallus of multicellular charophytes and land plants, cells
are always found attached to adjacent cells via components of their
cells walls, i.e., from the time they are born as daughter cells to their
terminal differentiated forms (Jarvis et al., 2003). Cell–cell attach-
ment is under constant pressure by turgor. Turgor pressure is the
force necessary for regulating expansion and providing mechan-
ical rigidity. However, it also creates formidable stress that can
shear adjacent cell walls apart and separate cells. This is combated
by cells reinforcing specific zones of their cell walls that are located
at points of maximal stress and include the cell corners (tricel-
lular junctions; sensu Jarvis et al., 2003) and the middle lamella
found between adjacent cell walls (Caffall and Mohnen, 2009). In
the cell walls at these loci, specific polymers are incorporated to
promote the adhesion efficacy. This adhesion mechanism is also
a critical part of cell expansion of young daughter cells as highly
coordinated wall polymer secretion and modifications must occur
between neighboring cells in order to ensure that their adherent
walls remain fused.

The class of wall polysaccharides that is commonly found in
the middle lamella and cell junctions and one that has been
directly linked to binding adjacent cells in multicellular tissues
is pectin. Pectin constitutes a diverse group of galacturonic acid
(GalA)- containing polysaccharides that make up a significant por-
tion of the matrix of the cell wall (Mohnen, 2008; Caffall and
Mohnen,2009). Pectin consists of three major subclasses: HG,sub-
stituted HGs (e.g., xylogalacturonans, rhamnogalacturonan II),
and rhamnogalacturonan I (RG-I; Willats et al., 2001; Mohnen,
2008). HG is the most common of pectic polysaccharides con-
stituting greater than 60% of the pectin of primary plant walls
(Caffall and Mohnen, 2009). HG is composed of a linear chain of
α-1,4-linked GalA residues that are often methylesterified on C6
or acetylated on C2 and/or C3. HG is the main pectin found in
key adhesion zones of multicellular plants and its post-secretion
modulation dynamics provide insight into its importance in adhe-
sion (Domozych et al., 2014). HG is thought to be synthesized in a
highly methylesterified form in the medial locus of Golgi apparatus
and transported to the cell surface by the secretory vesicle network
(Held et al., 2011; Driouich et al., 2012). When secreted into the
wall, the HG is de-esterified by enzymes such as pectin methyl
esterase or PME. This action exposes a negatively charged car-
boxyl group at C-6 of the GalA residue. This subsequently allows
for a complexing or crosslinking of the GalAs of adjacent pectin
chains with cations like Ca2+ to form stable gels with HG chains
in a tightly packed conformation. This occurs only if 10 or more
consecutive un-methylesterified GalA residues are coordinated in
each chain (i.e., available for the cross-linking). It is very likely that
these Ca2+-HG complexes create a stable, 3-dimensional adhe-
sive network between adjacent cells in the multicellular system.
Likewise, while this cross-linked network may only include HGs,

it appears more likely that this adhesive network includes pectic
chains covalently linked to other insoluble polysaccharides in the
cell walls of the adjacent cells. For example, HG may be just one
part of a larger or super pectin macromolecule that also contains
RG-I. RG-I is made of repeating subunits of -> α -D-GalA-1,2-
α -l-Rhamnose 1,4- that may be substituted with unbranched or
branched arabinan, galactan, or arabinogalactan side chains. The
RG-I is covalently linked to the HG part of the super pectin macro-
molecule. Recently, exciting new data (Tan et al., 2013) show that
in Arabidopsis, the RG-I component of the super pectin complex
is attached to AGP and arabinoxylan in the wall. Earlier work
showed that side chains of the RG-I bind to cellulose microfibrils
(Zykwinska et al., 2005, 2007). This evidence clearly shows direct
links between the diverse set of wall polysaccharides and suggests
that branched RG-I contributes to cell wall-based cellular adhe-
sion in multicell thalli (Mendu et al., 2011; Agoda-Tandjawa et al.,
2012). At this time, a working model of the microarchitecture
of adhesion zones of cell walls in the multicellular system would
still be based on Ca2+-HG cross-linking but would also include
multiple connections with other wall polymers via RG-I to form
a strong network that can resist the forces of expansion fueled by
turgor. Future work on identifying the inclusive interpolymeric
associations of the middle lamella and cell junctions will provide
critical insight into the maintenance of multicellular condition in
charophytes and land plants.

