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Plant roots are essential for overall plant development, growth, and performance by
providing anchorage in the soil and uptake of nutrients and water. The primary root of
higher plants derives from a group of pluripotent, mitotically active stem cells residing in
the root apical meristem (RAM) which provides the basis for growth, development, and
regeneration of the root. The stem cells in the Arabidopsis thaliana RAM are surrounding
the quiescent center (QC), which consists of a group of rarely dividing cells. The QC
maintains the stem cells in a non-cell-autonomous manner and prevents them from
differentiation. The necessary dynamic but also tight regulation of the transition from stem
cell fate to differentiation most likely requires complex regulatory mechanisms to integrate
external and internal cues. Transcription factors play a central role in root development
and are regulated by phytohormones, small signaling molecules, and miRNAs. In this
review we give a comprehensive overview about the function and regulation of specific
transcription factors controlling stem cell fate and root apical meristem maintenance and
discuss the possibility of TF complex formation, subcellular translocations and cell-to-cell
movement functioning as another level of regulation.
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Introduction

Terrestrial plants are sessile organisms and have to adapt to different environmental stimuli by
coordinating their growth and development accordingly. Because of these needs plants have evolved
a high degree of developmental and morphological plasticity, which is only possible due to the
continuity of plant development (Bradshaw, 1965; Palmer et al., 2012). Plants, in contrast to animals,
have to produce most of their organs post-embryonically. Therefore, plants possess structures called
meristems that contain pluripotent stem cells, which are maintained during the whole lifespan of the
plant. There are two main meristems in plants, the shoot apical meristem (SAM) generating above-
ground tissues and organs and the root apical meristem (RAM) giving rise to the primary root of the
plant. The RAM and the SAM show different structural organizations, but both meristems harbor
stem cells, which continuously generate new cells (Benfey and Scheres, 2000). In Arabidopsis, on
average four slowly dividing cells, the quiescent center (QC), maintain the adjacent stem cells (or
initials) and act as a long-term reservoir for the surrounding shorter-lived stem cells (van den Berg
et al., 1997). The stem cells continuously divide asymmetrically generating new stem cells still in
contact with the QC cells and daughter cells, undergoing further cell divisions, are shifted further
away from the QC and finally differentiate.
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FIGURE 1 | Arabidopsis meristematic zone organization and regulation
of WOX5 expression in the QC. (A) Schematic representation of an
Arabidopsis meristematic zone. The stem cell niche (outlined in black) contains
the QC cells (red), the cortex/endodermis initials (green), stele initials (orange),
lateral root cap/epidermis initials (purple), and CSCs (blue). ep, epidermis; c,

cortex; en, endodermis; LRC, lateral root cap; CC, columella cells. Gray dots
indicate starch granules. (B) Regulational model highlighting the complex
interplay of phytohormones, TFs and signaling peptides on WOX5 expression
levels and domain. Arrows indicate positive, barred lines indicate negative
regulations.

The RAM can be divided into three main zones: (a) the
meristematic zone at the root tip containing the stem cell
niche, (b) the elongation zone, containing the cells that after
cell divisions have left the meristematic zone and are now
elongating, and (c) the differentiation zone, containing cells that
have acquired their destined cell fates. The beginning of the
differentiation zone is marked by the appearance of root hairs
(Dolan et al., 1993). The position of the stem cells remains the
same throughout development and defines the cell fates of their
descendants. Thereby concentrically organized clonal cell lineages
are generated representing a spatio-temporal developmental
gradient. From the outside to the inside of the root these cell layers
are the epidermis, cortex, endodermis, pericycle, and vasculature.
Cortex and endodermis together are also referred to as ground
tissue. Stem cells for the lateral root cap (LRC)/epidermis and
the columella are positioned distal to the QC. The columella
stem cells (CSCs) give rise to the differentiated columella
cells (CCs) which contain starch granules for graviperception
(see Figure 1A).

