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Ammonium transporters (AMTs) are plasma membrane proteins that exclusively transport
ammonium/ammonia. These proteins are encoded by an ancient gene family with many
members. The molecular characteristics and evolutionary history of AMTs in woody plants
are still poorly understood. We comprehensively evaluated the AMT gene family in the
latest release of the Populus trichocarpa genome (version 3.0; Phytozome 9.0), and
identified 16 AMT genes. These genes formed four clusters; AMT1 (7 genes), AMT2
(2 genes), AMT3 (2 genes), and AMT4 (5 genes). Evolutionary analyses suggested that
the Populus AMT gene family has expanded via whole-genome duplication events.
Among the 16 AMT genes, 15 genes are located on 11 chromosomes of Populus.
Expression analyses showed that 14 AMT genes were vegetative organs expressed;
AMT1;1/1,3/1,6/3;2 and AMT1;1/1;2/2,2/3;1 had high transcript accumulation level in
the leaves and roots, respectively and strongly changes under the nitrogen-dependent
experiments. The results imply the functional roles of AMT genes in ammonium
absorption in poplar.

Keywords: ammonium transporter, poplar, genome-wide analysis, evolutionary mechanism, expression profile,
ammonium deficiency

Introduction

For most higher plant species, the main sources of nitrogen are ammonium (NHI), nitrate (NO3'),
and amino acids, which are present in the soil as organic and inorganic complexes and compounds
(Williams and Miller, 2001). The ammonium transporter (AMT) is responsible for transporting
ammonium/ammonia from extracellular into intracellular locations. In plant, once ammonium is
uptaked into root cells by AMTs, it is ultimately directed into glutamine via glutamine synthase
(GS). Less energy is required for uptake and assimilation of NH; than that of NO; (Bloom et al.,
1992). However, a high concentration of NH; can be toxic to plants as indexed by an inhibitory
growth (Britto and Kronzucker, 2002).

Recently, some AMT genes have been identified and cloned from diverse plant species.
Previous studies on phylogenetic analyses of the AMT gene family revealed two distinct
subfamilies: the AMT1 subfamily (AMT]I cluster) and the AMT2 subfamily (AMT2/3/4 cluster)
(Loqué and von Wirén, 2004; Koegel et al, 2013). The biochemical properties of proteins
encoded by AMTI cluster genes, and the related regulation mechanisms were reported
in the model plant Arabidopsis thaliana (Loqué et al, 2007; Yuan et al, 2007, 2009,
2013; Lanquar et al, 2009). The proteins encoded by AMTI cluster genes have a high-
affinity NHJ -transport function. For example, both AtAMTL;I and AtAMTL;3 account for
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30-35% of the capacity for NH; uptake in nitrogen-deficient
roots, and AtAMTI;2 for 18-26% (Loqué et al., 2006; Yuan et al.,
2007). AtAMT1;4, which is pollen-specific expressed, contributes
to nitrogen nutrition of the pollen via NHI uptake or retrieval
(Yuan et al., 2009).

Populus, a model system for trees and woody perennial plants,
is widely distributed throughout the northern hemisphere.
Members of the Populus genus are fast-growing trees that
are capable of growing under low- or high-NH; and NOj
conditions (Min et al., 1999). It is necessary to a better
understanding on how the uptake and transport of NHZr and
NO; are regulated in this genus. In a previous study, 14
AMT genes were identified in the Populus trichocarpa genome
version 1v1. PtaAMT1;2/1;5/1;6/2;1/2;2 were confirmed to have
NHI—transporter functions in yeast (Couturier et al, 2007).
The expression of PtaAMTI;2 and PtaAMT3;1 were induced by
ectomycorrhiza (Selle et al., 2005; Luo et al., 2009).

In this study, we investigated the evolution and transcription
profiles of Populus AMT genes by describing the expanded
AMT gene family consisting of 16 genes, which were dentified
in the latest release of the P. trichocarpa genome (version
3.0; Phytozome 9.0), analyzing the phylogeny, gene structure,
conserved domain, and genome location. Moreover, we
comprehensively analyzed the tissue and nitrogen-dependent
transcription profiles of AMT genes in Populus.