Pectin and pectin modifications including HG and HG cross
linking with Ca2+, have been well-characterized in charophytes
(Proseus and Boyer, 2008; Domozych et al., 2014) and is found
in the junction zones between adjacent cells (Domozych et al.,
2009a). In Coleochaete, zoospores do not have a cell wall but rather
a layer of small scales. When zoospores settle down and divide
to form multicellular thalli, their scales are sloughed off and are
replaced by a pectin-rich cell wall (Figure 2). HG is also a major
component of the cell walls of Chara (Figure 3) and is commonly
found in zygnematalean taxa including desmids (Domozych et al.,
2007, 2009b; Eder and Lütz-Meindl, 2008, 2010). In the desmid,
Penium, Ca2+-complexed HG forms the distinctive outer wall lat-
tice. Its localized secretion and incorporation in the cell wall is
a major event associated with the cell’s unique polar expansion
mechanism (Domozych et al., 2014). This pectin-based expansion
mechanism appears to be very similar to the pectin modifications
found in the middle lamella of land plants. This supports the idea
that cell–cell adhesion in embryophytes and most likely in mul-
ticellular charophytes, evolved by modification of the functional
mechanism of cell wall expansion operating in cell wall progenitors
(Niklas and Newman, 2013).

The creation of these special zones of cell walls in strategic
areas of cell surfaces in order to maximize adhesion efficacy is
paramount to multicellular plants. This requires precisely timed
and coordinated interactions between the membrane trafficking
networks including exocytosis and endocytosis, the cytoskeletal
system and particular domains of the plasma membrane/apoplast
containing wall modulating enzymes and other effector molecules.
Furthermore, all of this must synchronize with highly com-
plex internal regulatory cascades that are part of developmental
cycles and be capable of modification in response to environmen-
tal stress. Much of our understanding of these events has been
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FIGURE 2 | Development of the multicellular phenotype in

Coleochaete orbicularis. (1) Unicellular zoospores (A) will swim for
several hours before settling down (DICLM; bar = 7 μm). The plasma
membrane of zoospores is covered by a layer of square scales (B; hollow
arrows). In zoospores that have attached surface, fibrillar cell wall material
appears under the scale layer [arrows; transmission electron microscopy
(TEM) image bar = 500 nm]. (2) After settling down, a cell wall quickly
forms on each zoospore (C: DICLM; bar = 5 μm). The wall labels with the
monoclonal antibody, JIM5, with specificity for relatively low esterified HG
[D; arrow; confocal laser scanning microscope (CLSM) image; bar = 4 μm].
(3) During intermediate stages of development, the walled cell divides into
a 2-cell stage (E, arrow; bar = 3 μm), a 4-cell stage (F; arrows; bar = 4 μm)
and an 8-cell stage (G, arrows; bar = 6 μm). Images (E–G) are DICLM
images. The cell walls of each cell of these multicellular stages (arrows)
label with JIM5 (H, arrows; CLSM; bar = 3 μm). (4) Late stages of
multicellular development. The mature thallus consists of several 100 cells
organized in a flattened disc (I; DICLM; bar = 10 μm). The cells of this
thallus label with JIM5 (J; arrows; CLSM; bar = 20 μm). The individual cells
of the thallus are closely packed in the disk (K; circle inset; DICLM;
bar = 7 μm). (5) TEM immunogold labeling with JIM5 highlights HG in the
walls of cell junctions (L; arrows; bar = 500 nm).

