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Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one, is a natural amide isolated

from the fruits of Piper species. The compound has a number of interesting biological

properties, including its broad-spectrum activity on weeds as a contact herbicide. Initial

studies highlighted a similarity in response between plants treated with sarmentine

and herbicidal soaps such as pelargonic acid (nonanoic acid). However, little was

known about the mechanism of action leading to the rapid desiccation of foliage

treated by sarmentine. In cucumber cotyledon disc-assays, sarmentine induced rapid

light-independent loss of membrane integrity at 100µMor higher concentration, whereas

3mM pelargonic acid was required for a similar effect. Sarmentine was between 10 and

30 times more active than pelargonic acid on wild mustard, velvetleaf, redroot pigweed

and crabgrass. Additionally, the potency of 30µM sarmentine was greatly stimulated

by light, suggesting that this natural product may also interfere with photosynthetic

processes. This was confirmed by observing a complete inhibition of photosynthetic

electron transport at that concentration. Sarmentine also acted as an inhibitor of

photosystem II (PSII) on isolated thylakoid membranes by competing for the binding

site of plastoquinone. This can be attributed in part to structural similarities between

herbicides like sarmentine and diuron. While this mechanism of action accounts for

the light stimulation of the activity of sarmentine, it does not account for its ability to

destabilize membranes in darkness. In this respect, sarmentine has some structural

similarity to crotonoyl-CoA, the substrate of enoyl-ACP reductase, a key enzyme in the

early steps of fatty acid synthesis. Inhibitors of this enzyme, such as triclosan, cause rapid

loss of membrane integrity in the dark. Sarmentine inhibited the activity of enoyl-ACP

reductase, with an I50app of 18.3µM. Therefore, the herbicidal activity of sarmentine

appears to be a complex process associated with multiple mechanisms of action.

Keywords: mode of action, photosystem II, electrolyte leakage, membrane integrity, enoyl ACP reductase,

herbicide resistance, herbicide discovery

Introduction

Herbicides benefit food production by reducing weed pressure and improving the quality of crop
products (Gianessi and Reigner, 2007). However, concerns over their potential adverse effect on the
environment and human health are leading consumers to desire agricultural crops produced with
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greener technologies (Solomon and Schettler, 2000; Stillerman
et al., 2008). Additionally, reliance on herbicides has led to
the emergence of resistance among many weed species (Délye
et al., 2013; Service, 2013; Heap, 2015). Therefore, there is a
need to develop alternative ecofriendly, economical and effi-
cacious means for weed management. To that end, there is a
renewed interest in discovering and developing new biopesticides
(Cantrell et al., 2012; Dayan et al., 2012).

Bioherbicides, such as pelargonic acid, are non-selective and
less potent than their synthetic counterparts, requiring multi-
ple applications at relatively high concentrations (Young, 2004;
Barker and Prostak, 2009). However, some natural products have
served as templates for the development of several successful
herbicides (glufosinate and the triketone herbicides) (Cantrell
et al., 2012) that introduced new mechanisms of action, which is
greatly needed to combat the evolution of resistance to herbicides
in production agriculture (Duke et al., 2013). There is, there-
fore, a great interest in exploring natural products to develop
new bioherbicides (Hüter, 2011; Dayan et al., 2012; Gerwick and
Sparks, 2014). Natural products are particularly attractive as tem-
plates because they occupy a wider chemical space with greater
structural diversity than traditional synthetic compounds (Koch
et al., 2005; Lipkus et al., 2008; Li and Vederas, 2009; Valli et al.,
2013).

Piper species produce a large number of bioactive molecules
with great economic value (Parmar et al., 1997). Yet, this
may only represent a small portion of the true breadth of
the chemical richness of Piper metabolites since only a lim-
ited number of Piper species have been characterized (Dyer
et al., 2004). Piper amides (e.g., piperidine amides) are a par-
ticularly prevalent group of neutral to weakly acidic bioac-
tive products (Likhitwitayawuid et al., 1987; Banerji and Das,
1989), with medicinal (Wang et al., 2014), insecticidal (Yang
et al., 2002; Scott et al., 2008), antifungal (Alécio et al., 1998;
Da Silva et al., 2014), and antiherbivory activity (Dyer et al.,
2001).

Sarmentine, 1-(1-pyrrolidinyl)-(2E,4E)-2,4-decadien-1-one,
is a Piper amide with several biological properties, including
antiplasmodial, antimycobacterial, and antituberculosis activity
(Rukachaisirikul et al., 2004; Tuntiwachwuttikul et al., 2006),
as well as antiplatelet aggregation (Li et al., 2007). Interest
in sarmentine as a biopesticide renewed when its herbicidal
activity was discovered through a bioactivity-guided isolation
of the active components of the fruits of Piper sarmentosum
and Piper nigrum (Huang et al., 2010). Sarmentine acts as a
contact herbicide with broad-spectrum activity in a similar way
as herbicidal soaps such as nonanoic acid (pelargonic acid) or
decanoic acid.

