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Chromatin resetting mechanisms
preventing transgenerational
inheritance of epigenetic states
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Epigenetic regulation can be altered by environmental cues including abiotic and biotic
stresses. In most cases, environmentally-induced epigenetic changes are transient, but
in some cases they are maintained for extensive periods of time and may even be trans-
mitted to the next generation. However, the underlying mechanisms of transgenerational
transmission of environmentally-induced epigenetic states remain largely unknown. Such
traits can be adaptive, but also can have negative consequences if the parentally inherited
epigenetic memory interferes with canonical environmental responses of the progeny.
This review highlights recent insights into the mechanisms preventing transgenerational
transmission of environmentally-induced epigenetic states in plants, which resemble
those of germline reprogramming in mammals.
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Introduction

Epigenetic marks such as DNA methylation, histone modifications, or histone variants influence
the chromatin structure and transcriptional states. These epigenetic marks can be stably main-
tained, but also can be dynamically altered during development or in response to environmental
stimuli.

Inmost cases, environmentally-induced epigenetic changes are transient. However, in some cases
they are stably maintained trough mitotic cell divisions and therefore can be regarded as a type of
long-term cellularmemory. The best understood example of such epigeneticmemory in plants is that
of vernalization, which involves the epigenetic silencing of FLOWERING LOCUS C (FLC) gene by
prolonged cold (Kim and Sung, 2012; Song et al., 2012). During embryogenesis, the FLC epigenetic
state is reset thus allowing the next generation to respond to vernalization signals (further described
below).

Epigenetic changes can bemeiotically inherited (i.e., transgenerationally transmitted). The inher-
itance of epigenetic changes is especially well documented in plants whereDNAmethylation is stably
maintained mitotically and meiotically (Law and Jacobsen, 2010). In Arabidopsis, DNA METHYL-
TRANSFERASE1 (MET1) and chromatin remodeling factorDECREASE INDNAMETHYLATION
1 (DDM1) are essential for global maintenance of DNA methylation as shown by the whole genome
hypomethylation occurring in met1 and ddm1 mutants (Finnegan and Dennis, 1993; Vongs et al.,
1993; Jeddeloh et al., 1998; Saze et al., 2003). Many of these hypomethylated loci are stably inherited
for many generations even after reintroduction of a functional MET1 or DDM1 allele (Johannes
et al., 2009; Reinders et al., 2009). Furthermore, transgenes, viral infection, or specific plant tissue
culture conditions can also alter DNA methylation patterns in some genes, thus inducing so-called
“epialleles” (Vaucheret et al., 1998; Baulcombe, 1999; Vaucheret and Fagard, 2001; Krizova et al.,
2009; Rhee et al., 2010).
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Besides experimentally-induced epialleles, there are many
examples of naturally occurring epialleles inducing visible pheno-
types such as flower shape/color, sex determination and genetic
incompatibility (Cubas et al., 1999; Iida et al., 2004; Martin
et al., 2009; Durand et al., 2012). All natural epialleles reported
so far involve changes in DNA methylation. The differences in
DNA methylation in the natural epialleles are often associated
with transposable elements (TEs) or TE-related sequences located
near the genes forming epialleles, suggesting that TE-derived
cis-regulatory elements contribute to epiallele formation (Weigel
and Colot, 2012). TEs are major components of most eukaryotic
genomes, and usually silenced with repressive chromatin marks,
which are considered a defense mechanism against TE activity
since TE transpositions are frequently deleterious to the host. In
some cases these epigenetic marks spread to neighboring genes
thus altering their expression (Ahmed et al., 2011). Thus, TEs can
contribute to epiallele formation.

Interestingly, TEs can be activated transcriptionally and trans-
positionally by stress in a wild type genetic background. McClin-
tock (1984) suggested that TE activation could be a genomic
response to challenge. In support of this view, several reports
have described examples of TEs playing roles in gene regulation
and genome evolution (Slotkin and Martienssen, 2007; Fedoroff,
2012).