Materials and Methods

Plant Seedlings and Growth Conditions

Cuttings of P. simonii x P. nigra were pots-cultivated (organic
substrate and vermiculite, 1:1 vol/vol) at Northeast Forestry
University Forest Farm, Harbin, China for 3 months under
the following conditions; photosynthetic photon flux density
(PPED) of 100 wmol-m-2-s-1, 16-h-light/8-h-dark photoperiod,
and 22°C. The plantlets were harvested, and several whole
plantlets were frozen in liquid nitrogen and stored at —80°C.
New branches were cut into segments of equal length before
transferring into modified Long-Ashton medium, pH 5.5
(Dluzniewska et al., 2007). The medium was replaced every 2
days. After 3 weeks, the plantlets were treated with nitrogen at
various concentrations. For the nitrogen-free medium, 0.5 mM
KNOj3 and 0.5 mM NH,4Cl were replaced with 0.5mM KCI. To
supply NHI or NO3, the medium contained 2 mM (NH4),5O04
and 0.5 mM KCl or 4 mM KNOj3 and 2 mM MgSOy, respectively.
After the treatments, whole plantlets were harvested, frozen in
liquid nitrogen, and stored at —80°C until analysis.

Identification of AMT Gene Family Members in
Populus

We downloaded the Hidden Markov Model (HMM) profile file
(Ammonium_transp.hmm) of the Pfam AMT domain (PF00909)
from the Pfam database (Finn et al, 2010). The protein
sequences of P. trichocarpa were downloaded from Phytozome
9.0 (http://phytozome.jgi.doe.gov/pz/portal.html). We used the
HMM modules of PF00909 with HMMER (v 3.0) software to
search the proteome of P. trichocarpa (Eddy, 2009). Proteins with
e-values of less than 5E-40 were included in further analyses.

Various splicing variants of one gene or incomplete genes were
discarded. We searched for the ammonium-domain in all of
the collected proteins using Interproscan (http://www.ebi.ac.uk/
Tools/pfa/iprscan/) and SMART software (Letunic et al., 2012).

For each putative protein, the grand average of hydropathicity
(GRAVY) was calculated using ProtParam (http://web.expasy.
org/protparam/). We used TMHMM Server version 2.0
(http://www.cbs.dtu.dk/servicess  TMHMM/) to predict the
transmembrane domains in each AMT protein.

Phylogenetic Analysis and Chromosomal
Location
According to the method of Koegel et al. (2013), we aligned
full-length amino acid sequences of AMTs with ClustalW
(http://www.ebi.ac.uk/Tools/msa/clustalw2/). The phylogenetic
tree was constructed using the Neighbor-Joining (NJ) method
and Poisson correction model with MEGAS5 software (Tamura
et al, 2011). To confirm the reliability of the phylogenetic tree,
bootstrap resampling tests were carried out 1000 times.
Information on the chromosomal location of all of the AMT
genes was downloaded from Phytozome 9.0, and duplicated
regions among chromosomes were identified as described by
Tuskan et al. (2006). The criterion for tandemly duplicated genes
in Populus was the occurrence of five or fewer gene loci within a
100-kb region.

Gene Structure and Conserved Motifs

We used the Gene Structure Display Server (GSDS) program
to illustrate the exon/intron organization of individual AMT
genes (Guo et al.,, 2007). The Ka/Ks ratio was computed using
KaKs_Calculator 2.0 (Wang et al., 2010).

RNA Isolation and Quantitative RT-PCR Analysis
Total RNA was extracted from leaf, stem, and root tissues using
the CTAB method (Chang et al., 1993). The integrity of the
extracted RNA was verified by 1.5% agar gel electrophoresis.
Approximately 2pug RNA was used to synthesize first-strand
cDNA using the PrimerScript RT Reagent Kit, after removing
genomic DNA with gDNAEraser (Takara Biotechnology, Dalian,
China). Primer Premier 5.0 (Premier Biosoft, Palo Alto, CA,
USA) software was used to design specific primers for semi-
quantitative PCR analysis. The primer sequences are listed
in Supplementary Table 1. A 7500 Real-Time PCR System
(Applied Biosystems) was used to conduct a three-step PCR
procedure. In the organ-dependent and nitrogen-dependent
expression analyses, transcript levels were normalized to that of
the PtrActin2 gene.

Results

Identification of AMT Genes in Populus

By referring to the method of Wang et al. (2004) and Chai et al.
(2012), the HMM profile “PF00909” was performed against the
P. trichocarpa genome to identify AMT genes. We ultimately
identified 16 putative AMT proteins and the related encoding
genes from the P. trichocarpa genome. We assigned the names
to the 2 AMT genes that are not described previously (Table 1).
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TABLE 1 | AMT gene family in Populus.