Apart from phytohormones, intercellular signaling processes
mediated by small peptide ligands and their respective receptors in
interplay with specific transcription factors (TFs) play important

roles in maintaining stem cell homeostasis in the root. In this
review we will focus on the function and regulation of known TFs
important for stem cell regulation in the RAM (summarized in
Table 1).

TFs Involved in RAM Development

One of the most important TF regulating stem cell fate in
the root is the homeodomain containing WUSCHEL-RELATED
HOMEOBOX5 (WOX5). WOX5 is expressed in the QC in
embryos and mature roots and maintains the surrounding stem
cells in a largely unknown non-cell autonomous way. WOX5 is
necessary for the maintenance of CSCs as in wox5 mutant roots,
cells in the CSC position acquire starch granules like differentiated
CCs (Sarkar et al., 2007). Furthermore, it has been shown that
WOX5 is necessary to prevent cell divisions in the QC by
repressingCYCD3;3 expression thereby establishing quiescence in
the embryonic root andmaintaining it in themature root (Forzani
et al., 2014; Figure 1B). WOX5 homologs have been identified
in a number of plant species (Nardmann et al., 2009; Zhao et al.,
2014) and were shown to be expressed in the QC in rice andmaize
(Kamiya et al., 2003b; Nardmann et al., 2007).
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TABLE 1 | Transcription factor (TFs) in RAM maintenance.

Name Class/type Expression domain Function Mobile Interaction Reference

WOX5 Homeodomain QC Maintains surrounding
stem cells; represses QC
divisions

Yes Sarkar et al. (2007), Forzani et al.
(2014), Pi et al. (2015)

PLT1-4 AP2/ERF RAM, mainly QC Necessary and sufficient
for RAM maintenance

Yes (PLT2) Aida et al. (2004), Galinha et al. (2007)

SHR GRAS Stele QC fate specification and
maintenance, asymmetric
cell divisions, cortex, and
endodermis specification

yes SCR SIEL JKD
MGP BIB

Di Laurenzio et al. (1996), Helariutta
et al. (2000), Wysocka-Diller et al.
(2000), Nakajima et al. (2001), Welch
et al. (2007), Long et al. (2015b)

SCR GRAS QC, CEI, endodermis QC fate specification and
maintenance; asymmetric
cell divisions, cortex, and
endodermis specification

SHR JKD MGP
BIB

Scheres et al. (1995), Di Laurenzio et al.
(1996), Sabatini et al. (2003), Welch
et al. (2007), Long et al. (2015b)

SPT bHLH Epidermal initial and
CSC, stele

Regulates RAM size and
QC cell number

ALC IND Groszmann et al. (2010), Girin et al.
(2011), Makkena and Lamb (2013)

TMO7 bHLH Adjacent to hypophysis Embryonic root initiation Yes SIEL Schlereth et al. (2010)

MYC2 bHLH Ground tissue,
vasculature, epidermis,
LRC

JA-mediated inhibition of
root growth and meristem
development; repressing
PLT expression

Boter et al. (2004), Chini et al. (2007),
Chen et al. (2011), Fernández-Calvo
et al. (2011)

UPB1 bHLH LRC, vasculature Modulates the balance
between cell proliferation
and differentiation by
controlling ROS
production

Yes Tsukagoshi et al. (2010)

NTT Zinc finger Hypophysis and
lens-shaped cell
(embryo); QC, CEI,
CSC, CC

Initiation of the root
meristem; confers CSC
fate

Crawford et al. (2015)

BRX BRX family Vasculature Regulates RAM size by
mediating BR and auxin
signaling

Yes NGA1 Mouchel et al. (2004, 2006a,b), Scacchi
et al. (2009)

FEZ NAC-domain CSC and
LRC/epidermis stem
cells

Stimulates periclinal
divisions in the
LRC/epidermis initials and
CSCs

Willemsen et al. (2008), Bennett et al.
(2010, 2014)