Most natural contact herbicides (pelargonic acid, essential
oils) are used as desiccants and act by stripping the cuticular wax
layer covering the surface of leaves (Fukuda et al., 2004; Cole-
man and Penner, 2006, 2008). The rapid desiccation of foliage
treated by sarmentine suggests that this Piper amide has a similar
mechanism of action. However, evidence that sarmentine acted
in this way was lacking and this study investigates the mecha-
nism of action of this biopesticide using methods developed in
our laboratory (Dayan et al., 2000a, 2015).

Materials and Method

Isolation and Weed Spectrum of Sarmentine
Sarmentine was purified from long pepper fruit according to a
protocol developed previously (Huang et al., 2010). All seedlings
of weeds were planted in 5.7 × 5.7 ×6.2 cm or 8 × 8 ×

7.2 cm plastic pots. All pots were stored in a growth room
with 28◦C temperature and 60% humidity. Seedlings includ-
ing the broadleaf weeds wild mustard [Brassica kaber (DC.)
L.C. Wheeler], pigweed (Amaranthus retroflexus L.), lambsquar-
ters (Chenopodium album L.), velvetleaf (Abutilon theophrasti
Medik.), common purslane (Portulaca oleracea L.), dandelion
(Taraxacum officinale G.H. Weber ex Wiggers), bindweed (Con-
volvulus arvensis L.), spurge (Euphorbia sp.), common chick-
weed [Stellaria media (L.) Vill.], coffeeweed [Sesbania exaltata
(Raf.) Rydb. ex A.W. Hill], white clover (Trifolium repens L.)
and buckhorn plantain (Plantago lanceolata L.), andmonocotyle-
donous weeds smallflower umbrella sedge (Cyperus difformis L.),
goosegrass [Eleusine indica (L.) Gaertn.], large crabgrass [Dig-
itaria sanguinalis (L.) Scop], annual bluegrass (Poa annua L.),
late watergrass [Echinochloa phyllopogon (Stapf) Koss], quack-
grass [Elytrigia repens (L.) Gould], smooth crabgrass [Digitaria
ischaemum (Schreb.) Schreb. ex Muhl.] and yellow nutsedge
(Cyperus esculentus L.), were planted in potting soil mixture.
When treated, all seedlings were at the 2–3 true leaf stage. Visual
injury was evaluated using the following rating scale:+ = 0–50%,
++ = 51–80%, + + + = 81–90%, and + + ++ = 91–100%
injury.

Plants in the growth room were treated with formulated sar-
mentine. The proprietary formulation consists of 50% sarmen-
tine, with the remainder comprised of inert ingredients; it does
not include any other herbicidal compounds. Pots were sprayed
with the equivalent of 10mg sarmentine ml−1 in water; no addi-
tional surfactant was added. Solutions were applied with a Gen-
eration III track sprayer (DeVries Manufacturing, Hollandale,
MN, USA) equipped with a model TeeJet EZ 8002 nozzle (Spray-
ing Systems Co., Wheaton, IL, USA) with conical pattern and
80◦ spray angle. The height from nozzle to soil level was 71 cm
for the experiments. The spray head was set to move over the
plants at 1.7 km h−1, and the sprayer was calibrated to deliver the
equivalent of 374 l ha−1.

Leaf Surface Microscopy
Leaves were collected from 2 to 3 week-old plants for scan-
ning electron microscopy observation. To preserve the appear-
ance of the cuticles, samples were processed without fixation
and dehydration by flash-freezing in supercooled nitrogen slush
at −210◦C for 5 s according to Hayat (2000). The frozen sam-
ples were placed in 1 kg brass receptacles supercooled in liquid
nitrogen (−196◦C) to keep the leaves frozen during the initial
stages of lyophilization at −50◦C. The lyophilized leaf samples
were then placed on aluminum stubs with their adaxial surfaces
exposed and coated with a layer of gold-palladium (15mA under
75 mTorr pressure) using a Hummer 6.2 sputter coater (Anat-
ech USA, Union City, CA 94587). The adaxial surfaces of several
samples of each species were observed with a scanning electron
microscope (JEOL JSM-5600, Peabody, MA 01960). The images
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were digitally colorized using Adobe Photoshop CS4 (Adobe, San
Jose, CA 95110).

Electrolyte Leakage
The effect of sarmentine and pelargonic acid on plasma mem-
brane integrity was tested by measuring electrolyte leakage as
described before (Dayan and Watson, 2011). Briefly, cucumber
seedlings [Cucumis sativus (L.) var. straight eight] were main-
tained in a growth chamber with a 16/8 light/dark cycle for
10 days. Twenty-five 4-mm cotyledon discs were incubated in
the presence of different concentrations of the sarmentine or
pelargonic acid. Sarmentine and pelargonic acid stocks (100X)
were made in acetone. Control tissues were exposed to the
same amount of acetone (1% [v/v]) as treated tissues but with-
out test compounds. Plates were incubated in darkness for 24 h
prior to exposure to high light intensity (1000µmol m−2 s−1)
photosynthetically active radiation (PAR).