S.no Name Accession number Phyotozome Gene Pfam: Ammonium_transp

Chromosome location ORF(bp) Proteinsize Gary Exonnumber TM Location E-value
1 PtrAMT1;1  Potri.010G063500 Chr10: 9120743-9122764 1542 513 0.377 1 9 49-473 7.6E-143
2 PtrAMT1;2  Potri.019G023600 Chr19: 2711924-2714239 1521 506 0.365 1 9 45-470 2.2E-140
3 PtrAMT1;3  Potri.008G173800 Chr08: 11862571-11864618 1560 519 0.424 1 9 49-474 1.3E-137
4 PtrAMT1;4  Potri.002G255100 Chr02: 24443271-24444758 1524 507 0.429 1 10 48-473 7.2E-137
5 PtrAMT1;5  Potri.002G255000 Chr02: 24440976-24442512 1506 501 0.486 1 9 50-473 1.8E-134
6 PtrAMT1;6  Potri.009G045200 Chr09: 5126196-5128023 1428 475 0.5622 1 9 15-441 1.9E-132
7 PtrAMT1;7*  Potri.013G049600 Chr13: 3621326-3622848 1615 504 0.296 2 7 32-455 2.9E-134
8 PtrAMT2;1 Potri.006G102800 Chr06: 7958210-7961388 1494 497 0.485 4 11 24-445 5.5E-84
9 PtrAMT2;2  Potri.016G121400 Chr16: 12596540-12599172 1494 497 0.516 4 11 23-444 1.6E-82
10 PtrAMT3;1  Potri.001G305400 Chr01: 30850782-30853952 1497 498 0.512 3 11 30-454 6.8E-84
11 PtrAMT3;2*  Potri.019G000800 Chr19: 130389-137256 1506 501 0.525 3 11 31-455 3.3E-84
12 PtrAMT4;1  Potri.002G047000 Chr02: 3014561-3016477 1398 465 0.527 4 10 24-440 1.8E-82
13 PtrAMT4;2  Potri.018G033500 Chr18: 2675485-2677227 1473 490 0.445 3 11 27-442 1.9E-79
14 PtrAMT4;3  Potri.005G216000 Chr05: 22908162-22910483 1452 483 0.507 3 10 24-440 1.3E-86
15 PtrAMT4;4  Potri. T103600 scaffold_150: 53115-54877 1461 486 0.623 3 10 23-439 1.4E-78
16 PtrAMT4;5  Potri.005G106000 Chr05: 8099969-8101856 1377 458 0.506 3 11 7-419 3.4E-76

*AMT genes of Populus newly identified in this study.

The length of encoded proteins ranged from 458 amino acids
(a.a.) to 519 a.a., and their sequences had 7 to 11 trans-membrane
domains (TMDs). All of the putative proteins had low GRAVY
values (range: 0.369-0.623).

Phylogenetic and Gene Structural Analyses of
AMT Genes

To evaluate the evolutionary relationships among orthologous
AMT genes, we constructed a phylogenetic tree with the
Neighbor-Joining (N-J) method using MEGAS5 software with 8
different plant species (Figure 1). The results revealed two major
clades and four clusters. Among the 16 AMT genes in Populus, 7
genes were in the AMTI cluster, and the remaining AMT genes
were in three other separate clusters (AMT2, AMT3, and AMT4).

To investigate the divergence of paralogs and the evolutionary
relationships among Populus AMT proteins, we aligned full-
length sequences of the 16 proteins using ClustalW, and
constructed a phylogenetic tree with the Neighbor-Joining
method using MEGA5 software (Figure 2A). We identified 6
paralogous pairs, and then determined their substitution rate
ratios (non-synonymous vs. synonymous mutations; Ka/Ks). All
of 6 paralogous pairs had Ka/Ks ratios of less than 0.5. We
deduced that the divergence time of these paralogous pairs
ranged from 1.07 to 21.92 million years ago (Table 2). These
results indicated that all of the 6 Populus AMT gene pairs evolved
under the influence of purifying selection.

The AMT genes in the same cluster had similar exon/intron
structures and similar numbers of exons and introns (Figure 2B).
Genes in the AMTI cluster had 1 exon, except for PtrAMTI1;7
who had 2 exons. And those in the AMT?2 cluster had 4 exons.
Genes in the AMT3 cluster had 3 exons, and those in the AMT4
cluster had 3 exons, except for PtrAMT4;1, which had 4 exons.

