
ORIGINAL RESEARCH ARTICLE
published: 21 January 2015

doi: 10.3389/fpls.2014.00808

Supplemental macronutrients and microbial fermentation
products improve the uptake and transport of foliar applied
zinc in sunflower (Helianthus annuus L.) plants. Studies
utilizing micro X-ray florescence
Shengke Tian1,2 , Lingli Lu1, Ruohan Xie1,2 , Minzhe Zhang 2, Judith A. Jernstedt 2 , Dandi Hou1,

Cliff Ramsier 3 and Patrick H. Brown 2*

1 MOE Key Laboratory of Environment Remediation and Ecological Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou,
China

2 Department of Plant Sciences, University of California, Davis, Davis, CA, USA
3 Ag Spectrum Company, Vero Beach, FL, USA

Edited by:

Ebrahim Hadavi, Islamic Azad
University, Iran

Reviewed by:

Victoria Fernandez, Technical
University of Madrid, Spain
José López-Bucio, Universidad
Michoacana de San Nicolás de
Hidalgo, Mexico

*Correspondence:

Patrick H. Brown, Department of Plant
Sciences, University of California,
Davis, One Shields Avenue, Davis,
CA 95616, USA
e-mail: phbrown@ucdavis.edu

Enhancing nutrient uptake and the subsequent elemental transport from the sites of
application to sites of utilization is of great importance to the science and practical field
application of foliar fertilizers.The aim of this study was to investigate the mobility of various
foliar applied zinc (Zn) formulations in sunflower (Helianthus annuus L.) and to evaluate
the effects of the addition of an organic biostimulant on phloem loading and elemental
mobility.This was achieved by application of foliar formulations to the blade of sunflower (H.
annuus L.) and high-resolution elemental imaging with micro X-ray fluorescence (μ-XRF) to
visualize Zn within the vascular system of the leaf petiole. Although no significant increase
of total Zn in petioles was determined by inductively-coupled plasma mass-spectrometer,
μ-XRF elemental imaging showed a clear enrichment of Zn in the vascular tissues within
the sunflower petioles treated with foliar fertilizers containing Zn. The concentration of
Zn in the vascular of sunflower petioles was increased when Zn was applied with other
microelements with EDTA (commercial product Kick-Off) as compared with an equimolar
concentration of ZnSO4 alone. The addition of macronutrients N, P, K (commercial product
CleanStart) to the Kick-Off Zn fertilizer, further increased vascular system Zn concentrations
while the addition of the microbially derived organic biostimulant “GroZyme” resulted in a
remarkable enhancement of Zn concentrations in the petiole vascular system. The study
provides direct visualized evidence for phloem transport of foliar applied Zn out of sites
of application in plants by using μ-XRF technique, and suggests that the formulation of
the foliar applied Zn and the addition of the organic biostimulant GroZyme increases the
mobility of Zn following its absorption by the leaf of sunflower.
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INTRODUCTION
Sunflower (Helianthus annuus L.) is an oilseed crop of great impor-
tance worldwide, due to the excellent quality of the oil extracted
from its seeds that are consumed in various ways. Cultivation of the
sunflower is becoming increasingly significant globally (Coelho
Bezerra et al., 2014). In 2008–2009, the world sunflower seed pro-
duction was about 33 million tones, around 8.5% of the world’s
total oilseed production (http://www.agricommodityprices.com),
the leading producers of which are the EU, Russia, Ukraine,
Argentina, USA, China, India, and Turkey (Lomascolo et al., 2012).

Foliar fertilization is an increasingly popular practice with
particular importance for the production of high value crops
(Fernández and Brown, 2013; Fernández et al., 2013) such as
sunflowers with many examples of positive responses to foliar
application of micronutrients, including zinc (Zn), iron (Fe),

Abbreviations: μ-XRF, micro X-ray fluorescence.

boron (B), manganese (Mn), and molybdenum (Mo), on the seed
yield and seed quality of sunflower (Jabeen et al., 2013; Skarpa,
2013; Skarpa et al., 2013; Tohidi-Moghadam, 2013; Yang et al.,
2013; Tahir et al., 2014). Foliar fertilization has particular value in
overcoming nutrient deficit resulting from stress conditions, such
as salinity and drought, which often compromise root growth and
decrease root absorption capacity (Kannan, 2010). Foliar applica-
tion of Zn resulted in a greater improvement in Zn densities in rice
and wheat grain when compared with soil applied Zn (Ebrahimian
et al., 2010; Phattarakul et al., 2012; Zhang et al., 2012).