SMB NAC-domain Maturing root cap cells Constrains CSC-like
activity and promotes
differentiation; activation of
root cap maturation
together with BRN1&2

Willemsen et al. (2008), Bennett et al.
(2010, 2014), Fendrych et al. (2014)

BRAVO R2R3-MYB QC, vascular initials,
CEI

Repressor of QC divisions;
counteracting BR
signaling

BES1 Vilarrasa-Blasi et al. (2014)

BES1 BZR1-like RAM Activates QC divisions;
represses BRAVO

BRAVO Vilarrasa-Blasi et al. (2014)

ERF115 ERF Dividing QC cells Regulates QC divisions Heyman et al. (2013)

Summary of the function, interaction, and mobility of key TFs involved in RAM development and maintenance.

Members of the AINTEGUMENTA-LIKE (AIL) family of
APETALA2/ETHYLENE RESPONSE FACTOR (AP2/ERF)
domain TFs, like PLETHORA1–3 (PLT1–3) and BABYBOOM
(BBM/PLT4) have been described as master regulators of root
meristem initiation and maintenance. The PLTs are expressed
in the embryonic and adult root meristem, overlapping in their
expression domains mainly in and around the QC building a
developmentally instructive protein gradient, where protein
levels decrease the more differentiated the cells are (Aida et al.,
2004; Galinha et al., 2007). plt1 plt2 double mutants show a
severe reduction in root meristem size and loss of QC markers

(Aida et al., 2004). Ectopic over-expression of PLT leads to
accumulation of stem cells in the root meristem and can also lead
to the production of ectopic roots from the shoot apex (Galinha
et al., 2007). The AIL genes are conserved throughout the plant
kingdom and play important roles in meristem development,
e.g., in adventitious rooting in poplar (Rigal et al., 2012) and
gametophore stem cell formation in the moss Physcomitrella
patens (Aoyama et al., 2012).

The GRAS-transcription factors SHORTROOT (SHR) and
SCARECROW (SCR) are required for QC specification and the
formative asymmetric cell divisions that are necessary for the
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formation of distinct cortex and endodermal cell layers (Sabatini
et al., 2003). SHR is expressed in the stele of the Arabidopsis
root and the protein moves one cell layer outwards into the
endodermis, cortex/endodermis initial, and QC cells where it
activates SCR expression. Loss of SHR and SCR results in a short
root phenotype and abnormal QC cells indicating the importance
of theses TFs inmaintaining the root stem cell niche (Di Laurenzio
et al., 1996; Helariutta et al., 2000; Wysocka-Diller et al., 2000;
Nakajima et al., 2001). SHR/SCR act in parallel with PLT to
maintainQC identity and stem cell homeostasis in theArabidopsis
root (Aida et al., 2004). TFs act by regulating the expression of
downstream genes and some of these direct transcriptional targets
have been reported. CYCD6;1 has been identified as downstream
target of SHR/SCR transcriptional regulation, directly linking the
asymmetric cell division in the cortex/endodermis initials with
activation of cell cycle genes (Sozzani et al., 2010). Furthermore,
WOX5 expression requires SHR and SCR (Sarkar et al., 2007). The
RETINOBLASTOMA-RELATED (RBR) protein has been found
to physically bind to SCR and together with the cell cycle regulator
CYCD6;1 and proteins of the BIRD family defines the position
of the asymmetric cell divisions in the stem cell area of the root
(Cruz-Ramírez et al., 2012; Long et al., 2015b). SHR and SCR
regulate CYCD6;1 expression and also expression of the BIRD
family members MAGPIE (MGP) and NUTCRACKER (NUT,
Levesque et al., 2006; Cui et al., 2007; Welch et al., 2007). In the
monocot rice, which has a different morphology and number of
cortical tissue layers, two SHR and SCR homologs each have been
identified and might play a similar role in cortex and endodermis
specification than in Arabidopsis (Kamiya et al., 2003a; Cui et al.,
2007).

