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Competition for nitrogen (N), particularly in resource-limited habitats, might be avoided
by different N acquisition strategies of plants. In our study, we investigated whether
slow-growing European beech and fast-growing sycamore maple seedlings avoid
competition for growth-limiting N by different N uptake patterns and the potential
alteration by soil N availability in a microcosm experiment. We quantified growth and
biomass indices, 15N uptake capacity and N pools in the fine roots. Overall, growth
indices, N acquisition and N pools in the fine roots were influenced by species-
specific competition depending on soil N availability. With inter-specific competition,
growth of sycamore maple reduced regardless of soil N supply, whereas beech only
showed reduced growth when N was limited. Both species responded to inter-specific
competition by alteration of N pools in the fine roots; however, sycamore maple showed
a stronger response compared to beech for almost all N pools in roots, except for
structural N at low soil N availability. Beech generally preferred organic N acquisition
while sycamore maple took up more inorganic N. Furthermore, with inter-specific
competition, beech had an enhanced organic N uptake capacity, while in sycamore
maple inorganic N uptake capacity was impaired by the presence of beech. Although
sycamore maple could tolerate the suboptimal conditions at the cost of reduced growth,
our study indicates its reduced competitive ability for N compared to beech.

Keywords: growth strategies, inorganic N uptake, inter-specific competition, intra-specific competition, N pools,
organic N uptake, specific amino acids

Introduction

Plant species have evolved different strategies to maximize plant survival and reproduction by
various combinations of physiological and morphological traits, depending on the environmen-
tal conditions (Reich et al., 1997, 2003; Craine et al., 2009). Many studies have investigated these
different combinations of plant functional traits over the past decades with the focus on leaf traits
and/or seed production (Reich et al., 2003), but knowledge on root traits is still scarce (Craine et al.,
2009). Fast-growing species tend to have a higher photosynthetic capacity because of their higher
light-capture area deployment per unit mass [high specific leaf area (SLA)] and faster turnover
of plant parts, thus allowing flexibility in the plant’s response to the spatial heterogeneity of the
environment (Reich et al., 1997; Westoby et al., 2002). This, in turn, ensures short-term advantages
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over slow-growing plants (Grime et al., 1994; Westoby et al.,
2002), particularly in resource-limited environments in which
competition is high. Thus, competition for resources, especially
the growth-limiting macronutrient nitrogen, constitutes a major
challenge for plants, including not only competition with soil
microorganisms (Dannenmann et al., 2009; Rennenberg et al.,
2009), but also other vegetation components, such as herbaceous
and/or woody species (Fotelli et al., 2002, 2005; Simon et al.,
2010b, 2011, 2014).

In Central Europe, European beech (Fagus sylvatica)
represents the dominant tree species of the potential natural
vegetation in moist to moderately dry areas of the sub-
mountainous altitude range (Diekmann, 1996). Beech is favored
by forest practitioners and governments because nowadays
forest management practices have changed from supporting
conifer monocultures to the preference of mixed species stands
thereby promoting the natural regeneration of deciduous tree
species (Fotelli et al., 2001, 2004; Petritan et al., 2009). The
survival and growth of beech regeneration depends mainly on
the ability to co-exist with highly competitive species (Tognetti
et al., 1998; Fotelli et al., 2001, 2002, 2004, 2005). For example,
Fotelli et al. (2002) showed that inorganic N uptake capacity
of slow-growing beech seedlings was significantly reduced
when grown together with the fast-growing pioneer shrub
Rubus fruticosus and decreased even further with drought stress
(Fotelli et al., 2004). Furthermore, other studies investigated
the competition for nitrogen between beech and other potential
competitors, such as soil microorganisms (Dannenmann et al.,
2009), other tree species (Simon et al., 2010b, 2014), or even dif-
ferent developmental stages within a species (Simon et al., 2011).
Beech seedlings and adult beech trees, for example, avoided
competition for N by seasonal timing of N acquisition (Simon
et al., 2011). Furthermore, in short-term studies investigating the
competition for N between beech and sycamore maple seedlings
(Simon et al., 2010b, 2014), we found evidence for different N
uptake strategies that might depend on the growth strategies of
the species.

Sycamore maple (Acer pseudoplatanus) – a relatively
fast-growing species compared to slow-growing beech – might
require large amounts of N by root uptake to meet its resource
requirements for growth and development (Poorter et al., 2012).
Because sycamore maple shares the spectrum where beech is
dominant on calcareous substrate (Ellenberg, 1996), the two
species might have evolved different strategies to successfully
compete for nitrogen (Simon et al., 2010b) or avoid compe-
tition (Simon et al., 2011, 2014). Simon et al. (2010b) found
that short-term competition between seedlings of both species
lead to a reduced inorganic and organic N uptake capacity by
slow-growing beech with limiting soil N, whereas inorganic
N uptake capacity by fast-growing sycamore maple increased
significantly. Under reduced light conditions, N acquisition
by sycamore maple seedlings was negatively affected in the
presence of beech indicating that beech is optimally attuned
to shade conditions and outcompetes sycamore maple at
least in short-term competition with reduced light availabil-
ity (Simon et al., 2014). However, in these studies the focus
was on short-term consequences (i.e., competing for 4 days),

but not the implications of competition between two woody
species when grown together for several months, a time during
which competition might result in more distinct strategies of N
uptake.