We further analyzed the exon/intron structure of the 6
paralogous pairs of Populus AMT genes. 4 of the 6 paralogous
pairs were well conserved in terms of exon/intron structure,
with similar numbers of introns and similar gene lengths. There
were greater variations in gene structure among the other 2
paralogous pairs (PtrAMT4;1/4;3, and PtrAMTI1;2/1;7). These
differences were rooted in single- and double-intron loss or
gain events during the structural evolution of AMT paralogs
(Figure 3). As shown in Figure 2B, the size of exons was
generally well conserved among most members of the 4 AMT
clusters. Interestingly, Comparing with other members in AMT2
subfamily, PtrAMT3;2 had 2 long introns, but CDS sequence was
similar to PtrAMT3;1. Therefore, the substantial differences in
gene structure resulted from differences in the size of exons and
introns among the various genes.

For finding distinctively domain of poplar AMTs, we
aligning all the poplar AMT protein sequences with AtAMTI; 1,
AtAMT2;2 and EcAmtB which crystal structures was well
characterized (Khademi et al., 2004; Pantoja, 2012). Comparing
with AtAMTI;1, poplar AMT1 subfamily members also
have conserved C-terminal domain and N-terminal domain
(Supplementary Figure 1). While PtrAMTI1;6 was similar to
LeAMT1;3 who has a short N-terminal domain. In contrast
to all of the TMDs present in EcAmtB, all of the poplar AMT
gene family members have accordingly conserved TMDs. These
results suggested that the AMT gene family members are well
conserved both in terms of gene structure and specific domain of
AMT proteins.

Chromosomal Location and Gene Duplication of
the Populus AMT Gene Family

To explore the relationship between AMT genes and segmental
duplications in the Populus genome, we analyzed the segmental
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FIGURE 1 | Phylogenetic tree of proteins encoded by AMT genes from
Arabidopsis thaliana, Lycopersicon esculentum, Giycine max, Lotus
japonicas, Sorghum bicolor, Oryza sativa, Triticum aestivum, and
Populus trichocarpa. Protein sequences were aligned by Clustalw and tree
was constructed by MEGAS5 using N-J method, with 1000 bootstrap
replicates. Green hollow triangle are the new AMTs in this study.

and tandem duplication events in the AMT gene family in
Populus. Based on the location information for AMTs in
Phytozome 9.0, the genes were marked on the physical map of the
Populus linkage groups (LG). The Populus AMT genes showed
a heterogeneous distribution pattern among the chromosomes
(Figure 4). We localized 15 of the 16 AMT genes on 11 of 19 LG
of Populus. Only PtrAMT4;4 was located on unattributed scaffold
fragments.

A previous study showed that paralogous segments of
the Populus genome arose from whole-genome duplication
during the salicoid duplication event (Tuskan et al., 2006).
In the AMT gene family, 14 of the 15 mapped genes
were located in duplicated blocks. 4 block pairs harbored 4
paralogous pairs of AMT genes (PtrAMTI1;1/1;3, PtrAMT2;1/2;2,
PtrAMTI1.2/1.7 and PtrAMT4;1/4;3), which arose via a whole-
genome duplication event. Paralogous pair PtrAMT1;4/1;5 were
arranged in tandem repeats on LG 2 and LG 13, but both
lacked corresponding duplicates. Out of 12 AMT genes, 2
genes (PtrAMT3;1, and PtrAMT45) also lacked corresponding
duplicates. Only PtrAMT3;2 was not located in duplicated blocks.
The corresponding homologs of these genes may have been lost
after the duplication event, or genes may have arisen after the
salicoid duplication event. In conclusion, duplication events and
tandem repeats are expected to contribute to the expansion of the
AMT gene family in the Populus genome.