Measurements were made using an electrical conductivity
meter (Model 1056, Amber Science, Eugene, OR 97402) equipped
with a model 858 Conductivity Macro Flow cell. Measurements
were taken at the start of the experiment, at the end of the dark
incubation period, and after exposure to high light intensity.
The experiment was repeated over time and consisted of three
replicates.

Subsequent experiments with velvetleaf (Abutilon theophrasti
Medik.), redroot pigweed (Amaranthus retroflexus L.), mustard
[Brassica juncea (L.) Czern] and large crabgrass [Digitaria san-
guinalis (L.) Scop.] consisted of a measurement of the conductiv-
ity in the bathingmedium at the beginning of the experiment and
after 24 h incubation in darkness.

Induced Chlorophyll Fluorescence
The effect of sarmentine on photosynthesis was initially tested
on cucumber cotyledons from the leakage experiments using
a pulse-modulated fluorometer (Opti-Science, Model OS5-FL,
Tyngsboro, MA 01879). The instrument was set on Kinetic Mode
and adjusted so that the initial Ft (instantaneous fluorescence sig-
nal) value in the control samples was approximately 210. The
other parameters were as described in a previous publication
(Dayan and Zaccaro, 2012).

Inhibition of Oxygen Evolution in Isolated
Thylakoid Membranes
Thylakoid membranes were isolated from spinach, or wild-type
and triazine-resistant redroot pigweed (Amaranthus retroflexus
L.) as described elsewhere (Rimando et al., 1998; Dayan et al.,
2009a), except that the thylakoid membranes were further puri-
fied on a 30–52% sucrose step gradient centrifugation in a SW40
Ti swinging bucket rotor and an XL-90 Beckman (Beckman
Coulter, Inc., Brea, CA 92821-6232 USA) centrifuge at 28,000
g for 1 h at 4◦C (Dayan et al., 2009b). Thylakoid membranes
were diluted to 4mg of chlorophyll ml−1 for the oxygen evolu-
tion experiments and to 1mg of chlorophyll ml−1 for the binding
kinetic experiments.

Oxygen Evolution Assay
O2 evolution assays were conducted under saturating light con-
ditions (10mmol m−2 s−1 PAR) with the use of a fiber-optic

light source delivering 1300 lumen (Schott-Foster, LLC, South-
bridge, MA 01550 USA) and measured using a Hansatech OXY-
GRAPH PLUS Oxygen Electrode System (PP System, Amesbury,
MA 01913 USA) as described elsewhere (Dayan et al., 2009b).
Sarmentine and atrazine were diluted in acetone, and control
treatments received the same concentration of solvent (less than
1% v/v). Membrane preparations were incubated with test com-
pounds (0–3mM) on ice for 20min prior to the assay. The assay
was initiated by addition of thylakoid membranes to the reac-
tion assay buffer, and the rate of oxygen evolution was measured
for 120 s over the linear portion of the curve. Data are expressed
asµmol O2 l

−1 min−1.

Binding Kinetics of Sarmentine on QB Binding
Site of Photosystem II
[14C]-atrazine was bound to spinach thylakoid membranes in
the presence or absence of sarmentine according to Tischer and
Strotmann (1977) as modified by Dayan et al. (2000b). Thylakoid
membranes (100µg of chlorophyll ml−1) were suspended in a
1-ml reaction solution consisting of 330mM sorbitol, 100mM
HEPES (pH 7.7), 1mM EDTA, and 1mM MgCl2. A half-log
dilution series (33–0.03µM) of [14C]-atrazine (uniformly labeled
with specific activity of 160mCimmol−1, American Radiolabeled
Chemicals Inc, St. Louis, MO) and 10µM unlabeled sarmentine
was added. The suspensions were thoroughly mixed and incu-
bated for 15min on ice. The samples were centrifuged (6min,
12,000g, 4◦C). The supernatant was transferred to vials and
mixed with 18ml of premixed scintillation cocktail (Ultima Gold,
Packard Instrument) for radioactivity measurements. The inner
walls of tubes were dried with cotton swabs without disturbing
the pellets to remove excess [14C]-atrazine. A 100-µl aliquot of
tissue solubilizer (Soluene-350, Packard Instrument Co. Meri-
den, CT 06450) was added to the pellets and heated in a water
bath at 50◦C for 15min. The slurry was neutralized with 50µl
of 1M Tris-HCl buffer (pH 7.0) and transferred to scintillation
vials. Ethanol (20µl) used to wash the inner walls of each tube
was combined with the slurry before radioactivity measurements.
The amount of bound [14C]-atrazine was calculated from the
radioactivity in the pellets. Binding for atrazine and sarmentine
was determined from double-reciprocal plots of bound atrazine
vs. free atrazine (Tischer and Strotmann, 1977). All regressions
and intercepts were calculated in SigmaPlot (version 12, Systat
Software Inc., San Jose, CA, USA).