Therefore, this study aimed to elucidate (1) whether European
beech and sycamore maple avoid competition for growth lim-
iting N by different N uptake strategies, and (2) whether
these strategies are altered by soil N availability. For this pur-
pose, seedlings of European beech and sycamore maple were
grown under controlled conditions in a microcosm experi-
ment in which growth and biomass indices, N uptake capac-
ity by the fine roots and N pools (i.e., total N, structural
N, soluble protein-N, total amino acid-N, as well as specific
amino acid-N) in the fine roots were analyzed. To ensure
that differences in N uptake capacity were due to the other
species, we set up the microorganisms also as intra-specific
controls, i.e., with several individuals of the same species.
Levels of specific amino acid-N in the roots were quanti-
fied to investigate overall patterns of potential differences in
specific amino acid-N in the roots with competition and N
supply.

Materials and Methods

Plant Material and Growth Conditions
Mycorrhizal seedlings of F. sylvatica L. (provenance Swabian Alb)
and A. pseudoplatanus L. (provenance “Sueddeutsches Huegel-
und Bergland montane Stufe”) of similar height (0.25–0.5 m)
and structural characteristics were purchased from a commercial
tree nursery (Schlegel & Co. Gartenprodukte GmbH, Riedlingen,
Germany). One-year-old seedlings were chosen for this study,
because the early developmental stage of seedlings is crucial for
seedling establishment, in particular under competition for lim-
ited resources with other species (Madsen and Larsen, 1997;
Zerbe, 2002). Microcosms (355 mm × 255 mm × 315 mm)
were filled with a homogenous mixture of 0.7–1.2 mm sil-
ica sand (1 part), 0.1–0.5 mm silica sand (18 parts), perlite
(19 parts), and torf (2 parts; Floragard Vertriebs GmbH für
Gartenbau, Oldenburg, Germany) to keep plant available N
from the soil substrate at a minimum. Seedlings were planted
into the microcosms in November 2010 (see Experimental
Design), over-wintered outside, and were transferred back to
the greenhouse at the end of March 2011. Until the start
of the experiment in mid-April, all microcosms were suffi-
ciently irrigated every second day with an artificial low N solu-
tion (see below). Plants were grown under 16/8 h day/night
conditions until the final harvest. Seedlings received natu-
ral daylight plus an artificial daylight supplied by mercury
lamps (SON-T AGRO 400, Philips GmbH, Eindhoven, The
Netherlands) with an average illumination intensity at canopy
level of 412 ± 32 μmol m−2 s−1 (mean ± SD) during the
day representing a tree-fall gap light environment (Tognetti
et al., 1998). The average air temperatures were 21.1 ± 6.7
and 17.7 ± 3.8◦C (day/night, mean ± SD). The average rela-
tive humidity was 41.5 ± 14.5% and 47.7 ± 7.1% (day/night,
mean ± SD).
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Experimental Design
The experiment had a 3 × 2 factorial design with three levels of
competitive interference (i.e., beech grown in intra-specific com-
petition, sycamore maple grown in intra-specific competition,
and beech and sycamore maple grown in inter-specific com-
petition) and two levels of nitrogen supply (i.e., low or high)
resulting in six treatment combinations. The level of compe-
tition was defined as: (1) European beech only (eight beech
seedlings, BB), (2) sycamore maple only (eight sycamore maple
seedlings, MM), and (3) beech and sycamore maple growing in
competition (four beech plus 4 sycamore maple seedlings, BM).
For each treatment, ten replicate microcosms were used con-
taining eight seedlings planted with a tree to tree distance of
c. 85 mm. This distance is well within the distance for neigh-
boring plants to compete for resources (Gaudet and Keddy,
1988; Nernberg and Dale, 1997; Imo and Timmer, 1999). Two
rows of three seedlings were arranged along each side and two
seedlings were planted in the middle row of each microcosm. In
microcosms containing both species, seedlings were spaced alter-
nating by species to ensure that each individual was surrounded
by individuals of the other species. Overall, the single species
microcosms were used to study the effect of intra-specific compe-
tition and served as a control for the inter-specific competition.
From the mixed species microcosms, both species were har-
vested and analyzed for inter-specific competition. This is shown
in the results as BB-B (intra-specifically-grown beech), BM-B
(beech grown in competition with sycamore maple), MM-M
(intra-specifically grown sycamore maple), and BM-M (sycamore
maple grown in competition with beech). BM-B and BM-M
originate essentially from the same planting design, but for com-
parison purposes, a distinction is made whether the impact
of sycamore maple on beech or beech on sycamore maple is
being considered. After leaf development (mid-April), micro-
cosms were separated into high/low N supply treatments and
irrigated with 1 L of either low N (with a total of 151 μM N)
or high N (with a total of 550 μM N) artificial nutrient solu-
tion every second day until the end of the experiment. The
artificial low N solution was based on the soil solution at a
low soil N field site in the Swabian Alb (Dannenmann et al.,
2009) containing 100 μM KNO3, 90 μM CaCl2∗2H2O, 70 μM
MgCl2∗6H2O, 50 μM KCl, 24 μM MnCl2∗4H2O, 20 μM NaCl,
10μMAlCl3, 7μMFeSO4

∗7H2O, 6μMK2HPO4, 1μMNH4Cl,
as well as the amino acids glutamine and arginine (25 μM
each) at pH 6.5. The artificial high N solution was based on
the soil solution of a high soil N field site in the Bavarian
alpine upland containing 20μMAl2(SO4)3, 75μMCaCl2·2H2O,
4 μM FeCl3·6H2O, 14 μM KCl, 10 μM MnCl2·4H2O, 40 μM
MgCl2·6H2O, 4.5 μM Na2HPO4, 20 μM NaCl, 50 μM NH4Cl,
300 μM KNO3, 100 μM glutamine, and 100 μM arginine at pH
4.7 (Stoelken et al., 2010). Glutamine and arginine were chosen
as the most abundant amino acids in beech roots (Gessler et al.,
1998).