Foliar fertilization is theoretically more immediate and target-
oriented than soil fertilization since nutrients can be directly
delivered to plant tissues during critical stages of plant growth
(Fernández and Brown, 2013; Fernández et al., 2013). Optimizing
the efficacy of the foliar applied nutrients is therefore of great
importance from an economic, agronomic and environmental
point of view. Our understanding of the factors that determine
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the ultimate efficacy of foliar applications remains poor and the
response of plants to foliar Zn applications is highly variable
(Fernández and Brown, 2013). Many reports indicate that foliar
application of Zn may significantly increase the concentrations of
Zn in the applied leaves but may have little effect on foliar concen-
trations in non-sprayed tissues or tissue that develop subsequent
to the foliar application (Zhang and Brown, 1999; Mirzapour and
Khoshgoftar, 2006; Sanchez et al., 2006). The factors that con-
trol the uptake and subsequent translocation of foliar applied
nutrients out of the leaf, and the effect of spray formulation on
these processes are poorly understood (Bukovac, 1985; Adamec,
2013; Fernández and Brown, 2013). While various approaches
have been used to determine the efficacy of foliar applied nutrients
using stable and radioactive isotopic labeling (Wittwer and Teub-
ner, 1959; Bukovac, 1985; Sah and Brown, 1998; Boaretto et al.,
2001; Sanchez et al., 2006), it remains challenging to determine
the pathways of mobilization from leaf to shoot and to moni-
tor the influence of foliar formulation on phloem loading and
micronutrient transport.

To address the inherently low efficiency of many foliar Zn
formulations, a wide range of commercial products have been
developed and marketed (Fernández et al., 2013). Recently, there
has been much interest in the incorporation of organic molecules
(sugars, amino acids, polysaccharides etc.) or biostimulants into
foliar fertilizers with the rationalization that these additives will
enhance the uptake, or subsequent mobility of the applied nutri-
ent (Fernández et al., 2013). The term ‘biostimulant’ is used to
describe a substance or material, with the exception of nutrients
and pesticides, which when applied to plants has the capacity to
beneficially modify plant growth (Calvo et al., 2014). Currently
there is very little scientific evidence that biostimulants can specif-
ically enhance the uptake and utilization of foliar applied fertilizer
materials.

The technique of X-ray fluorescence (XRF) has been widely
used in the research of elemental distribution in plant tissues, and
has proved to be a promising tool to study in vivo localization of
metals in plants due to its high-resolution and sensitivity (Punshon
et al., 2009; Zhao et al., 2014). XRF analyses can be performed to
visualize cellular and subcellular distribution of elements in plants
without significant pretreatment of the samples. We have previ-
ously applied this technique to characterize the location and to
monitor changes in concentration and distribution of Zn dur-
ing plant development or following foliar applications (Lu et al.,
2013a,b; Tian et al., 2014). In this current study, we will utilize μ-
XRF to obtain high spatial quantification (cellular and subcellular)
of elemental distribution and transport following the application
of various Zn formulations with the aim of: (1) increasing our
understanding of the processes that govern the localization and
transport of foliar applied nutrients with emphasis on Zn, and
(2) to determine if the formulation of the foliar applied Zn, with
addition of macronutrients or biostimulant, alters the mobility of
the element following its absorption by the leaf of sunflower.

MATERIALS AND METHODS
PLANT CULTURE
Sunflower (H. annuus L.) seeds were imbibed at 4◦C for 2 days and
allowed to germinate in darkness at room temperature for 3 days.