Inhibition of Enoyl-ACP Reductase (ENR)
Arabidopsis thaliana ENR was cloned in Escherichia coli and
expressed as described elsewhere (Dayan et al., 2008). Briefly,
cells were collected by centrifugation, resuspended in cold lysing
buffer [50mM, Tris-HCl (pH 7.5), 1M NaCl, 5mM, imida-
zole, 10% [v/v] glycerol, 1µg ml−1 leupeptin] and lysed with a
French Press (Glen Mills Inc., Clifton, NJ). Debris was removed
by centrifugation and the ENR in the supernatant was purified
on a nickel activated HisTrap HP column (GE Healthcare Bio-
Sciences). The ENR containing fraction was desalted on a PD-10
column equilibrated with cold desalting buffer (10mM sodium
phosphate, pH 7.2, 10mM dithiothreitol, 10% [v/v] glycerol).
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Protein concentration was determined using Bio-Rad protein
reagent.

ENR activity was measured in 10mM sodium phosphate, pH
7.2 assay buffer as described before (Dayan et al., 2008). The
I50 values (concentration of inhibitor required for 50% inhibi-
tion of activity) of sarmentine, pelargonic acid, and triclosan on
A. thaliana ENR were determined by testing the inhibitors at
concentrations ranging from 0.1 to 100µM. All inhibitors were
dissolved in acetone and control samples received equivalent
amounts of acetone (1% [v/v] final concentration). The reactions
were started by addition of NADH. The oxidation of NADH was
monitored for 60 s by measuring change in A340 in a Shimadzu
model UV3101PC spectrophotometer with the cell thermostabi-
lized at 25◦C. Spectrophotometric measurements were converted
to concentrations of NADH oxidized using ε = 6.3mM−1 cm−1

(Ward et al., 1999).

L-Amino Acid Oxidase Assay
All reagents, including the amino acid oxidase and peroxidase
enzymes, were obtained from Sigma. The activity of L-amino acid
oxidase was measured at 37◦C using a Shimadzu spectropho-
tometer by measuring the increase in absorption at 436 nm via a
peroxidase-coupled secondary reaction. The reaction buffer con-
sisted of 0.2M triethanolamine, pH 7.8 containing 0.1% L-leucine
and 0.0065% o-dianisidine (Fast Blue B). Baseline conditions
were established by adding 10µl of a 10mg ml−1 solution of per-
oxidase to 2.9ml of reaction buffer in a cuvette. The cuvette was
placed in the spectrophotometer and the temperature allowed to
equilibrate for 5min. The reaction was initiated by adding 100µl
of amino acid oxidase (0.027 units) to the cuvette and mixing.
The amino acid oxidase was preincubated with 3mM sarmen-
tine or acetone for 15min before measuring activity. The final
concentration in the assay was 100µM sarmentine.

Computer Modeling
Sarmentine and diuron were built using the fragment library
of Spartan version 6.1 (Wavefunction, Inc., Irvine, CA) and
minimized using the equilibrium geometry at ground state, by
applying the semiempirical AM1 (Austin Model) parameteriza-
tion starting with the MMFF (molecular mechanics force fields)
geometry. Sarmentine and diuron were aligned along their amide
moiety using the align function of Spartan. The π-charge dis-
tribution over the amide bond was visualized by applying the
ionization calculation to the potential surface map.

Statistical Analysis
Dose-response curves were analyzed by a four-parameters log-
logistic model (Seefeldt et al., 1995) using R software (version
2.15.2, R Foundation for Statistical Computing, Vienna, Aus-
tria) with the drc module (Ritz and Streibig, 2005). Means and
standard deviations were obtained using the raw data and the
half-maximal inhibitory response (I50) was defined as the con-
centration at which this accumulation was inhibited by 50%
compared with controls. I50 values were obtained from the
parameters in the regression curves. Graphs were generated
with Sigma Plot. Means were separated with the Duncan mul-
tiple range test at P = 0.05 using the Agricolae module (De
Mendiburu, 2014).

Results

Weed Spectrum of Sarmentine
Sarmentine was sprayed on selected broadleaf and grass weeds
to determine its spectrum of activity. Wild mustard and pig-
weed were the most sensitive to sarmentine, with greater than
91% injury 7 days after treatment (Table 1). A number of
broadleaf and grass weeds sustained between 81 and 90% injury
(Tables 1, 2).

Alteration of the Leaf Surface Ultrastructure by
Sarmentine
The adaxial leaf surface of velvetleaf consists of relatively
smooth cuticle over the epidermal cells interspersed with stom-
ata, glandular trichomes and star-shaped hairs over the surface
(Figures 1A,B). The deposition of sarmentine over the leaf sur-
face is visible within 1 h of application as a small residue scattered

TABLE 1 | Herbicidal activity of sarmentine on selected broadleaf weeds 7

days after treatment.