Harvest and Sample Preparation
Before the start of the experiment in mid-April, an initial harvest
was conducted sampling three microcosms of each competi-
tion regime to determine the initial biomass and leaf area of

seedlings required for calculation of relative growth rates (RGRs;
see below). Ten weeks later, the final harvest was performed
subsequent to 15N uptake experiments. At the initial and final
harvest, seedlings were separated into fine roots, coarse roots,
stems, and leaves which were oven-dried over 48 h at 65◦C.
Fresh and dry weights were determined. Leaf area was measured
using an area meter (�T area meter, Delta-T devices, London,
UK). In addition, fine root samples were shock-frozen in liquid
nitrogen (after determining the fresh weight) and transferred to
−80◦C for storage until further processing. Prior to N metabolite
quantification, frozen tissue was finely ground in liquid nitrogen.

Growth and Biomass Allocation Indices
Average RGR was calculated for each seedling as RGR = (lnW2-
lnW1)/(t2-t1), where W1 is the total plant biomass (g dw) per
individual at the initial harvest of the experiment at t1 (day of
the initial harvest), W2 is the total plant biomass (g dw) per indi-
vidual at t2 (day of the final harvest; Grubb et al., 1996; Simon
et al., 2010a). W1 was calculated from the average biomass of
seedlings of each species (n = 24 grown in intra-specific com-
petition, n = 16 grown in inter-specific competition). For other
growth indices, data from t2 was used, including SLA, leaf mass
ratio (LMR), and leaf area ratio (LAR, total leaf area as a pro-
portion of total plant biomass). Net assimilation rate (NAR) was
calculated by dividing RGR by LAR. Leaf nitrogen productivity
(LNP, an index of plant growth relative to leaf N) was determined
according to: LNP = RGR/(Na

∗ LAR), where Na is the foliar
nitrogen concentration per unit leaf area (Simon et al., 2010b).
Furthermore, root:shoot ratio (R: Sm) was determined on a mass
basis.

15N Uptake Experiments
For the 15N uptake experiments, the two center seedlings and in
addition the middle one of each site from the inter-specific com-
petition microcosms were chosen. The 15N enrichment technique
as described by Gessler et al. (1998) and Simon et al. (2010b)
was applied to determine N uptake capacity. Both long sides of
the microcosm were cut open for easy access to the fine roots.
Fine roots still attached to the plants were carefully dug out and
rinsed with distilled water to remove adhering substrate parti-
cles. To quantify N uptake rates, roots were incubated for 2 h
(between 10:00 am to 14:00 pm to avoid diurnal variation in N
uptake (Gessler et al., 2002) in 4 mL of either low or high N solu-
tion (see above) with one of four N compounds labeled either as
15NO3

−, 15NH4
+, or 15N/13C double-labeled glutamine or argi-

nine, or control solutions without 15N label (to account for the
natural abundance of 15N in the fine roots). After 2 h incubation,
the submersed root tips and moistened upper parts (∼8–10 mm)
were cut off, washed twice with 0.5 μM CaCl2, dried out with
cellulose paper and oven-dried for 48 h at 65◦C. Fresh and dry
weight was determined.

Quantification of 15N, 13C, and Total N
Amounts in Fine Roots and Leaves
For the determination of 15N and 13C abundance and total N in
fine roots and leaves, the dried tissue (48 h, 60◦C)was ground into
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a fine homogeneous powder using a ball mill. Aliquots of 1.2–
2 mg were transferred into tin capsules (IVA Analysentechnik,
Meerbusch, Germany) and analyzed using an elemental analyzer
(NA2500, CE Instruments, Milan, Italy), coupled via a Conflo
II interface to an isotope ratio mass spectrometer (Delta Plus,
Thermo Finnigan MAT GmbH, Bremen, Germany). Working
standards (glutamic acid), calibrated against the primary stan-
dards USGS 40 (Glutamic acid, δ13CPDB = −26.39) and USGS 41
(Glutamic acid, δ13CPDB = 37.63) for δ13C and USGS 25 (ammo-
nium sulfate, δ15NAir = −30.4) and USGS 41 (δ15NAir = 47.600)
for δ15N, were analyzed after every 12th sample to detect a
potential instrument drift over time.

N uptake capacity (nmol g−1 fw h−1) was calculated based
on the incorporation of 15N into fine roots and the respective
plant biomass according to the equation by Geßler et al. (1998):
N uptake capacity = ((15Nl-15Nc)∗Ntot

∗dw∗105)/(MW∗fw∗t),
where 15Nl and 15Nc are the atom% of 15N in labeled (Nl) and
control plants (Nc, natural abundance), respectively, Ntot is the
total N percentage, and MW is the molecular weight (15N g
mol−1), t represents the incubation time (120 min). Based on
13C incorporation into the root fresh weight, the uptake rates of
amino acids were generally lower compared to those based on
the 15N incorporation indicating either the degradation of amino
acids in the incubation solution or on the root surface, or respira-
tion of amino acid-derived carbon inside the roots (Simon et al.,
2011).