based on land plants, particularly angiosperm model organism
such as Arabidopsis. However, recent studies clearly show that
many of these wall morphogenetic mechanisms are found in
modern day charophytes and most likely were available to the
charophyte that successfully ventured onto land 450–500 million
years ago. For example, phragmoplast-based cytokinesis provides
the structural framework and target zone for subcellular activ-
ities leading to cell plate formation that separates post-mitotic
daughter nuclei and creates a new cross wall including a new
middle lamella (Segui-Simarro et al., 2004; Jürgens, 2005; Ho

FIGURE 3 | Multicellularity in the charophyte Chara corallina. The
thallus consists of filaments tightly appressed to each other (A; arrows; LM;
bar = 600 μm). TEM imaging highlights the tight packing of the cells of the
thallus (B; bar = 4 μm). The cell walls of the outer cells of the thallus (large
arrows) and the cross walls (small arrow) label with JIM5 (C; CLSM;
bar = 200 μm). TEM immunogold labeling with JIM5 (black arrows) of a
developing cell plate during cytokinesis. In addition, plasmodesmata (white
arrows) are forming during this stage of the cell division (D; bar = 100 nm).
The wall–wall zone of adjacent cells labels with JIM5 (E; white arrows;
TEM; bar = 80 nm) and the middle lamella is also apparent (black arrow).
The cell walls of the junction zone between cells (F; white arrows; TEM;
bar = 400 nm) label intensely with JIM5. In the thallus, multiple
plasmodesmata penetrate the cell walls and connect adjacent cells (G, H;
arrows; TEM; G bar = 200 nm; H bar = 300 nm).

et al., 2011). At the termini of this expanding cell plate, recently
secreted wall polymers including HG derived from both daugh-
ter cells intermingle before becoming consolidated to form an
adhesive 3-dimensional network. Phragmoplast/cell plate-based
cytokinesis is also found in late divergent charophytes (Pickett-
Heaps et al., 1999: Doty et al., 2014) and results in the formation
of a new cross wall with a middle lamella. In land plants, modifi-
cations in ER distribution during cell plate formation lead to the
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creation of plasmodesmata, the conduits for intercellular transport
and intercellular communication in multicellular plant systems
(Lee and Sieburth, 2010; Fitzgibbon et al., 2013). Late diver-
gent charophytes that employ phragmoplast-based cytokinesis
(e.g., Charales and Coleochaetales) also produce plasmodesmata
(Figure 3; Franceschi et al., 1994; Cook and Graham, 1999;
Graham et al., 2000). In land plants, when expansion occurs in
adjacent cells after cell division, pectin and other wall polymers
are directed to specific loci of the cell surface (middle lamella
and cell junctions) and must diffuse through the interstices in the
outermost microfibril layer of each of the cell walls (Wolf and
Greiner, 2012; Bashline et al., 2014). This is necessary to maintain
the cell–cell connection. Multicellular charophytes also display
focused incorporation of polymers into the expanding cell wall
(Proseus and Boyer, 2008). In multicellular plants, the plane of
cell division and placement of the new cross wall/middle lamella
is predicted by a transient band of cortical microtubules known
as the preprophase band (PPB; Vos et al., 2004; Muller et al., 2009;
Rasmussen et al., 2010). The PPB functions in cells by controlling
the“insertion”of spatially determined new walls within the pattern
of neighboring cells: (i.e., a feature of multicellular land plants;
Pickett-Heaps et al., 1999). However, recently, a PPB has also been
shown to define the future site of cell division and cell expansion
in the charophyte, Penium (Ochs et al., 2014). In summary, many
of the cell wall-based developmental phenomena associated with
plants are also found in multicellular charophytes.

CONCLUDING REMARKS
Multicellularity encompasses complexities that we are only begin-
ning to resolve in green algae and plants. It is very clear that the
expression and maintenance of the multicellular form is directly
associated with the cell wall. It is also apparent that the com-
position and microarchitecture of the cell walls of green algae
are very diverse but different polymer-based constructions have
been utilized to maintain multicellularity. Many specifics in this
phenomenon have yet to be discovered but current efforts in the
screening of wall polymers and sequencing of genomes offer hope
that the “mysteries” will soon be solved.
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