Common Scientific Bayer Treatment

name name code (20mg ml−1)a

Wild mustard Brassica kaber SINAR ++++

Pigweed Amaranthus retroflexus AMARE ++++

Lambsquarters Chenopodium album CHEAL +++

Velvetleaf Abutilon theophrasti ABUTH +++

Common purslane Portulaca oleracea POROL +++

Dandelion Taraxacum officinale TAROF +++

Bindweed Convolvulus arvensis CONAR +++

Spurge Euphorbia spathulata EPHSQ ++

Common chickweed Stellaria media STEME ++

Coffeeweed Sesbania exaltata SEBEX ++

White clover Trifolium repens TRFRE +

Buckhorn plantain Plantago lanceolata PLALA +

a Ratings:+= 0–50%,++= 51–80%,+++= 81–90%, and++++= 91–100% weed

injury.

TABLE 2 | Herbicidal activity of sarmentine on selected

monocotyledonous weeds 7 days after treatment.

Common Scientific Bayer Treatment

name name code (20mg ml−1)a

Smallflower sedge Cyperus difformis CYPDI +++

Goosegrass Eleusine indica ELEIN ++

Large crabgrass Digitaria sanguinalis DIGSA ++

Annual bluegrass Poa annua POAAN ++

Late watergrass Echinochloa phyllopogon ECHPH +

Quackgrass Elytrigia repens AGRRE +

Smooth crabgrass Digitaria ischaemum DIGIS +

Yellow nutsedge Cyperus esculentus CYPES +

aRatings: + = 0–50%, ++ = 51–80%, +++ = 81–90%, and ++++ = 91–100% weed

injury.
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FIGURE 1 | Scanning electron micrographs of the adaxial leaf surface

of velvetleaf. (A) 30X magnification and bar = 100 µm. (B–D) are at 100X

magnification and bar = 10µm after 0, 1, and 4 h exposure to 1mM

sarmentine, respectively.

on the surfaces of epidermal cells as well as a layer accumulat-
ing in the grooves between the cells (Figure 1C). The desiccating
effect of sarmentine is visible within 8 h of application as a local-
ized loss of turgor of epidermal cells in areas where sarmentine
has accumulated (Figure 1D).

Destabilization of Plasma Membrane Integrity
Sarmentine caused a light-independent loss of plasmamembrane
integrity in the cucumber cotyledon discs assays when tested at
100µM or more. At these concentrations, a rapid increase in
electrolyte conductivity was measured in the bathing medium
within 1 h or exposure and reached a maximum between 6
and 8 h exposure (Figure 2). Interestingly, the activity of 30µM
sarmentine was low during the dark incubation period, but
was greatly stimulated upon light exposure (double arrow on
Figure 2).

Pelargonic acid required higher concentrations to cause a sim-
ilar light-independent loss of membrane integrity, and the activ-
ity was not stimulated by the addition of light (Figure 3). Plotting
the relationship between inhibitor concentration and conductiv-
ity of the bathing solution after 24 h of incubation in darkness
generated reliable dose-response curves that enabled the quanti-
tative comparison of the potency of sarmentine and pelargonic
acid (Figure 4).

Analysis of the curves were performed with a four-parameters
log-logistic model which enabled the calculation of the I50
concentration for these compounds on various weed species
(Table 3). Sarmentine was 12.4–29.1 times more active than
pelargonic acid and had a more consistent potency across the
species tested.

Inhibition of Enoyl-ACP Reductase (ENR)
Sarmentine has some structural similarity with crotonyl-CoA, the
substrate of ENR (Figure 5A). ENRwas expressed heterologously
in E. coli and purified with a specific activity of 10.13± 1.36mmol

FIGURE 2 | Effect of sarmentine on cucumber membrane integrity as

measured in the conductivity of the bathing medium. Samples were

incubated in darkness for 24 h and then exposed to high light intensity. © =

control; � = 3µM; N = 10µM; H = 30µM; � = 100µM; � = 300µM

sarmentine. The double arrow marks when the samples were transferred to

the light.

FIGURE 3 | Effect of pelargonic acid on cucumber membrane integrity

as measured in the conductivity of the bathing medium. Samples were

incubated in darkness for 24 h and then exposed to high light intensity. © =

control; � = 30µM; N = 100µM; H = 300µM;� = 1000µM; � = 3000µM

pelargonic acid. The double arrow marks when the samples were transferred

to the light.

NADH min−1 µg−1 protein. Sarmentine inhibited the activity
of ENR in a dose-dependent manner with an I50app of 18.3µM
(Figure 5B).

Interaction Between Sarmentine and
Photosystem II
The stimulation of electrolyte leakage by light observed at 30µM
sarmentine was accompanied with a strong reduction of photo-
synthetic electron transport, with only 11% of the total activity
after 4 h incubation in the dark (Figure 6). Direct inhibition of
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FIGURE 4 | Dose-response curve of sarmentine (�) and pelargonic

acid (©) after 24h incubation in the dark on membrane integrity in

cucumber cotyledons.