Experimental induction of epialleles and TE mobilization in
epigenetic mutants leading to heritable genetic changes has been
well documented. However, the occurrence of stable inheritance
induced by environmentally induced epigenetic changes has met
some controversy (Boyko and Kovalchuk, 2011; Mirouze and
Paszkowski, 2011; Paszkowski and Grossniklaus, 2011; Pecinka
and Mittelsten Scheid, 2012). The inheritance of environmentally
induced-epigenetic changes could be adaptive, but also could be
deleterious given that environmental epigeneticmemory of parent
might impair canonical responses in the progeny.

Recent studies approached the issue from a different perspec-
tive, and described the mechanisms preventing transgenerational
inheritance of environmentally-induced epigenetic traits.

In this review, I summarize these findings and discuss their
implications on the inheritance of environmentally-induced epi-
genetic changes.

Resetting Vernalized State

Vernalization is the acquisition of ability to flower by exposure of
plants with prolonged cold. In Arabidopsis, vernalization involves
epigenetic silencing of the floral repressor FLC, which encodes
a MADS box transcription factor (Michaels and Amasino, 1999;
Sheldon et al., 1999). FLC is expressed throughout the early
vegetative development in vernalization-requiring Arabidopsis
accessions. In response to prolonged cold, FLC is epigenetically
silenced allowing flowering to be promoted according to other
environmental cues such as photoperiod (Figure 1A). This silenc-
ing of FLC is associated with chromatin modifications including
increased levels of H3K27me3 at the FLC locus, which ismediated
by polycomb repressive complex 2 (PRC2; Bastow et al., 2004;
De Lucia et al., 2008; Figure 1B). After the cold exposure, the
silenced epigenetic state of FLC is stably maintained throughout

FIGURE 1 | (A) Schematic representation of the experimental data in Crevillén
et al. (2014). FLC is epigenetically silenced by prolonged exposure to cold.
Thereafter, the silenced epigenetic state of FLC is stably maintained until
embryogenesis. In developing embryos the epigenetic state of FLC is reset,
thus allowing vernalization responses during the new vegetative phase. In the
elf6 hypomorphic-resetting mutant (elf6-5), resetting of FLC is impaired
therefore a partially vernalized state is inherited. (B) Simplified model for FLC
resetting. This silencing of FLC is associated with H3K27 methylation
mediated by PRC2. Removal of H3K27 methylation by ELF6 is required for
restoring the pre-vernalization chromatin state of FLC.

the rest of the life of the plant until the FLC chromatin state
is reset during embryogenesis thus reestablishing vernalization
requirement to promote flowering in the progeny (Sheldon et al.,
2008; Choi et al., 2009; Figure 1A). Whereas the mechanisms
leading to FLC silencing in response to vernalization have been
extensively studied, the mechanisms responsible for resetting FLC
was less understood.

Recently, Crevillén et al. (2014) screened for mutants in which
resetting of FLC is impaired so that the vernalized states is inher-
ited in the next generation. This led to the discovery of the histone
demethylase EARLY FLOWERING 6 (ELF6) as a component
required for FLC resetting (Crevillén et al., 2014). In the elf6 hypo-
morphic mutants, the progeny from vernalized plants flowered
earlier and had reduced FLC expression compared to that of the
progeny from non-vernalized plants, indicating that vernalized
states were transmitted to the elf6 mutant progeny (Figure 1A).

ELF6 is a jumonji-C-domain-containing protein, and has
H3K27me3 demethylase activity. In the elf6 hypomorphic reset-
ting mutant, an alanine was substituted with a valine in conserved
residues of the jumonji C domain, which leads to a reduction
in demethylase activity. ChIP analysis showed the H3K27me3
levels were higher in the progeny of vernalized plants than the

Frontiers in Plant Science | www.frontiersin.org May 2015 | Volume 6 | Article 3802

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Iwasaki Mechanisms preventing transgenerational epigenetic inheritance

progeny of non-vernalized plants in the mutants, suggesting that
removal of H3K27me3 by ELF6 is required for restoring the pre-
vernalization chromatin state associated with FLC (Figure 1B).
Intriguingly, different ELF6 alleles are associated with distinct
phenotypic responses. Loss-of-function elf6 alleles are early flow-
ering irrespective of the occurrence of vernalization due to the
increased expression of the flowering regulator gene FT (Noh
et al., 2004). Thus, it was suggested that ELF6 has a broader
function, and that the particular hypomorphic mutation reveals
a specific aspect of ELF6’s activity to restore the pre-vernalization
chromatin state of FLC during embryogenesis.