Quantification of Total Soluble Protein in
Fine Roots
Total soluble proteins in fine roots were quantified accord-
ing to the method by Dannenmann et al. (2009). Frozen fine
ground roots (c. 50 mg) were extracted in 1 mL extraction buffer
(50 mM Tris-Cl (pH 8.0), 1 mM EDTA, 15% glycerol (v:v),
1 mM phenylmenthylsulfonyl fluoride, 5 mMdithiothreitol, 0.1%
Triton X-100). After 30 min incubation on the shaker at 4◦C fol-
lowed by centrifugation at 14,000 g for 10 min at 4◦C, 500 μL
trichloroacetic acid (10%) were added to 500 μL aliquots of the
supernatant, and then incubated for 10 min at room tempera-
ture. After centrifugation at 14,000 g for 10 min, the supernatant
was carefully discarded and the protein pellets were dissolved
in 0.5 mL 1 M KOH. Bradford reagent (1 mL; Amresco Inc.,
Solon, OH, USA) was added to 50 μL aliquots of the extracts for
quantification of total soluble protein. After 10 min of incubation
at room temperature in the dark, the optical density was mea-
sured in a UV-DU650 spectrophotometer (Beckman Coulter Inc.,
Fullerton, CA, USA) at 595 nm. Bovine serum albumin (BSA,
sigma A-6918) was used as a standard.

Quantification of Total and Specific Amino
Acids and Ammonium in Fine Roots
Amino acids and ammonium were extracted according to the
method of Winter et al. (1992). Aliquots of c. 50 mg frozen,
homogenized root tissue were extracted in 0.2 mL buffer (20 mM
Hepes, 50 mM EGTA, 10 mM NaF, pH 7.0) and 1 mL methanol:
chloroform (3.5:1.5, v:v). After shaking for 30 min at 4◦C, 600 μL
distilled H2O were added to the samples, mixed, and centrifuged
for 5 min at 4◦C. This extraction step was repeated once. The

quantification of total amino acid was determined from the com-
bined supernatants according to the method by Liu et al. (2005).
For quantification of total amino acids, aliquots (100 μL) of
the supernatant and 100 μL of ninhydrin reagent a 50:50 (v:v)
mixture of solution A (containing 4.2 g citric acid·H2O, 0.16 g
SnCl2·2H2O, and 40 mL 1 M NaOH, made up to 100 mL with
distilled water at pH 5) and solution B containing 4 g ninhydrin
in 100mL ethylene glycol monomethyl ether) were boiled at 95◦C
for 30 min. Isopropanol (1.25 mL, 50%) was added to the mixture
followed by 15min incubation. The optical density was measured
using a DV-UV650 spectrophotometer (Beckman Coulter Inc.,
Fullerton, CA, USA) at 570 nm. Glutamine was used as a stan-
dard. For quantification of specific amino acids and ammonium,
the extracts were shock-frozen in liquid N2, and freeze-dried for
96 h. The composition and concentration of amino compounds
and ammoniumwas determined in 50μL extracts analyzedwith a
Water Acquity UPLC-System (Waters Corp., Milford, MA, USA)
using a modified standard protocol (using an AccQ-TagTM Ultra
column 2.1 mm × 100 mm, 1.7 μm, 0.7 mL/min flow, column
temperature 61◦C) as previously described (Luo et al., 2009).
Amino acid Standard H (#NCI0180, Pierce Biotechnology, Inc.,
Rockford, IL, USA) was used as an analytical standard plus addi-
tional specific amino acids and ammonium added (with 2.5μmol
in 0.1 N HCl each) according to the composition of the analyzed
sample.

Quantification of Nitrate in Fine Roots
Nitrate was quantified according to the method described by
(Dannenmann et al., 2009). Approximately 100 mg washed
polyvinylpyrrolidone (PVPP, Sigma-Aldrich Inc., Steinheim,
Germany) were soaked in 1 mL distilled H2O overnight.
About 50 mg root material was added to the solution and
shaken for 1 h in the dark. Samples were boiled at 95◦C for
10 min, followed by 10 min centrifugation at 4◦C. Aliquots of
150 μL supernatant were measured in an auto-sampler (AS3500,
Thermo Separation Products, Piscataway, NJ, USA) connected
with an ion chromatography system (DX120, Dionex, Idstein,
Germany). The ion chromatography system was equipped with
a guard column (RFICTM IonPac AS9-SC, 4 mm × 250 mm,
Dionex, Idstein, Germany), an analytical column (IonPac AS9-
SC, 4 mm × 250 mm, Dionex, Idstein, Germany) and a
self-regenerating suppressor (ASRS-ULTRA II, 4 mm, Dionex,
Idstein, Germany). An eluent solution of 2.0 mM sodium carbon-
ate and 0.75 mM sodium bicarbonate was used for the separation
of different anions. An anion mixture of NO3

−, PO4
3−, SO3

2−,
and SO4

2− was used as a standard.

Statistical Analyses
For all measured parameters, normality tests and Levene’s test for
homogeneity of variances were performed using SPSS 16.0 (SPSS
Inc., Chicago, IL, USA). To detect differences among treatments,
two-way analyses of variance (ANOVAs) were conducted using
SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, USA). Two
factors were defined as (1) high/low N supply and (2) competition
regimes. Holm-Sidak post hoc test was performed subsequently
to compare differences within each factor by SigmaPlot (Systat
Software Inc., San Jose, CA, USA). Datasets of specific amino
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acids were subjected to principal component analysis (PCA)
and partial least squares discriminant analysis (PLS-DA) using
MetaboAnalyst 2.0 (Xia et al., 2012).