Other TFs have been described to play important roles in root
stem cell maintenance, e.g., the R2R3-MYB transcription factor
BRASSINOSTEROIDS AT VASCULAR AND ORGANIZING
CENTER (BRAVO). BRAVO is acting as a cell-specific repressor
of QC divisions by counteracting brassinosteroid (BR)-mediated
cell divisions inQC cells (Vilarrasa-Blasi et al., 2014). Recently, the
putative zinc finger TFNOTRANSMITTINGTRACT (NTT) and
two closely related paralogs have been described to be necessary
for root meristem initiation and conferring distal stem cell fate.
nww triple mutants fail to develop the progenitor of the QC, the
lens-shaped cell, in the embryo and therefore do not develop
a root. Furthermore, NTT is both necessary and sufficient to
confer distal stem cell identities in the root meristem (Crawford
et al., 2015). The bHLH TF UPBEAT1 (UPB1) regulates the
concentration of reactive oxygen species (ROS) in the Arabidopsis
RAM. upb1 loss-of-functionmutants show an increased RAM size
and therefore UPB1 is thought to keep the balance between cell
proliferation and differentiation by controlling ROS production
(Tsukagoshi et al., 2010). NAC domain TFs acting in LRC
development have also been identified. FEZ and SOMBRERO
(SMB) antagonistically control the frequency and division plane
orientation of LRC/epidermis initials and CSCs (Willemsen et al.,
2008; Bennett et al., 2014). SMB, together with BEARSKIN1 and
2 (BRN1,2), is also necessary for the final differentiation steps of
LRC cells and regulates programmed cell death (Bennett et al.,
2010; Fendrych et al., 2014). Another bHLHTF named SPATULA
(SPT) has been found to regulate root meristem size. Loss of

SPT results in a larger RAM due to an increased QC size as
well as supernumerary divisions in initials. SPT is thought to
act independently of gibberellic acid, but might regulate auxin
transport or accumulation (Makkena and Lamb, 2013).

Phytohormonal Regulation of TFs in the
RAM

Phytohormones like auxin, cytokinin, brassinosteroids, ethylene,
jasmonate, and gibberellic acid play fundamental roles in
specification, development, and maintenance of the RAM
in Arabidopsis. Considerable crosstalk between different
hormonal pathways is necessary for integrating external and
internal cues into the dynamic developmental processes of
stem cell maintenance, proliferation, and differentiation. Also
transcriptional regulation is controlled by phytohormones and
several TFs have been shown to be regulated by and act in concert
with them.