In mammals, reprogramming of epigenetic marks, including
H3K27me3, occurs in germ cells and early embryo (Cantone
and Fisher, 2013). The reprogramming mediated by ELF6 would
be a relevant mechanism conserved in evolution. In Arabidopsis
genome, H3K27me3 is found in 15% of all genes (Zhang et al.,
2007). It would be interesting to address whether other genes are
reprogrammed by ELF6 or related proteins.

Resetting Chromatin Changes Induced by
Heat Stress

In 2010, three independent research groups reported the influ-
ence of environmental stresses on epigenetically silenced loci
in Arabidopsis (Lang-Mladek et al., 2010; Pecinka et al., 2010;
Tittel-Elmer et al., 2010). They exposed plants to various stress
conditions such as temperature shift, drought, elevated salin-
ity, or UV radiation, and examined activities of transcription-
ally silenced reporter genes. It was found that heat stress (37
or 42°C) or UV-B radiation releases silencing and activates
reporter genes. The release of transcriptional silencing induced
by stress occurs at various endogenous loci (Tittel-Elmer et al.,
2010). However, this activation is transient since the loci are
re-silenced within a few days after stress (Lang-Mladek et al.,
2010; Pecinka et al., 2010; Tittel-Elmer et al., 2010). The rapid
re-silencing appears to involve nucleosome loading since it is
delayed in mutants with impaired chromatin assembly (Pecinka
et al., 2010). These results suggest that chromatin non-permissive
to transcription displays plasticity in response to stress, but also
that there is a robust buffering system that resets chromatin
changes to the initial ground state. Interestingly, stress-induced
transcriptional activation occurs in differentiated tissues but not
in meristematic tissues, suggesting the existence of a mechanism
protecting germline cells from epigenetic damage (Pecinka et al.,
2010).

Interestingly, the LTR-type retroelement ONSEN was found to
behave rather exceptionally in response to heat stress. Unlike other
heterochromatic loci destabilized by heat, the transcriptional acti-
vation persists for longer periods of time (Pecinka et al., 2010;
Tittel-Elmer et al., 2010). The heat stress-induced transcriptional
activation is enhanced in siRNA defective mutants, however,
eventually ONSEN transcripts gradually decay as the plant pur-
sues its growth, andno transpositions can be detected in vegetative
tissues. Surprisingly, high frequency of transposition is observed
in the progeny of siRNAdefectivemutants subjected to heat stress,
suggesting that the siRNA pathway prevents transgenerational
transposition of ONSEN (Ito et al., 2011).

FIGURE 2 | (A) Schematic representation of the experimental data in Iwasaki
and Paszkowski (2014). A silenced LUC transgene is transiently
transcriptionally activated in response to a heat stress. In ddm1 mutants, the
heat stress-induced LUC activation is stronger and persists longer relative to
WT plants. However, the activated state is not transmitted to the progeny. In
contrast, in ddm1 mom1 double mutants, the activation persists in the next
generation. (B) Schematic illustration heterochromatin states upon heat
stress. Heterochromatic loci are transcriptionally activated by heat stress,
however, they are rapidly resilenced after stress. DDM1 and MOM1
redundantly reset chromatin states destabilized by heat stress thus preventing
transgenerational transmission of transcriptional stress memory.

Recently, Iwasaki and Paszkowski (2014) identified factors pre-
venting transgenerational transmission of stress-induced chro-
matin changes by forward genetic screen in Arabidopsis. A
silenced luciferase (LUC) reporter gene, whose transcription is
transiently activated by heat stress, was used to isolatemutants that
retain high or prolonged LUC activity after heat stress. This led to
the identification of the epigenetic regulators DDM1 and MOR-
PHEUS’ MOLECULE1 (MOM1) as components of a mechanism
resetting stress-induced chromatin changes. In the ddm1 mutant,
the heat stress-induced LUC activation is stronger and persists
longer than WT, but the activated state is not transmitted to the
progeny. In the mom1 mutant, stress-induced activation and sub-
sequent extinction is similar to that of WT. However, and remark-
ably, in ddm1 mom1 double mutants, the activation persists in
the next generation (Figure 2A). Genome-wide transcriptional
profiles revealed that stress-induced transcriptional alterations at
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various heterochromatic loci were transmitted to next generation
in ddm1mom1 doublemutants. These results indicate that DDM1
and MOM1 redundantly reset chromatin states destabilized by
heat stress in order to prevent transgenerational propagation of
transcriptional stress memory (Figure 2B).