Seedlings were planted in potting soil. The pots were in 20 cm
diameter, 20 cm tall, and filled with a soil mixture containing (%
of volume) 40% peat, 35% silica clay, 20% perlite, and 5% gravel.
One plant per pot, and placed in a greenhouse (photo flux density
of 400 μmol m−2s−1, light/dark period of 16/8 h, day/night tem-
perature of 25/20◦C and day/night humidity of 70/85%). Plants
were watered as needed by irrigation (usually twice per day) with
a nutrient solution of the following composition: 1.2 mM KNO3,
0.8 mM Ca(NO3)2, 0.8 mM NH4NO3, 0.3 mM KH2PO4, and
0.2 mM MgSO4, 12 μM Fe-EDTA, 0.25 μM Na2B8O13·4H2O,
1.5 μM MnSO4, 0.25 μM ZnSO4, 0.5 μM CuSO4, 0.04 μM
Na2MoO4.

TREATMENTS WITH DIFFERENT FOLIAR FERTILIZERS
After 1 month of growth, plants of sunflowers were watered
with nutrient solution without Zn for 7 days. Fully expanded
leaves of sunflowers were then washed thoroughly with deionized
water, and immersed for 10 s in 250 mL solution contain-
ing different nutrients. Treatments include surfactant sprayed
control, “CleanStart,” “Kick-Off,” “CleanStart” + “Kick-Off,”
“CleanStart” + “Kick-Off” + “GroZyme,” and ZnSO4. All mate-
rials were applied so that final Zn concentrations in the applied
material and volume of applied materials were equivalent. The
nutrient composition of the different treatments is shown in
Table 1. Because of the complex nature of the commercial prod-
ucts used, it was not possible to prepare a control spray treatment
that contained equivalent amounts of all nutrient elements present
in Kick-Off or CleanStart. At the rate used here, GroZyme contains
negligible concentrations of all essential plant elements. To avoid
the possibility that the effect of the foliar spray was a consequence
of alleviation of secondary (not Zn) nutrient deficiency, all plants
were grown with continuous and abundant soil nutrient. Leaf
analysis was conducted and all nutrients were found to be present
at adequate levels and plants showed no sign of nutrient defi-
ciency. The foliar fertilizer product “CleanStart,” “Kick-Off,” and
“GroZyme” were obtained from Ag Spectrum Company (DeWitt,
IA, USA). 0.1% Silwet L-77 (v/v) was added in each solution. The
solutions were applied to the leaves of sunflower 8 h before dark-
ness (10 am), and all plant tissues except the sprayed leaf were
covered to prevent inadvertent spray application. The petioles of
all sprayed leaves were carefully protected by coating the leaf base
petiole junction with lanolin (Sigma) and Teflon membranes. Four
plants were treated as one replication, with three replications for
each treatment. The foliar application of the fertilizers was repli-
cated one time after 7 days, and then plants were harvested 7 days
later.

GroZyme is a microbial fermentation product derived from
a proprietary mix of organic cereal grains inoculated with spe-
cific bacterial cultures and fermented. The fermentation pro-
cess occurs under controlled environmental conditions until a
specific metabolic profile is achieved at which time the live
bacterium are liaised and the material is filtered to remove
large particles. This concentrate is then extended and stabi-
lized to make the final product. Soil applications of GroZyme
have been reported to alter soil microbial activity and nitro-
gen transformations (Chen et al., 2002, 2003). The metabolic
basis for the biological activity of foliar applied GroZyme is not
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Table 1 | Elemental composition of the foliar fertilizers (mg L–1 in solution).

Treatments Control CleanStart Kick-Off Kick-Off

+ CleanStart

Kick-Off +
CleanStart + GroZyme

ZnSO4

N – 3200 – 3200 3200 –

P2O5 – 7600 – 7600 7600 –

K2O – 1200 – 1200 1200 –

S – – 200 200 200 –

Co – – 5 5 5 –

Cu – – 50 50 50 –

Fe – – 100 100 100 –

Mo – – 100 100 100 –

Mn – – 5 5 5 5

Zn – – 200 200 200 200

known. However, field observations suggest that GroZyme func-
tions to enhance plant growth by enhancing K metabolism and
sugar transport (Ag Spectrum, unpublished results). CleanStart
is derived from ammonia, urea, orthophosphoric acid and
potassium hydroxide, and Kick-Off is a micronutrient mix
of Fe, Mn, Cu, Zn predominantly derived from nitrate
sources with additional surfactants and stabilizers. The ele-
mental composition of all spray applications is provided in
Table 1.