Transcription Patterns of Populus AMT Genes in
Various Tissues

To investigate the transcription patterns of Populus AMT
genes during development, we used real-time quantitative
RT-PCR to analyze AMT gene transcript levels in young leaves,
mature leaves, old leaves, stems, and roots of P. simonii x
P. nigra (Figure5). Because of significantly difference of
transcript accumulation of poplar AMT genes, we used square
root value of relative transcript ratio of each gene for display
express pattern, and raw date was show in Supplementary
Table 4. Finally, we detected transcripts of 14 AMT genes:
AMTI;1/1;2/1;3/1;4/1;5/1;6/2;1/2;2/3;1/3;2/4;1/4;3/4,4/4;5,  but
there  were  relatively low  transcript levels  of
AMT1I1;4/1;5/3;1/4;1/4;3/4;4/4;5 in the 5 nutritive organs. We
detected transcripts of AMTI;1/1;3/1;4/1;6/2;1/2;2/3;1/3;2/4;1
in all 5 tested tissues. AMT4;3 leaf-specific transcribed, and
AMT4;4 stem-specific transcribed. There were high transcript
levels of AMTI;3/1;6 in the leaves and AMT3;1 in the root.
However, transcripts of AMT1;5/4;5 were not detected in the
stem or root. A previous study showed that PtaAMTI;2 was
specifically expressed in the root and PtaAMTI1;6/2;1/3;1 in the
shoot (Couturier et al., 2007). However under our experiment
conditions, all the 4 genes mentioned above were detected in 5
tissues. Among them, AMT1;6 had high transcript accumulation
in leaves, AMT1;2/3;1 had high transcript accumulation in roots,
and AMT?2;1 were expressed similarly in all the 5 tissues, except
in young leaves. These differences in transcription patterns
may be due to the highly heterozygous genetic background
of P. simonii x P. nigra and/or differences in experimental
conditions.
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Phylogenetic tree was constructed using MEGAS by the N-J method, with
1000 bootstrap replicates. (B) Gene structures of AMT genes. Green boxes
show coding exons, black lines show introns.

TABLE 2 | Ka/Ks ratios and estimated divergence time for paralogous
AMT genes in Populus.

Paralogous pairs Ka Ks Ka/Ks MYA
1.1vs. 1.3 0.069 0.326 0.213 17.915
1.4vs. 1.5 0.109 1.445 0.075 7.945

1.2vs. 1.7 0.0743 0.399 0.186 21.923
2.1vs. 2.2 0.033 0.245 0.137 13.465
3.1vs. 3.2 0.049 0.271 0.183 12.331
4.1vs. 4.3 0.067 0.246 0.273 13.496

Populus AMT Transcription Patterns in Response
to Different Nitrogen Concentrations

To better understand the function of AMT genes in Populus, we
examined the transcription patterns of poplar AMT genes in P.
simonii X P. nigra under nitrogen-dependent experiment. We
selected 10 genes (AMTI;1/1;2/1;3/1;4/1;5/1;6/2;1/2;2/3;1/3;2)
with high transcript accumulation in the leaf and root to evaluate
transcription patterns.

In leaves of plantlets under nitrogen-starvation conditions,
AMTI;1 was up-regulated, AMTI;3/3;2 were unchanged and
down-regulated, respectively, at 4h, and then up-regulated
at 24 and 48h. AMTI1;4/1;6/2;1/3;1 were down-regulated,
while AMTIL5 was down-regulated at 4h, unchanged
at 24h, and further down-regulated at 48h (Figure 6A,
Supplementary Table 5A). In the roots of nitrogen-starved
plantlets, AMT1;1/1;6/2;2/3;1/3;2 were up-regulated; AMTI;3
was down-regulated; AMT1;4 was unchanged at this condition.
AMTI;2 was up-regulated at 4 and 48h but down-regulated
at 24h. AMT1;2/1;5 was up-regulated at 4 and 48h but down-
regulated at 24h. AMT2;1 was up-regulated at 4h and but
down-regulated at 24 and 48h (Figure 6B, Supplementary
Table 5B).

PtrAMT1I;2

PtrAMTI;7

PtrAMT4;1

I NI

FIGURE 3 | Duplicated genes in AMT gene family in Populus. Schematic
diagram of gene structure is based on three duplicated paralogous pairs.
Exons (red boxes) and introns (black boxes) are shown. Vertical lines show
corresponding regions. Numbers of nucleotides are shown beside exons.

PtrAMT4;3

In the leaves of plantlets under NH; -resupply conditions,
AMTI1;1/1;3/1;5/3;2 were down-regulated and AMTI;4 was
unchanged. AMT1;6 was up-regulated at 4 h, but down-regulated
at 24h. AMT2;1/2;2 were up-regulated at 4 and 24 h, but down-
regulated at 48h (Figure 6C, Supplementary Table 5C). In the
roots, AMT1;2 was up-regulated, AMTI1;1/1;5/1;6/ 2;2/3;1/3;2
were down-regulated, and AMT1;4 was unchanged. AMTI;3/2;1
was down-regulated at 4h but up-regulated at 24 h (Figure 6D,
Supplementary Table 5D).