TABLE 3 | Effect of sarmentine and pelargonic acid on membrane integrity

of cucumber, mustard, redroot pigweed, velvetleaf, crabgrass after 24h

incubation in darkness.

Species Sarmentine Pelargonic acid Potencyb

I50 (µM)a

Cucumber 38.3 ± 4.5 A 645 ± 71 A 16.8

Redroot pigweed 38.3 ± 4.6 A 938 ± 72 A 24.5

Mustard 74.6 ± 6.7 B 926 ± 90 A 12.4

Velvetleaf 80.3 ± 3.9 B 2334 ± 423 B 29.1

Crabgrass 91.8 ± 9.4 C 2509 ± 191 B 27.3

a Means values followed by the same letter do not differ significantly at the 5% level by

Duncan’s multiple range test.
b Potency of sarmentine relative to pelargonic acid: I50 of pelargonic acid/I50 of

sarmentine.

photosynthesis was confirmed on isolated thylakoid membranes,
where sarmentine caused a rapid and dose-dependent inhibition
of oxygen evolution, with an I50 of 3.0± 0.12µM (Figure 7). On
the other hand, pelargonic acid did not inhibit photosynthetic
oxygen evolution at concentrations up to 100µM.

The ability of sarmentine to inhibit photosynthesis is related
to its structural similarity with photosystem II (PSII) inhibitors
(Figures 8A,B). In particular, it has an amide group attached to a
lipophilic side chain and possesses a nitrogen with a positive π-
charge (Figure 8C). These structural features enabled sarmentine
to compete with [14C]-atrazine for the QB binding site on PSII
(Figure 9A). Plotting the slopes of oxygen evolution from the
binding kinetic study revealed that sarmentine had an apparent
Ki of 1.5µM (Figure 9B).

Since sarmentine acted as a PSII inhibitor, its activity
was compared to atrazine on thylakoid membranes isolated
from wild-type and triazine-resistant pigweed. As expected,
atrazine inhibited oxygen evolution of wild-type pigweed thy-
lakoid preparations (I50 of 0.60 ± 0.07µM), but was ineffective
(I50 > 10µM) on thylakoid preparations from triazine-resistant

FIGURE 5 | (A) Structure of sarmentine and crotonyl-CoA, and (B) effect of

sarmentine on purified Arabidopsis thaliana enoyl-ACP reductase.

pigweed (Figure 10A). Sarmentine, on the other hand, inhibited
oxygen evolution from both wild-type and triazine-resistant pig-
weed, with I50 of 1.72 ± 0.17 and 0.97 ± 0.15µM, respectively
(Figure 10B).

L-Amino Acid Oxidase Assay
The activity of sarmentine was tested on L-amino acid oxidase to
be sure that the mechanism of action of this Piper amide did not
involve indiscriminate enzyme inhibition. L-Amino acid oxidase
was selected because this FAD-containing enzyme participates in
8 metabolic pathways (alanine, aspartate, methionine, tyrosine,
phenylalanine and tryptophan metabolism, valine, leucine and
isoleucine degradation, and alkaloid biosynthesis. Sarmentine did
not inhibit L-amino acid oxidase (Supplemental Data 1).

Discussion

Alteration of the Leaf Surface Ultrastructure by
Sarmentine
The appearance of the cuticle and any surface deposit was pre-
served during the preparation for scanning electron microscopy
by avoiding traditional alcohol dehydration and fixation pro-
cesses. Instead, leaf samples were flash-frozen in nitrogen slush.
This process results in ultra-rapid freezing of tissues and prevents
the tissue damage associated with the Leidenfrost effect.

The natural appearance of the epidermal cells and cuticular
wax layer was preserved in the control samples (Figures 1A,B).
The only artifactual features were the slight collapse of the fragile
glandular trichomes, but this did not interfere with the interpre-
tation of the micrographs.

The leaf surface of velvetleaf is smooth and void of epicu-
ticular wax crystals (Figure 1), consisting of approximately 36%
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FIGURE 6 | Effect of sarmentine on photosynthetic efficiency of

cucumber cotyledons incubated in darkness for 4 h.

FIGURE 7 | Effect of sarmentine (�) and pelargonic acid (©) on

photosynthetic oxygen evolution in isolated spinach thylakoid

membranes.

non-polar and 64% polar lipid components (Harr et al., 1991).
Consequently, water droplets have a relatively high contact angle
(66◦) on the surface of these leaves (Harr et al., 1991). The addi-
tion of 0.1% nonionic surfactant dramatically reduces the contact
angle, but for the purpose of this study, sarmentine was applied as
a 1mM solution in water with 1% acetone. Though less than ideal
for the application of this lipophilic phytotoxin [sarmentine has
a logP of 3.07 as calculated according to Ghose et al. (1988)], the
absence of surfactants or adjuvants ensures that the presence of
sarmentine and its effect on the leaf ultrastructure are observed.