ELEMENTAL ANALYSIS
The petioles of leaves were oven-dried at 65◦C for 72 h, then
ground using a stainless steel mill and passed through a 0.25-mm
sieve for analysis of nutrient elements. Ground, dry plant samples
(0.1 g) of each treatment were digested with 5.0 mL HNO3-HClO4

(v/v: 4:1), and the digest was transferred to a 50-mL volumetric
flask, made up to volume with water and filtered. Concentrations
of mineral elements (i.e., Zn, Fe, Cu, Mn, B, K, Ca, and Mg) in
the filtrates were analysed using inductively coupled plasma mass
spectroscopy (ICP-MS; Agilent 7500a, USA).

ELEMENTAL MAPPING BY μ-XRF
Sample preparation
Mid-sections of leaf petioles were cut from the leaves treated
with different foliar treatments. Leaf cross-sections (100 μm
thick) were cut with a cryotome (LEICA, CM1850) at a tem-
perature of −20◦C (Tian et al., 2014). Single sections of each
treatment were selected under light microscopy for their ultra-
structural integrity and then freeze-dried under −20◦C for 3 days
prior to μ-XRF analysis. Since μ-XRF analysis is time con-
suming and expensive only single samples from each treatment
could be analyzed. Given that true replicate analyses could not
be performed additional steps were taken to avoid the poten-
tial for experimental artifacts and to avoid any sample selection
or analysis bias. All treatments were carefully controlled such
that treatment conditions and experimental duration were iden-
tical; petioles were then taken from the four replicate plants and
multiple sections from each petiole were prepared as described
above. All sections were then assessed by light microscopy for

ultrastructural integrity and a single section was then selected
and transported to the Stanford Synchrotron Radiation Lab-
oratory (SSRL) for μ-XRF analysis. Samples selected in this
fashion, therefore represent unbiased examples of treatment
effects.

μ-XRF analysis
Micro-XRF imaging was performed on the SSRL using beam-
lines 2–3. Experiments on SSRL beamline 2–3 were recorded
at 13 500 eV. The incident X-ray beam of 2 μm in beam-
line 2–3 was focused using a pair of Kirkpatrick-Baez mirrors,
and the incident beam was monochromatized using a Si (111)
double-crystal monochromator. Micro-XRF maps were obtained
by rastering the beam at 20 and 5 μm steps, with a count time
of 200 ms per step, for the following major and minor/trace
elements: P, S, Cl, K, Ca, Mn, Fe, Cu, and Zn. Fluorescence sig-
nal intensities for the above elements were calculated in SMAK
software (Webb, 2014). The fluorescence data were presented
as tricolor maps that allow for the spatial distribution of three
elements to be shown. Pixel brightness was displayed in RGB,
with the brightest spots corresponding to the highest element
fluorescence.

STATISTICAL ANALYSIS OF DATA
All data were statistically analyzed using SPSS (Version 12.0). The
figures were made using the software Origin 8.0.

RESULTS
DISTRIBUTION PATTERNS OF NUTRIENTS IN LEAF VEIN
To investigate the effects of different fertilizers on retransloca-
tion of nutrients in the leaves of sunflower, μ-XRF mapping was
performed. Cross sections of petioles were cut from the sun-
flower plants at approximately 1.0 cm below the leaves and imaged
under a light microscope prior to utilization for μ-XRF imaging
(Figure 1). The cross section of petiole was composed of epi-
dermis, parenchyma, vascular bundle containing xylem, phloem,
and surrounding collenchyma. The microscope image in Figure 1
shows that the phloem within the vascular bundle exists as a dis-
crete layer of cells on the abaxial (morphological bottom) side of
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FIGURE 1 | Microscope image of petiole cross-section collected from sunflowers plants after foliar application. Fully expanded leaves of 1-month old
sunflower were treated with different foliar fertilizers, then cross-sections of the petiole were cut by cryotome at −20◦C 7 days after final foliar fertilization
treatment.