Interestingly, after plants were resupplied with different
concentrations of NH,, only AMT2I transcripts had high
accumulation when the concentration of NH was increased in
roots (Figure 7, Supplementary Table 6), while the transcripts
accumulation of AMTI;3/1;5/1;6/2;2/3;1 were reduced. The
transcription of AMTI1;4/3;2 was up-regulation under 0.1 mM
NH] condition, but down-regulated under 0.4, 1, and 4mM
NHI, respectively. AMTI;1 transcripts were up-regulated under
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FIGURE 4 | Chromosomal location and gene duplication of Populus
AMT gene family. Same-colored boxes show segmental duplicated
homologous regions. These regions were identified based on duplication
coordinates from the Populus genome assembly 3.0. Duplicated paralogous
pairs of AMT genes are connected by colored lines. Red box shows two
tandemly duplicated gene pairs.

0.1, 0.4, and 1 mM NH; conditions, but was down-regulated
under 4mM NH; condition. The expression level of AMTI;2
was strongly decreased under resupplied 0.1 and 0.4 mM NH;
condition, while resupplied 1 and 4mM NH; led to the
transcripts of AMT1I;2 was significantly accumulated.

Discussion

AMT Gene Family in Populus

We retrieved a total 16 AMT genes from the recently released
Populus genome (Phytozome 9.0, Populus trichocarpa 3.0) with
improved annotation. Couturier et al. (2007) analyzed an earlier
version of the Populus genome (1v1) and found 14 AMT genes;
6 in the AMTI cluster, 2 in the AMT?2 cluster, 1 in the AMT3
cluster, and 5 in the AMT4 cluster. In the present study, we found
2 new AMT genes in Populus (PtrAMT1;7/3;2). All of these genes
have completely ammonium transport region in their protein
sequence.

The evolution of the AMT/MEP/Rh superfamily of integral
membrane proteins is extremely complex. Within each of these
families, various cases, including duplication and expansion
events, gene losses, and horizontal gene transfer events may
occur (Couturier et al, 2007; McDonald et al, 2010). In
Populus, expansion of the AMT gene family can be ascribed
to duplication events and tandem repeats. In this study, the
phylogenetic analysis and chromosomal location information
revealed that duplication events, tandem events, and the loss
of duplicates after duplication events occurred in the Populus
AMT gene family. A previous study revealed that the Populus
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FIGURE 5 | Relative transcript levels of AMT genes in different tissues
of Populus. YL, young leaf; ML, mature leaf; OL, old leaf; R, root; S, stem. The
average expression of each gene was calculated with square root of relative
transcript ratio of each gene for display express pattern. Error bars indicate SE.

genome has undergone two whole-genome duplication events
that significantly contributed to the amplification of many
multigene families. One of the whole-genome duplication events
was the salicoid duplication event that occurred 65 million years
ago (Tuskan et al., 2006). Many previous studies have provided
evidence for gene duplication in several gene families, including
the GS gene family and the NRT gene family (Castro-Rodriguez
et al,, 2011; Bai et al.,, 2013). The ratio of putative Populus NRT
homologs to corresponding genes in Arabidopsis was reported
to be 1.4-1.6 (Bai et al, 2013), compared with a ratio of 3.5
for the AMT gene family. This result supports the hypothesis
that plant species from different environments organize NHZr
transport with different numbers of NHI transporters (Loqué
and von Wirén, 2004).

In the evolutionary history of Populus, members of the AMT
gene family have undergone rigorous selection. The structure
of Populus AMT genes is well conserved and these genes have
different numbers of exons. A previous study reported that most
genes in the AMT1I cluster have one exon and no introns, except
for LJAMT]I;1, which has an intron in its open reading frame
(ORF) (Salvemini et al., 2001). In Populus, PtrAMT1;7 also has
an intron in ORE but could not detected it in all the nutritive
organ, it may express in specific tissue.