FIGURE 8 | Minimized structure of diuron (A) and sarmentine (B). Black

boxes highlight the minimum structural requirements known for “classical” PSII

inhibitors. The nitrogen within the boxes carries a positive π-charge, as

illustrated in (C), a surface density showing the positive π-charge (blue green)

of the nitrogen and negative π-charge (red) of the oxygen atoms. Gray =

carbon, white = hydrogen, blue = nitrogen, red = oxygen, and green = chlorine.

Sarmentine residues were visible over the cuticular surface and
accumulating as a layer within the grooves of the cells within
1 h of application. No ultrastructural damage is evident within
this time frame (Figure 1C), but the collapse of the epidermal
cells caused by sarmentine developed within 8 h of application
(Figure 1D). This occurs primarily in the vicinity where sar-
mentine accumulated. However, there was no clear evidence of
stripping of the cuticular wax layer, therefore the burn-down
symptoms may be due to the interaction of sarmentine with
other physiological processes. No effect on the leaf surface was
observed in samples treated with the 1% acetone solution (data
not shown).

Destabilization of Plasma Membrane Integrity
The plasma membrane is at the interface between the cell and
its environment, and serves to holds the entire cellular structure
whole. Consequently, destabilization of the lipid bilayer, often
via reactive oxygen species (ROS)-induced stress membrane
peroxidation, result in uncontrolled electrolyte leakage and in
cell death (McKersie et al., 1990; Mittler, 2002). The possibility
that sarmentine affects membrane stability was first tested using
a standard cucumber cotyledon disc system (Duke and Kenyon,
1993; Dayan andWatson, 2011) and then applied to several weed
species. Sarmentine caused a rapid loss of membrane integrity
in all species tested, with I50 values below 100µM (Figure 2 and
Table 3). A 100µM concentration corresponds to 22µg ml−1

or 0.0022% sarmentine solutions. This is very active for a natural
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FIGURE 9 | (A) Binding of [14C]-atrazine to isolated thylakoid membranes and

displacement from its binding site by sarmentine. © = 0; � = 3µM;

� = 4µM; N = 5µM; H = 7µM sarmentine. (B) Estimation of the binding

constant of sarmentine on PSII by plotting the concentration of sarmentine vs.

the slope of the regression lines in (A).

product, but this does not mean that sarmentine would be active
at this concentration in the greenhouse or in the field because
the samples are floating on top of the treatment solution in the
cotyledon disc assay.

While the concentration required was higher than with sar-
mentine, pelargonic acid also caused electrolyte leakage, which
is consistent with its known mechanism of action (Figure 3 and
Table 3) (Dayan andWatson, 2011). Herbicidal organic soaps are
based on fatty acid compositions that strip the cuticular wax layer
covering the surface of leaves, resulting in rapid loss of mem-
brane integrity. From structure-activity relationship studies, the
optimum lipophilic chain length is 8–9 carbons (Lederer et al.,
2004; Coleman and Penner, 2006). The contribution of the level
of unsaturation is not well known, though some unsaturated fatty
acids have been patented as herbicides (Killick et al., 1997). On
the other hand, the level of unsaturation of the sarmentine’s side
chain does not appear to contribute to activity (Huang et al.,
2010). From that perspective, sarmentine and pelargonic acid
appear to act in a similar manner. However, the light-dependent
increase in electrolyte leakage observed at 30µM sarmentine is
not duplicated by pelargonic acid, which would be expected if the
two compounds had exactly the same mechanisms of action.

Inhibition of Enoyl-ACP Reductase (ENR)
The loss of membrane integrity can be the result of oxida-
tive stress generated by the accumulation of ROS (Dayan and

FIGURE 10 | (A) Effect of atrazine on O2 evolution from thylakoid membrane

extracted from susceptible (�) or triazine-resistant (©) pigweed. (B) Effect of

sarmentine on O2 evolution from thylakoid membrane extracted from

susceptible (�) or triazine-resistant (©) pigweed.

Watson, 2011), but can also result from the inhibition of fatty
acid synthesis, as documented with triclosan (McMurry et al.,
1998; Heath et al., 1999). In plants, fatty acid biosynthesis is
compartmentalized in the chloroplast and catalyzed by a type
II fatty acid synthase (FAS). The last step in each elonga-
tion cycle is carried out by the enoyl-[ACP]-reductase (ENR),
which reduces the dehydrated product of β-hydroxyacyl-[ACP]
dehydrase using NADPH or NADH (González-Thuillier et al.,
2015). The diphenyl ethers triclosan (a synthetic antimicro-
bial compound) and cyperin (a fungal metabolite) cause the
light-independent loss of membrane integrity by inhibiting ENR
(McMurry et al., 1998; Dayan et al., 2008). The possibility that
sarmentine also inhibited ENR was explored in part because of
the structural similarity between sarmentine and crotonyl-CoA,
the substrate of ENR (Figure 5A).