FIGURE 2 | Microscope cross sections (a–f) and μ-XRF elemental maps

(A–F) for Zn (red), Ca (green), and K (blue) of petioles collected from

sunflowers subject to different foliar fertilizers. Cross-sections of leaf
veins were cut from sunflower plants treated with (a, A) control, (b, B)

CleanStart, (c, C) Kick-Off, (d, D) CleanStart + Kick-Off, (e, E)

CleanStart + Kick-Off + GroZyme, and (f, F) ZnSO4, and then analyzed by
μ-XRF imaging. Compositions of the nutrients in different treatments are
shown inTable 1. Pixel brightness for μ-XRF map (A–F) is displayed in RGB,
with the brightest spots corresponding to the highest element fluorescence.
Scale bar: 500 μm.
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FIGURE 3 | Micro X-ray fluorescence elemental maps for Zn (red), Ca

(green), and K (blue) focused on vascular bundles of petioles collected

from sunflowers subject to different foliar fertilizers. Full expanded leaves
of sunflower were treated with (A) control, (B) CleanStart, (C) Kick-Off, (D)

CleanStart + Kick-Off, (E) CleanStart + Kick-Off + GroZyme, and (F) ZnSO4.
Compositions of the nutrients in different treatments were shown inTable 1.
Pixel brightness for μ-XRF map is displayed in RGB, with the brightest spots
corresponding to the highest element fluorescence.

FIGURE 4 | Zinc intensities (counts/s) of 30–40 scan lines through the vascular bundles of petioles collected from sunflower plants treated with

different foliar fertilizers. The selected scanning sites from point A to B are marked by yellow lines in Figure 3, with 30–40 scanning different lines selected for
each plant sample.
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the vascular bundle with xylem on the adaxial or upper side of
the petiole. The entire vascular bundle is enclosed in tissue that is
likely collenchyma.

Integrated intensity for Zn and other elements were calcu-
lated from the spectrum and normalized by the intensity of the
Compton scattering peak. Elemental mapping for the measure-
ment area was obtained from the normalized intensity for each
element. The elemental distribution maps of Zn (red), Ca (blue),
and K (green) in the petioles collected from sunflowers plants
with different treatments are presented in Figures 2A–F, together
with corresponding photographs taken using an optical micro-
scope (Figures 2a–f). The quantification of the fluorescence yields
was normalized by I0 and the dwell time. The normalized X-ray
fluorescence intensities were scaled to different color brightness
for individual elements, with the brightest spots correspond-
ing to the highest elemental fluorescence. Each map indicates
the relative distribution of the three elements, and the scale
of fluorescence counts for individual elements is the same for
each map.

Very slight signals of Zn (red color) was noted in the peti-
oles collected from the control and CleanStart treated plants of
sunflower. The greatest concentration of Zn evident in the col-
lenchyma immediately adjacent to the xylem (Figures 2a,b,A,B).
At the resolution used in these experiments it is not possible to
determine if the deposition of Zn in regions other than the phloem
was resent in xylem or in collenchyma immediately adjacent to the
xylem (referred to here as xylem/collenchyma). A modest increase
in the K signal in petioles was also observed in the CleanStart
treatment. Foliar application of “Kick-Off,” a product containing
Co, S, Fe, Cu, Mn, Mo, and Zn chelated with EDTA (Table 1) to
sunflower leaves resulted in a marked increase in the concentra-
tion of Zn detected in the petioles with a notable deposition in
a narrow band corresponding to the phloem tissues of the peti-
ole and a more diffuse band in the xylem/collenchyma region
(Figures 2c,C), while no such preferential localization to phloem
tissues was noted for control, CleanStart or ZnSO4 treatments and
no phloem specific accumulation of other elements was observed
(data not shown). Application of ZnSO4 at the same Zn levels
(200 mg L−1) as used for all Zn treatments to the sunflower leaves
also increased phloem Zn in the petioles (Figure 2F) as compared
with the controls (Figure 2A), but the effect is much less pro-
nounced than that of “Kick-Off.” The combined foliar application
of “Kick-Off” with “CleanStart” resulted in a similar enhancement
in Zn uptake and preferential distribution of Zn to phloem tissues
and xylem/collenchyma. The addition of the biostimulant prod-
uct GroZyme resulted in a much more concentrated enrichment
of Zn in the phloem and xylem/collenchyma region of the petiole
vascular bundle.