In AMT gene family, function of extracellular N-terminus
play a role for oligomer stability. In Lycopersicon esculentum,
LeAMT1;1/1;2 were detected as a trimeric complex in planta,
but in the paraloge LeAMTI1;3 who had a short N-terminus,
trimeric complexes were not detected (Graft et al., 2011). This
may indicate that PtrAMTI;6 is similar to LeAMTI;3 who
maintain dimer and monomer complexes on plasma membrane.
Previous studies on AtAMTI;1 showed that protein activity
could be controlled by phosphorylation site T460, which was
localized in C-terminus conserved domain (Loqué et al., 2007;
Lanquar et al, 2009). When compared with AtAMTI;1, all
the members of poplar AMTI1 subfamily members have the
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medium with ammonium as the sole nitrogen source for 2 days (C,D). The
average expression of each gene was calculated with square root of relative
transcript ratio of each gene for display express pattern. Error bars

indicate SE.

conserved phosphorylation site T, except PtrAMTI1;6 whose site
was replaced by S; but this site was not conserved in AMT2
subfamily members (Supplementary Figure 1). These results may
indicate phosphorylation at specific site of poplar AMT1 may
be equally important for regulate ammonium up-take under
various external environment conditions, and there were possible
different regulation mechanisms between AMT1 and AMT2
subfamily members.

Transcript Profiles of AMT Genes in Populus

In the Arabidopsis roots, the genes in the AMT1I cluster encode
proteins responsible for NH/ uptake (Yuan et al, 2007).
AtAMTI;1/1;2/1;3/2;1 account for 90% of high-affinity NHI—
uptake capacity in the root, while AfAMT1;4 is responsible for the
high-affinity NHI—uptake capacity of pollen (Loqué et al., 2006;
Yuan et al., 2007, 2009). However, in poplar, the physiological
function of AMTs is still not well known. When comparing with
Arabidopsis, there are more AMT gene family members in poplar
than in Arabidopsis. These may indicate function redundancy
of AMTs in poplar; or execute special function depend on
differential tissue expression, like AtAMT1;3 who can mediate
lateral root branching (Lima et al., 2010).

In this study, transcripts of 14 AMT genes were detected
in nutritive organs. There were relatively high transcript levels
of AMTI1;1/1;3/1;6/2;1/2;2/3;2 in the leaves, AMTI1;1/2;1/2;2 in
the stems, and AMT1;1/1;2/2;2/3;1 in the roots. These results

indicate that these genes may play different physiological
functions in ammonium utilization. Based on our observations,
we propose that AMTI1;1/1;2/2;2/3;1 may be suspected to be
responsible for ammonium uptake from the soil; and the others
may be involved in ammonium redistribution, for example,
AMT1;1/2;1/2;2 may play key roles in the ammonium transport
from roots to shoots, AMT1;6 may participate in the retrieval
and import from apoplast of leaves (von Wirén et al., 2000),
and AMT1;1/1;3/1;6/2;1/2;2/3;2 may be in charge of ammonium
retrieval from old leaves to young leaves (Couturier et al., 2007).
Noteworthy, paralogous pairs PtrAMT3;1/3;2 had different
intron length and express pattern and in roots and leaves,
these results indicate that these two genes may have different
transcriptional regulation mechanism and/or different function
in specially tissue or cell.

A comprehensive analysis of RNA-seq data and Microarray
data (Yang et al., 2008) from popgenie v3 (http://www.popgenie.
org/) confirms that AMT1I;2 prefers to be expressed in roots, but
less in the leaves and stems, while AMT1;6 prefer to be expressed
in leaves, but had low expression level in the stems and roots
(Supplementary Tables 2, 3).

In this study, we propose that the ammonium-dependent
expression of some PtrAMTs may be controlled by a local
ammonium signal in roots or a systematic N signal in leaves,
respectively. The expression pattern of AMTI;1/2;2/3;1 have
acutely change under nitrogen starvation and ammonium supply
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FIGURE 7 | Relative transcript levels of AMT1;2 in roots of Populus in
response to different concentrations of ammonium. Plantlets were grown
in nitrogen-free medium for 2 days, and then transferred to medium containing
indicated concentrations of ammonium for 1 day. The average expression of
each gene was calculated with square root of relative transcript ratio of each
gene for display express pattern. Error bars indicate SE.

in roots, these results are similar to ZmAMTI;1a/1;3 who
could be controlled by a local ammonium signal (Gu et al,
2013), and this expression pattern may improve NH; up-take
efficiency. Although AMT1I;2 showed up-regulated transcription
under nitrogen starvation and NH; -resupply conditions, but the
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