Sarmentine inhibited ENR, with an I50 = 18.3 ± 4.4µM,
which was much more active than the natural ENR inhibitor
cyperin, with an I50 = 89.0 ± 15.1µM. This is not a very potent
level of activity compared to triclosan, the most common ENR
inhibitor, which has an apparent I50 of 46 ± 5 nM (Dayan et al.,
2008). Cyperin and triclosan are diphenyl ethers that are stabi-
lized within the binding pocket of ENR by π-π stacking between
one of their phenyl rings and the nicotinamide ring of the NAD+
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and hydrogen bonding with the side chain of a tyrosine (Heath
et al., 1999; Dayan et al., 2008). The binding of sarmentine on
ENR is not known.

Interaction Between Sarmentine and
Photosystem II
Sarmentine destabilized plasma membranes at high concentra-
tion (100µM or more), but its activity on electrolyte leakage
was minimal at 30µM (inverted triangle in Figure 2) in dark-
ness. However, its activity increased dramatically upon exposure
to light (after the double arrow on Figure 2). This suggests that
one of the mechanisms of action of sarmentine involves one of
the light-dependent photosynthetic processes.

Photosynthesis is the target of many synthetic herbicides and
natural phytotoxins (Draber et al., 1991; Trebst, 2007; Dayan and
Duke, 2014). The most common mechanism of action involves
inhibition of electron transport on PSII by competing for the
binding of plastoquinone on the QB protein. Many of these are
typical PSII inhibitors that may or may not compete with the
same binding site as atrazine (e.g., sorgoleone, tenuazonic acid)
(Einhellig et al., 1993; Czarnota et al., 2001; Chen et al., 2007).
However, the other steps of photosynthetic electron transport can
be inhibited by natural products as well. For example, stimatellin
and certain aurachins interfere with electron transport at the
level of cytochrome b6/f complex (Oettmeier et al., 1985, 1990),
and the Streptomyces phytotoxin pyridazocidin diverts electrons
from photosystem I in a similar way as paraquat (Gerwick et al.,
1997).

Sarmentine completely halted electron transport at 30µM
after 4 h dark incubation (Figure 4), which is consistent with
inhibition of PSII (Dayan and Zaccaro, 2012). Its direct interfer-
ence of photosynthesis was confirmed by dose-dependent inhi-
bition of oxygen evolution, whereas pelargonic acid was not
active (Figure 7). This suggests that the effect on photosyn-
thetic electron transfer is not due to the indirect destabilization
of the chloroplast membrane, but rather by direct inhibition
of the electron flow in a manner similar to that of diuron or
atrazine (Trebst, 2007; Dayan et al., 2010; Dayan and Zaccaro,
2012).

Sarmentine has several of the structural features typical to cer-
tain synthetic and natural PSII inhibitors. The minimum struc-
tural requirements for these inhibitors include an amide group
connected to a lipophilic side chain (Trebst and Draber, 1986).
This structural requirement evident in the phenylurea herbicide
diuron (Figure 8A) is also present in sarmentine (Figure 8B).

Typically, the nitrogen carries a positive π-charge that is impor-
tant for the binding of the herbicide to the QB domain of PSII
(Ohad and Hirschberg, 1992). Analysis of the partial charge dis-
tribution on sarmentine illustrates the presence of such a feature
in sarmentine, where the unpaired electrons of the amine are
shared with the oxygen of the carbonyl group (Figure 8C).

Final evidence of the effect of sarmentine on PSII consists of its
ability to displace atrazine bound to the QB protein (Figure 9A).
Taken together, these experiments suggest that sarmentine has
a Ki of 1.5µM, which is better than some other natural prod-
ucts like tenuazonic acid at 147µM (Chen et al., 2008) but

not as good as most synthetic herbicides (Tischer and Strot-
mann, 1977). Interestingly, sarmentine inhibited the electron
flow from thylakoid membranes isolated from triazine-resistant
pigweed, whereas atrazine was only active on the wild-type pig-
weed (Figure 10). This is similar to what has been reported with
other natural PSII inhibitors. There are two known binding sites
on the Qb protein (Oettmeier et al., 1982). The Ser264 family
(also called the classical family) is important for the binding of
triazine-type inhibitors, whereas the His215 family (also called
the quinone or phenolic family) is important for the binding of
quinone-type inhibitors (Dayan et al., 2009a). Consequently, a
mutation of Ser264 to Gly or Ala causes resistance to triazines,
but not to other inhibitors (Dayan et al., 2009a).

In conclusion, application of sarmentine results in rapid des-
iccation of the foliage but its herbicidal activity is more complex
than the physical removal of cuticle associated with organic soap
herbicides (Coleman and Penner, 2006, 2008). Indeed, the loss
of plasma membrane integrity is the consequence of at least two
mechanisms of action. Sarmentine crosses the cuticle and pen-
etrates the cells where it interferes with fatty acid synthesis by
inhibiting ENR and with photosynthesis by competing for the
binding of plastoquinone on PSII.
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