Low spatial resolution μ-XRF imaging provides only semi-
quantitative data. To further investigate the effects of “CleanStart”
and “GroZyme” on phloem mobility of foliar applied Zn, micro-
XRF scanning at higher resolution was performed, focusing
on the vascular tissues of the treated leaf veins (Figure 3).
The Zn concentration in the petiole was also determined
along a single scan line that transected the petiole and
passed through the vascular system. Both “CleanStart” and
“GroZyme,” which do not contain Zn, clearly increased the

FIGURE 5 | Concentrations of Zn (mg kg–1 DW) in the petioles

collected from sunflower plants treated with different foliar fertilizers.

Full expanded leaves of sunflower were treated with control, CleanStart,
Kick-Off, CleanStart + Kick-Off, CleanStart + Kick-Off + GroZyme, and
ZnSO4, and the Zn concentration of leaf veins were analyzed by ICP-MS.
Compositions of the nutrients in different treatments were shown in
Table 1. Data points and error bars represent means and SEs of three
replicates (n = 3).

concentration of Zn following Kick-Off application. The patterns
of Zn deposition in the “Kick-Off” + “CleanStart” and “Kick-
Off” + “CleanStart” + “GroZyme” were far less diffuse and more
intensely located in the phloem region and xylem/collenchyma
than the pattern of Zn in petioles from leaves provided with
“Kick-Off” or ZnSO4 alone. Intensity analysis (Figure 4) across a
single scan line through the vascular system of the petiole demon-
strated that the peak of Zn densities in the phloem tissues and
xylem/collenchyma was markedly increased with addition of the
biostimulant “GroZyme” to “Kick-Off” + “CleanStart” treatments
(Figure 4E).

TOTAL CONCENTRATIONS OF Zn IN LEAF VEINS
Total concentrations of Zn and other elements including Fe, K,
Cu, Ca, and Mn etc. were determined by ICP-MS for the peti-
oles collected from the sunflowers treated with different foliar
fertilizers. The results showed that Zn concentrations in the leaf
veins of sunflower ranged from 29.2 to 36.7 mg kg−1 DW. While
the overall pattern of Zn concentration differences analyzed by
ICPMS corresponded with the μ-XRF analysis results the total
Zn concentration was not significantly different between treat-
ments (Figure 5). Similarly, no difference in Fe, K, Cu, Ca, and
Mn was observed among any treatments (Figure 6). The appar-
ently greater sensitivity of μ-XRF is primarily a consequence of
the ability of μ-XRF to analyze specifically within phloem and
closely associated vascular organs while ICPMS provides anal-
ysis of the total petiole. Since vascular tissue represents only
a very small proportion of the petiole as a whole, and as the
petile was fully mature at the time of treatment, changes in vas-
cular tissue element concentration may not be seen against the
background of the bulk of petiole tissue in which Zn was not
increased.

Frontiers in Plant Science | Crop Science and Horticulture January 2015 | Volume 5 | Article 808 | 6

http://www.frontiersin.org/Crop_Science_and_Horticulture/
http://www.frontiersin.org/Crop_Science_and_Horticulture/archive


Tian et al. Biostimulants and zinc transport

FIGURE 6 | Concentrations of Mn, Mg, B, Fe (mg kg–1 DW), and Ca, K (g

kg–1 DW) in the petioles collected from sunflower plants treated with

different foliar fertilizers. Full expanded leaves of sunflower were treated
with control, CleanStart, Kick-Off, CleanStart + Kick-Off, CleanStart +

Kick-Off + GroZyme, and ZnSO4, and the concentrations of Mn, Mg, B, Fe,
Ca, K of leaf veins were analyzed by ICP-MS. Compositions of the nutrients in
different treatments were shown inTable 1. Data points and error bars
represent means and SEs of three replicates (n = 3).

DISCUSSION
Efficacy of foliar applied nutrients depends not only on the
absorption of the nutrients but also on the transport of these
nutrients to other plant parts (Bukovac and Wittwer, 1957;
Fernández et al., 2013). It has been suggested that even a relatively
small transport of foliar nutrients out of treated leaves and tissues
may have a short-term, critical benefit to the plant (Fernández
et al., 2013). Knowledge of the ability of an element to be trans-
ported from the site of application is critical to provide insight into
the longevity and potential nutritional impact of foliar application
on non-sprayed tissues.