Results

Combined Influence of Soil N Availability
and Competition Regime on Growth Indices,
N Acquisition and N Pools
To study the combined influence of soil N availability and com-
petition regime on growth indices, N acquisition and N pools in
the fine roots of beech and sycamore maple seedlings, two-way
ANOVAs were performed. Only R:Sm, LAR, foliar Na, ammo-
nium, andArg-N uptake capacity (P≤ 0.030), as well as nitrate-N
and soluble protein-N pools in the fine roots (P ≤ 0.023) were
significantly affected by the combination of both treatments
(Table 1).

Consequences of Soil N Availability on N
Acquisition and N Pools in Both Species
In European beech seedlings, decreasing soil N availability (i.e.,
high vs. low N supply) resulted in significant changes in N
uptake capacity and N pools in the fine roots in both competition
regimes (Table 1). No significant differences with N supply were
found for any of the growth indices except for an increase in foliar

TABLE 1 | Two-way ANOVA analyses of growth indices, N uptake capacity
and N pools in the fine roots of beech and sycamore maple seedlings.

N supply ∗ competition N supply Competition

Growth indices

R:Sm 0.018 0.292 0.241

RGR (mg g−1 d−1 ) 0.600 0.101 <0.001

NAR (g m2 d−1 ) 0.211 0.658 <0.001

LNP (g g(Nm )−1 d−1 ) 0.212 0.058 <0.001

LMR (g g−1 ) 0.905 0.016 <0.001

LAR (cm2 g−1) 0.030 0.186 0.004

SLA (m2 g−1 ) 0.412 0.419 <0.001

Na (g m−2) <0.001 <0.001 <0.001

N uptake capacity

Ammonium <0.001 <0.001 <0.001

Nitrate 0.496 <0.001 <0.001

Arginine-N <0.001 <0.001 <0.001

Glutamine-N 0.172 <0.001 <0.001

N pools

Total N 0.123 0.283 <0.001

Structural N 0.099 0.120 0.153

Total soluble protein-N 0.023 <0.001 0.031

Total amino acid-N 0.226 <0.001 0.001

Nitrate-N <0.001 <0.001 <0.001

Ammonium-N 0.494 0.004 <0.001

The effects of all parameters were separated by two factors (1) N supply and (2)
competition regimes. R:Sm, root/shoot mass ratio; RGR, relative growth rate; NAR,
net assimilation rate; LNP, leaf nitrogen productivity; LMR, leaf mass ratio; LAR,
leaf area ratio; SLA, specific leaf area; Na, nitrogen concentration per unit leaf area.
Bold values indicate the significance level of 0.050.

Na in beech regardless of competition regime with decreasing soil
N supply (P<0.001;Tables 1 and 2). Furthermore, decreasing soil
N availability led to declining N uptake capacities for all four
tested N sources regardless of competition regime (P < 0.001;
Table 1; Figure 1). With regard to N pools in the fine roots of
beech, only beech seedlings grown in inter-specific competition
had higher levels of ammonium-N with low compared to high N
supply (P = 0.037; Figure 2).

Similar to beech, N uptake capacity in sycamore maple gener-
ally declined with decreasing soil N supply (P ≤ 0.012; Figure 1).
Furthermore, with declining soil N availability, levels of nitrate-
N (regardless of competition regime) and total amino acid-N
(only with intra-specific competition) significantly decreased
(P ≤ 0.001), whereas levels of soluble protein-N (with intra-
specific competition) and ammonium-N (with inter-specific
competition) increased (P ≤ 0.040; Figure 2) in sycamore maple.
With regard to growth indices, LAR decreased (P = 0.023) and
foliar Na increased (P<0.001) significantly with decreasing soil N
supply in sycamore maple only with inter-specific competition.

Consequences of Competition Regime on
Growth Indices, N Acquisition and N Pools in
European Beech Seedlings
Beech seedlings responded to inter-specific competition with
sycamore maple with regard to growth indices, N uptake capacity
and N pools in the fine roots (Table 2; Figures 1 and 2). Beech
showed no significant differences of biomass by the influence
of sycamore maple under high N supply, whereas under low N
supply RGR, NAR, and LNP decreased in presence of sycamore
maple (P ≤ 0.032; Table 2). Generally, for beech, organic N
(i.e., Gln and Arg) was the preferred N source regardless of soil
N availability and competition regime (P ≤ 0.001; Figure 1).
With high soil N availability, competition with sycamore maple
only led to an increase in Gln-N and Arg-N uptake capacity
(P ≤ 0.033) in beech, but exhibited no changes in ammonium
and nitrate uptake capacity (Figure 1) compared to intra-specific
competition. With regard to N pools in beech roots, ammonium-
N concentration in beech roots decreased when grown with
sycamore maple with low N supply (P = 0.044), while no other
changes in N pools in beech were found at high or low soil N
availability (Figure 2).