Both DDM1 and MOM1 are required to maintain transcrip-
tional gene silencing (TGS) since mutations in either genes cause
release of silencing of heterochromatic loci (Jeddeloh et al., 1998;
Amedeo et al., 2000; Steimer et al., 2000). Although DDM1 and
MOM1 share a number of common target loci for silencing, the
regulation mechanism seems to be different for each gene.

DDM1, which is conserved between plants and animals, is a
chromatin remodeling factor of the SWI2/SNF2 family (Jeddeloh
et al., 1999; Bourc’his and Bestor, 2002; Tao et al., 2011). ddm1
mutants show progressive global loss of DNA methylation during
inbreeding (Kakutani et al., 1996; Jeddeloh et al., 1998). It has been
suggested thatDDM1 facilitates access ofDNAmethyltransferases
to histone H1-containing heterochromatin (Zemach et al., 2013).

MOM1 is a plant-specific protein with limited homology to the
SWI2/SNF2 family whose function remains poorly understood.
Mutations in MOM1 cause release of TGS without major changes
in DNA methylation levels, suggesting that MOM1 exerts its
silencing function through pathways that are either independent
or downstream of those of DNA methylation (Amedeo et al.,
2000; Vaillant et al., 2006). Structural and genetic studies indicate
that a conserved domain of MOM1 forms a homodimer, which
may provide a binding platform for additional silencing factors
(Yokthongwattana et al., 2010; Nishimura et al., 2012).

The transient release of transcriptional silencing induced
by heat stress is not associated with significant changes in
DNA methylation or histone modifications (Pecinka et al.,
2010; Tittel-Elmer et al., 2010). Likewise, high levels of DNA
methylation were maintained on the promoter of the LUC
reporter gene in the progeny of heat stressed ddm1 mom1
mutants despite the occurrence of high LUC expression (Iwasaki
and Paszkowski, 2014). This strongly suggests that epigenetic
marks other than DNA methylation are transmitted to the
next generation in the ddm1 mom1 mutants. The nature of
these epigenetic marks necessary for the persistence of stress
induced activation of heterochromatic transcription remains to be
elucidated.

In summary, this study revealed a previously unidentified func-
tion of DDM1 and MOM1 to reset stress-induced chromatin
changes. Future studies should address whether similar mecha-
nisms occur in other species given that DDM1 is conserved in
yeast and animals.

Concluding Remarks

The recent progress in our understanding of the mechanisms
preventing transgenerational transmission of environmentally-
induced epigenetic states opens new avenues for the study of
epigenetic inheritance while raising new questions such as that
of redundancy of the system. It was reported that DDM1 and
MOM1 act redundantly to reset chromatin destabilized by heat
stress. Furthermore, although about 3,000 loci on the Arabidopsis
genome are activated by heat stress (Tittel-Elmer et al., 2010),
only about one-tenth remain active in the progeny of heat stressed
ddm1 mom1 mutants, suggesting that other factors act in parallel
in the same silencing pathway (Iwasaki and Paszkowski, 2014).
Similarly, in the elf6 hypomorphic mutants, the vernalized state
of FLC is partially restored. FLC expression in the progeny of
vernalized elf6 hypomorphic mutants is lower than in the non-
vernalized plants, but still higher than in fully vernalized plants
(Crevillén et al., 2014). Thus these observations suggest that other
factors act redundantly to reset FLC.

These redundancies, essential to confer robustness to the sys-
tem, would be crucial to ensure erasure of parental memory in
order to permit progeny to respond appropriately to current envi-
ronmental conditions. They could also account for the difficulty
in documenting the occurrence of transgenerational transmission
of environmentally induced epigenetic traits.

It remains possible that certain environmentally induced epi-
genetic changes could be inherited and become adaptive as in the
case of some TEs which contributed to genome evolution. Further
investigations would clarify the issue.
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