The phytohormone auxin plays a dominant role in root
initiation and development. An auxin gradient is build up by
local biosynthesis and polar auxin transport in the root and
has its maximum in the QC (Blilou et al., 2005; Petersson
et al., 2009). The PINFORMED (PIN) auxin efflux carriers
control auxin distribution and thereby regulate elongation and
differentiation of root cells in a complex interplay with the PLT
proteins. The expression of PLT TFs is auxin inducible and their
expression domains are defined by local auxin accumulation
(Aida et al., 2004; Blilou et al., 2005; Mähönen et al., 2014).
Auxin has also been proposed to act upstream of WOX5 and
PLT1 as WOX5 expression was reported to be restricted to the
QC cells by auxin via AUXIN RESPONSE FACTOR (ARF) 10
and 16 (Ding and Friml, 2010), but later WOX5 and ARF 10
and 16 were suggested to act in parallel instead (Bennett et al.,
2014). Furthermore, WOX5 expression was reported to be auxin
inducible and responsible for the establishment of an auxin
maximum in the root tip (Gonzali et al., 2005). The specific
expression of WOX5 in the QC is not only confined by auxin,
but also by a PHD domain-containing protein, REPRESSOR
OF WUSCHEL1 (ROW1), that binds tri-methylated histone H3
lysine 4 (H3K4me3) in the WOX5 promoter thereby repressing
WOX5 transcription in the more proximal cells (Zhang et al.,
2015; Figure 1B). Cytokinins also play a pivotal role in root
meristem balance and act antagonistically to auxin. They control
the switch from meristematic to differentiated cell fates by
suppressing auxin signaling and transport where cells leave the
meristematic zone (transition zone). This is mediated by the
AUX/IAA SHORT HYPOCOTYL2 (SHY2), which is activated
by cytokinin via ARABIDOPSIS RESPONSE REGULATOR1
(ARR1), but negatively influences auxin signaling and is itself
negatively regulated by auxin (Dello Ioio et al., 2007, 2008). SCR
has been found to suppress cytokinin signaling via ARR1 thereby
also influencing auxin accumulation in theQC (Moubayidin et al.,
2013). Furthermore, cytokinins have been shown to negatively
regulate WOX5 expression possibly by modulating the auxin
flux in the root and promote cell divisions in the QC (Zhang
et al., 2013). The rarely dividing QC cells are thought to be
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less stress sensitive and protected from DNA damage and can
therefore maintain their longevity. Contrariwise, the surrounding
stem cells seem to be more sensitive to DNA damage. It has
been proposed that the QC serves as a “safe haven” for the
surrounding stem cells and if stress is occurring, driven by
hormonal signals like cytokinin, BR, ethylene, and JA, the QC
will divide to replenish the lost stem cells (Curtis and Hays,
2007; Fulcher and Sablowski, 2009; Cruz-Ramírez et al., 2013).
Brassinosteroids (BRs) have been described to act antagonistically
to auxin in Arabidopsis RAM maintenance (Chaiwanon and
Wang, 2015). BR-mediated QC divisions are repressed by the
R2R3-MYB TF BRAVO. The BR-activated TF BES1 (BRI1- EMS
SUPRESSOR1) can physically interact with and repress BRAVO
thereby modulating QC divisions (Vilarrasa-Blasi et al., 2014).
Additionally, the TF BREVIS RADIX (BRX) has been shown to
mediate a feedback between auxin and BR signaling, influencing
RAMsize (Mouchel et al., 2006a). Ethylene has also been shown to
induce QC cell divisions (Ortega-Martínez et al., 2007). Recently,
the ETHYLENE RESPONSE FACTOR115 (ERF115) TF was
found to act as a rate-limiting factor of QC divisions. Here,
ERF115 is positively regulated by BR, but is not involved in
ethylene signaling. ERF115 is expressed in dividing QC cells and
ERF115 protein abundance is negatively regulated by proteolysis
leading to a convergence of BR and ethylene signaling in the RAM
(Heyman et al., 2013). Jasmonate inhibits primary root growth
by reducing RAM activity and results in irregular QC divisions
and CSC differentiation. This is mediated by the function
of MYC2/JASMONATE INSENSITIVE1 (MYC2), a bHLH TF.
MYC2 has been shown to directly bind to PLT1 and 2 promoters
and to repress their transcription, thereby integrating jasmonate
and auxin pathways in RAMmaintenance (Chen et al., 2011).

Regulation of TFs in the RAM by Peptides
and microRNAs

Phytohormones act mostly as long-range signals, other more
short-range signals mediating TF regulations include small
peptides, microRNAs, and movement of TFs. Small signaling
peptides are also known to regulateArabidopsis root development
(Delay et al., 2013) and some of them have been shown to regulate
TFs involved in root stem cell homeostasis. In both shoot and root
meristem maintenance CLAVATA3/EMBRYO SURROUNDING
REGION (CLE) peptides are known to play important roles.
In the Arabidopsis root, CLE40 is expressed from differentiated
columella cells and regulates CSC fate via the receptor-like
kinases ARABIDOPSIS CRINKLY4 (ACR4) and CLAVATA1
(CLV1). This signaling pathway influences the expression level
and positioning of WOX5 RNA (Stahl et al., 2009, 2013). The
ROOT MERISTEM GROWTH FACTOR (RGF) peptide family
also known as GOLVEN (GLV) or CLE-like (CLEL) possesses a
conserved 14 aa domain containing the tyrosine sulfation motif
Asp-Tyr (Matsuzaki et al., 2010; Meng et al., 2012; Whitford
et al., 2012). RGF1 has been demonstrated to positively regulate
and define PLT expression and protein stability (Matsuzaki et al.,
2010).