Consequences of Competition Regime on
Growth Indices, N Acquisition and N Pools in
Sycamore Maple Seedlings
Similar to beech, sycamore maple seedlings responded with
changes in N uptake capacity and N pools in the fine roots when
grown in competition with beech, but also showed differences
in growth and biomass indices. At high soil N availability, RGR,
NAR, LNP, and foliar Na decreased was significantly in the pres-
ence of beech (P ≤ 0.008; Table 2). Furthermore, inorganic N
uptake capacity (i.e., nitrate, ammonium)were significantly lower
in sycamore maple in the presence of beech (P ≤ 0.047; Figure 1)
except for ammonium with low N supply, whereas no changes
were found for organic N uptake. With regard to N pools in
the fine roots, concentrations of soluble protein-N and nitrate-N
increased in sycamore maple in the presence of beech at high soil
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TABLE 2 | Biomass and leaf parameters of beech and sycamore seedlings with high/low soil N supply (mean ± SD).

High N supply Low N supply

BB-B BM-B BM-M MM-M BB-B BM-B BM-M MM-M

R:Sm 0.832 ± 0.109a 0.891 ± 0.141a 0.780 ± 0.195a 0.874 ± 0.204a 0.906 ± 0.171a 0.873 ± 0.198a 0.865 ± 0.173a 0.813 ± 0.196a

RGR (mg
g−1 d−1)

6.232 ± 5.179b 3.325 ± 6.559ab 1.841 ± 6.303a 12.685 ± 4.525c 4.587 ± 7.278b 0.866 ± 5.721a 1.912 ± 6.559ab 10.581 ± 5.724c

NAR (g m2

d−1)
0.178 ± 0.148b 0.095 ± 0.148ab 0.101 ± 0.26a 0.417 ± 0.153c 0.148 ± 0.235b 0.027 ± 0.175a 0.080 ± 0.269ab 0.395 ± 0.214c

LNP (g
g(Nm )−1

d−1)

1.667 ± 1.700b 0.847 ± 0.995ab 1.349 ± 2.751a 4.932 ± 1.189c 0.943 ± 0.985b 0.014 ± 0.041a 0.800 ± 1.936ab 4.574 ± 2.051c

LMR (g
g−1 )

0.170 ± 0.034b 0.180 ± 0.036b 0.106 ± 0.028a 0.105 ± 0.021a 0.162 ± 0.023b 0.168 ± 0.021b 0.102 ± 0.020a 0.097 ± 0.020a

LAR (cm2

g−1 )
34.937 ± 5.569a 35.091 ± 23.746a 30.644 ± 9.375a∗ 29.644 ± 6.925a 30.913 ± 5.380a 32.604 ± 6.806a 24.245 ± 6.106a∗ 26.807 ± 9.093a

SLA (m2

g−1 )
0.318 ± 0.027a 0.334 ± 0.036a 0.421 ± 0.127b 0.399 ± 0.083b 0.326 ± 0.032a 0.327 ± 0.035a 0.375 ± 0.095ab 0.404 ± 0.036b

Na (g m−2) 1.190 ± 0.104b∗ 1.201 ± 0.077b∗ 0.809 ± 0.025a∗ 1.057 ± 0.158b 1.594 ± 0.112c∗ 1.408 ± 0.120c∗ 1.341 ± 0.045b∗ 1.000 ± 0.105a

R:Sm, root/shoot mass ratio; RGR, relative growth rate; NAR, net assimilation rate; LNP, leaf nitrogen productivity; LMR, leaf mass ratio; LAR, leaf area ratio; SLA, specific
leaf area; Na, nitrogen concentration per unit leaf area. BB-B: beech grown in intra-specific competition, BM-B: beech grown in inter-specific competition with sycamore
maple, BM-M: sycamore maple grown in inter-specific competition with beech, MM-M: sycamore maple grown in intra-specific competition. Different small letters indicate
significant differences between the competition regimes (i.e., BB-B, BM-B, BM-M, MM-M) within one soil N supply treatment (P ≤ 0.05). Asterisks indicate significant
differences between high and low soil N supply within one competition regime (P ≤ 0.05).

N availability, while no other changes in N pools in beech were
found (P ≤ 0.014; Figures 2C,E).

At low soil N supply, sycamore maple had reduced RGR, NAR,
and LNP (P ≤ 0.001), whereas foliar Na increased (P ≤ 0.001)
when grown in competition with beech (Table 2). Similar to high
N supply, nitrate-N uptake capacity in sycamore maple decreased
in the presence of beech. Concentrations of total N, soluble pro-
tein, total amino acids and ammonium N increased significantly
in the fine roots of sycamore maple grown in competition with
beech at low soil N supply (P ≤ 0.004; Figure 2).

Comparing European Beech and Sycamore
Maple Seedlings
The responses to inter/intra-specific competition with regard to
growth and biomass indices, as well as N uptake capacity and N
metabolites in the fine roots between the two species, differed
depending on species and soil N supply. At intra-specific com-
petition, beech had lower RGR, NAR, LNP, and SLA but higher
LMR than sycamore maple independent of soil N availability
(P ≤ 0.016; Table 2). However, when beech and sycamore maple
were grown in inter-specific competition, both species showed
similar R:Sm, RGR, NAR, LNP, and LAR regardless of soil N
supply. Comparing beech and sycamore maple in inter-specific
competition, with high soil N supply, beech seedlings had a lower
SLA and higher Na and LMR (P ≤ 0.002; Table 2), whereas at
low soil N supply no significant differences were found for SLA
between beech and sycamore maple in inter-specific competition.