Analysis by μ-XRF in the present study shows clearly enhanced
transport and localization of Zn in the vascular system of the
sunflower petiole 7 days after application of “Kick-Off,” which
contains Zn-EDTA (Figure 2C), while Zn was not detectable in the
petiole of the control plants (Figure 2A) and was very low in the

petiole of ZnSO4 sprayed leaves (Figure 2F). This demonstrates
clearly that Zn is phloem mobile in sunflower and that the use
of Zn-EDTA results in greater phloem Zn transport than ZnSO4

alone. While it has been demonstrated that Zn-EDTA is superior
to ZnSO4 under some circumstances, it has not been demon-
strated that the EDTA molecule can penetrate the leaf cuticle. It
cannot be determined from this current research if the superior-
ity of the EDTA containing Kick-Off material is a consequence of
enhanced cuticular penetration or enhanced transport of the Zn
once it enters the leaf. The ‘Kick-Off ’ material also contains the
microelements including Fe, Cu, Mn, and Mo and this may also
enhance Zn uptake as has been observed previously (Pipiska et al.,
2008).

The addition of “CleanStart” derived from ammonia,
urea, orthophosphoric acid and potassium hydroxide, signifi-
cantly increased the phloem transport and xylem/collenchyma
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deposition of Zn when co-applied with ‘Kick-Off ’ (Figures 3D
and 4D). Addition of Urea to foliar Zn sprays, for example, is
known to enhance Zn uptake and efficacy (Stover et al., 1999;
Johnson and Amdris, 2001; Sanchez et al., 2006) and the N status
of cereals is known promote Zn retranslocation (Erenoglu et al.,
2011; Barunawati et al., 2013; Xue et al., 2014). While it is clear that
addition of the multi-elements present in the CleanStart enhanced
Zn retranslocation into sunflower petioles, the mechanism of this
effect remains uncertain.

The chemical form in which a foliar nutrient is applied will
influence plant nutrient uptake by altering the point of deliques-
cence of the applied foliar fertilizer thereby altering its solubility
on the leaf surface, or by altering the charge on the ion of inter-
est to facilitate its movement through the cuticle and cell wall
(Fernández et al., 2013). There is no direct evidence, however,
to suggest that the formulation of a fertilizer spray can directly
influence the transport of the absorbed nutrient from the site of
application (Fernández and Brown, 2013).

The addition of the biostimulant “GroZyme” clearly enhanced
Zn translocation when co-applied with “Kick-Off” and
“CleanStart” (Figure 4E). Grozyme is a non-living microbial fer-
mentation product derived from a proprietary mix of organic
cereal grains inoculated with specific bacterial cultures and fer-
mented. The specific functional metabolite in GroZyme has not
been identified. However, extensive field trials and research pub-
lished in this issue (Saa et al, this issue and unpublished research)
have demonstrated positive growth effects and enhanced translo-
cation of K and other nutrient elements (Saa et al, this issue and
unpublished research). Previous research utilizing soil applica-
tions of GroZyme has also shown that this product was able to
alter microbial populations in a soil environment and improve
N mobilization and uptake of soil nutrients especially organic
nitrogen (Chen et al., 2002, 2003). The benefit of bacterial source
metabolites on efficacy of foliar fertilizers has been demonstrated
previously (Ebrahim and Aly, 2004; Radzki et al., 2013) and
it is plausible that the microbial extracts present in GroZyme
have the capability to form metal complexes that enhance Zn
uptake or mobility. Many putative biostimulants also contain plant
growth hormones or plant signaling molecules that may alter plant
metabolic processes and stimulate growth and indirectly influence
the movement of substrates, including minerals, within the plant
(Calvo et al., 2014).

In these experiment, the high spatial resolution and direct
imaging capability of μ-XRF was useful in distinguishing differ-
ences in Zn transport through the vascular system of sunflower
that could not be detected by ICP-MS. XRF provides a powerful
strategy to trace foliar applied microelements within the plants
with high sensitivity, a result that is consistent with our previous
studies (Lu et al., 2013b). This technique will be useful to facilitate
the development of foliar fertilizers and application techniques
that optimize transport of nutrients from site of application, which
is one of the most important challenges to the foliar fertilizer
industry.
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