Beech showed lower inorganic N uptake capacity than
sycamore maple in intra-specific competition regardless of N
supply, except for ammonium with low N supply (P<0.001;
Figure 1). Beech and sycamore maple grown in inter-specific
competition, showed similar inorganic N uptake, except for
nitrate which was still higher in sycamore maple than in beech

(P = 0.019; Figure 1). Regarding organic N uptake capacity,
Arg-N uptake capacity was generally higher in beech compared
to sycamore maple regardless of N availability and competitive
regimes (P ≤ 0.004), except for beech and sycamore maple in
intra-specific competition with low N supply. With high N sup-
ply, Gln-N uptake capacity increased in beech in presence of
sycamore maple.

With regard to Nmetabolites in the fine roots, beech seedlings
had lower concentrations of total N (except for that in intra-
specific competition at low N supply), nitrate-N (only at high
N supply), total soluble protein-N, total amino-acid-N and
ammonium-N (only in inter-specific competition; P ≤ 0.001)
than sycamore maple seedlings, regardless of soil N availability
and competition regime (Figure 2).

Principal component analysis showed that competition regime
and soil N availability led to overall changes in amino acid-
N composition in the fine roots of beech and sycamore maple
(Figure 3). With high N availability, the influence of intra-specific
competition showed overlapping areas in beech and sycamore
maple, whereas the presence of the competing species led to
species-specific amino acid composition. This species specificity
became more pronounced when N supply was limited, and both
species showed similar composition regardless of competition
regime.

Discussion

Response of Beech Seedlings to
Competition for N Depends on Soil N
Availability
For beech seedlings, the consequences of competition for N with
sycamore maple had no direct influence on growth indices with
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FIGURE 1 | Inorganic and organic N uptake capacity (nmol g−1 fw h−1)
in beech and sycamore maple seedlings with high or low soil N supply.
BB-B: beech grown in intra-specific competition, BM-B: beech grown in
competition with sycamore maple, BM-M: sycamore maple grown in
competition with beech, MM-M: sycamore maple grown in intra-specific

competition. Box plots show means (dotted lines) and medians (straight lines;
n = 14 for each treatment). Different small letters indicate significant differences
between the four competition regimes (i.e., BB-B, BM-B, BM-M, MM-M) within
one soil N supply (P ≤ 0.050). Asterisk indicates significant difference between
high and low soil N supply within one competition regime (P ≤ 0.050).

high N supply, but physiological changes were found regardless of
soil N availability when comparing with intra-specifically grown
beech seedlings. This indicates that the underlying mechanisms
regulating growth patterns might shift depending on the com-
peting species. Comparing the N acquisition strategies of beech
seedlings grown in intra- vs. inter-specific competition, with high
soil N availability, beech seedlings showed an increased Gln-
N and Arg-N uptake capacity when competing with sycamore
maple. This strategy is in contrast to previous results from a
study investigating the consequences of short-term competition
for N between beech and sycamore maple seedlings (Simon et al.,
2010b). In this study, beech seedlings had significantly lower inor-
ganic and organic N uptake capacity in the presence of maple
which might have been due to the release of an inhibiting com-
pound by sycamore maple (Simon et al., 2010b). A similar study
using the same composition of N compounds applied to the roots
and investigating the effect of light availability on the competi-
tion between beech and sycamore maple also under short-term
conditions (Simon et al., 2014) could not show the inhibiting
effect of sycamore maple on beech. Thus, it is still unclear, under
what conditions inhibition of N uptake in beech seedlings might

occur. The experimental set-up of the experiments conducted on
short-term competition (Simon et al., 2010b, 2014) is not directly
comparable with the present study. The results of our present
study indicate that under close to natural conditions beech does
not have a disadvantage, but might have rather adapted to the
competition by increasing organic (i.e., Gln and Arg) N uptake.
This preference of organic over inorganic N is consistent with
other studies on beech roots (e.g., Dannenmann et al., 2009;
Simon et al., 2010b, 2011, 2014). N pools in the fine roots of beech
did not change in the presence of sycamore maple regardless of N
supply, except for a decrease of ammonium-N concentration in
beech in the presence of sycamore maple with limited N supply.
However, wemeasured only N pools in fine roots, thus differences
in levels of N metabolites might also be due to metabolite trans-
port from above ground tissues (Herschbach et al., 2012). These
changes in N acquisition and allocation to N pools in the fine
roots indicate that different N use strategies of beech in the pres-
ence of sycamore maple depend on soil N supply. Furthermore,
N acquisition of beech seedlings was adapted to the competition
with sycamore maple regardless of N supply, because N uptake
capacity of beech was not impaired.
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FIGURE 2 | Nitrogen pools (mg g−1 dw) in the fine roots of beech and
sycamore maple seedlings with high or low soil N supply. (A) Total N,
(B) structural N, (C) total soluble protein-N, (D) total amino acid-N,
(E) nitrate-N, (F) ammonium-N. BB-B: beech grown in intra-specific
competition, BM-B: beech grown in competition with sycamore maple,
BM-M: sycamore maple grown in competition with beech, MM-M: sycamore

maple grown in intra-specific competition. Box plots show means (dotted
lines) and medians (straight lines; n = 14 for each treatment). Different small
letters indicate significant differences between the competition regimes (i.e.,
BB-B, BM-B, BM-M, MM-M) within one soil N supply (P ≤ 0.050). Asterisks
indicate significant differences between high and low soil N supply within one
competition regime (P ≤ 0.050).

Response of Sycamore Maple Seedlings to
Competition for N Varies with Competition
Regime and Soil N Availability
For sycamore maple, competition led to a reduction in RGR
due to lower LNP and NAR (both regardless of soil N availabil-
ity) in sycamore maple seedling regardless of soil N supply, thus
showing a visible response to competition with beech seedlings.

The reduction in inorganic N acquisition by sycamore maple
(regardless of N supply) indicates that sycamore maple might
be outcompeted in competition by beech as was also indicated
in the short-term competition with decreasing light availability
(Simon et al., 2014). Apparently, N acquisition strategies of
sycamore maple depend not solely on abiotic stressors but shift
with abiotic–biotic stressor combination, e.g., decline in N uptake
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FIGURE 3 | Principal components analysis (PCA) based on specific
amino acid concentration. H: with high soil N supply (A), L: with low soil N
supply (B). BB-B: beech grown in intra-specific competition, BM-B: beech
grown in competition with sycamore maple, BM-M: sycamore maple grown in
competition with beech, MM-M: sycamore maple grown in intra-specific
competition. (A) PCA of specific amino acids levels under high soil N supply.

According to the variance of the specific amino acids along PC1 and 2 (capture
51.4% of the total variances), the groups of beech and maple under
inter-specific competition were separated distinctly. (B) PCA of specific amino
acids levels under low soil N supply. Beech and sycamore maple under
inter-specific competition are grouped with a little part overlapped (PC1 and 2
explain 37.3% of variance).

capacity with reduced light availability in short-term competition
(Simon et al., 2014), but regardless of N availability in competi-
tion (present study). Sycamore maple tended to prefer inorganic
N (i.e., ammonium and nitrate) at high soil N availability regard-
less of competition regime in contrast to results found for beech
seedlings (Stoelken et al., 2010). However, limited N availabil-
ity also led to a general decrease in N uptake capacity as found
in beech (Stoelken et al., 2010). In contrast to beech seedlings,
total N, soluble protein-N, total amino acid-N, and ammonium-
N concentrations in the fine roots of sycamore maple increased at
low soil N availability when seedlings were grown in competition
with beech suggesting that sycamore maple responded stronger
to the change in soil N supply compared to beech. The levels of
soluble protein-N in the fine roots of sycamore maple increased
when grown in competition with beech confirming the results
from previous experiments that sycamore maple – when grown in
competition with beech (Simon et al., 2010b, 2014) – synthesizes
proteins, probably representing a specific adaptation of sycamore
maple.

Different Strategies of Competition – Beech
vs. Sycamore Maple
Beech and sycamore maple seedlings showed different responses
to soil N availability with regard to growth, N acquisition and
composition of N pools in the fine roots, similar to different
responses to changing light availability investigated in a previ-
ous study (Simon et al., 2014). Furthermore, the responses were

also influenced by competition between the two species in the
present study. When grown in intra-specific competition, beech
and sycamore maple show different growth strategies at least at
the seedling level. Beech is a relatively slow-growing, whereas
sycamore maple is a relatively fast growing species (Ellenberg,
1996), represented in lower LNP, SLA, and NAR regardless of
soil N availability. The species-specific differences in N acqui-
sition, namely a higher organic N uptake capacity for beech
seedlings than in sycamore maple, and a higher inorganic N
uptake capacity in sycamore maple than in beech, confirm the
theory that competition for N can be avoided (e.g., Simon et al.,
2011; Hodge and Fitter, 2013). These contrasting results com-
pared to previous studies investigating the competition for N
between beech and sycamore maple grown in short-term com-
petition (Simon et al., 2010b, 2014) indicate that N uptake
strategies might shift over time. Whereas in short-term compe-
tition, plant species might actually compete for limited resources,
in the longer run they acclimate to the conditions and develop
an avoidance strategy. Species differed also in their N pools
in the fine roots regardless of soil N availability and compe-
tition regime. Sycamore maple had generally higher levels of
total N, total soluble protein-N, total amino acid-N and nitrate-
N compared to beech. Furthermore, the different approaches to
cope with low soil N availability (i.e., differences in N alloca-
tion to fine root N pools) suggest that beech is better adapted
to N limitation compared to sycamore maple. In addition, the
present results show that competition in sycamore maple led
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to an increase in soluble protein concentration when grown with
beech. This is consistent with previous studies (Simon et al.,
2010b, 2014). Further experiments are required to test whether
this common strategy is a consequence of de novo synthesis of
proteins involved in the interaction between the two compet-
ing species. Soil N availability and the presence of a competing
species also resulted in shifts in amino acid-N composition in
the fine roots in both species. With high N supply, competition
led to species-specific amino acid-N composition, whereas with
intra-specific competition similar patterns were found suggesting
that amino acid compositions shift depending on the competi-
tion regime even when N is available in excess. With N limitation,
however, these patterns became less pronounced, because both
had similar amino acid composition regardless of the competi-
tion regime indicating that soil N availability plays a major role in
the competition for N between species.

Conclusion

Growth, N acquisition, and nutrition strategies of relatively slow-
growing beech and relatively fast growing maple are adapted
to N availability in the soil. The present results indicate that
in beech-dominated forests on low N soil, the dominant tree
species – beech – is optimally adapted to the environment.
Intra- or inter-specific competition for N is avoided by different
preferences for N sources in N acquisition. Furthermore, the
understory provides the optimal environment to support beech

seedlings rather than other woody plant species, such as sycamore
maple which appears to be able to tolerate the conditions but at
the cost of reduced growth and N acquisition capacity, therefore
losing its competitive ability over beech. However, field stud-
ies are required to confirm these findings for the competition
between beech and sycamore maple. Whether similar mecha-
nisms of competition have been developed with other woody
competitors, remains to be investigated.
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