MicroRNAs (miRNAs) have been shown to generate a
gradient defining vascular cell types in the root. miRNA165a

and miRNA166b are transcriptionally activated by SHR in the
endodermis and then move through plasmodesmata to the stele
regulating the expression of the homeodomain leucine zipper
(HD-ZIP) TF PHABULOSA (PHB), that determines vascular cell
fates (Carlsbecker et al., 2010; Miyashima et al., 2011; Vatén et al.,
2011).

Mobile TFs in RAM Regulation

Due to their rigid cell walls, plant cells are not able to move and
need to communicate with each other non-cell autonomously in
order to integrate external and internal cues with development
and growth. About 17–29% of TFs are predicted to move either
targeted or non-targeted from cell to cell (Lee et al., 2006;
Rim et al., 2011). This TF movement is proposed to occur by
transit through plasmodesmata, membrane-lined channels that
interconnect plant cells symplastically, and thereby propagate
signaling outputs.

A prominent example of a mobile TF is SHR, which is
expressed in the stele of the Arabidopsis root, but moves
one layer further where it interacts with and activates SCR.
SHR is not only a mobile TF, but it notably also alters its
subcellular localization. In the stele it localizes to the nucleus and
cytoplasm, whereas in the endodermis it is localized mostly in
the nucleus (Nakajima et al., 2001). The cytoplasmic localization
of SHR is important for its movement to the outer cell layer
via plasmodesmata and is regulated by phosphorylation of a
specific tyrosine residue (Gallagher et al., 2004; Vatén et al.,
2011). SHR movement is dependent on microtubules and is
mediated by SHORT ROOT INTERACTING EMBRYONIC
LETHAL (SIEL), an endosomal protein, which needs SHR and
SCR for its own expression suggesting a potential feedback
for SHR regulating its own directional movement (Koizumi
et al., 2011, 2012; Wu and Gallagher, 2013). Furthermore,
members of the BIRD family like JACKDAW (JKD) and its close
homolog BALD IBIS (BIB) constrain SHR movement by nuclear
retention and complex formation (Welch et al., 2007; Long et al.,
2015b).

In the Arabidopsis embryo, the mobile bHLH TF TARGET
OF MONOPTEROS7 (TMO7) is required for embryonic root
initiation and also interacts with SIEL (Schlereth et al., 2010).
The TF BRX translocates from the basal plasma membrane in the
vasculature to the nucleus in response to auxin (Scacchi et al.,
2009). But also other TFs important for root development have
been shown to be able tomove, likeWOX5 and PLT2 (Daum et al.,
2014; Mähönen et al., 2014). Recently, it was shown that WOX5
movement from the QC to the CSCs is necessary to maintain
the undifferentiated state of these cells by chromatin-mediated
repression of the TF CYCLING DOF FACTOR4 (CDF4) in the
CSCs (Pi et al., 2015).

The TF UPB1 has been proposed to act as a mobile non-cell-
autonomous signal. It is supposed to move from its expression
domain in the LRC to cells of the transition and elongation
zones.Here it localizes predominantly to the nucleus andpositions
the location of the transition zone (Tsukagoshi et al., 2010).
Nevertheless, it has not yet been completely clarified how TF
movement regulates stem cell and RAMmaintenance.
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Outlook and Perspectives

In the Arabidopsis root over 300 differentially regulated TFs have
been found to be expressed, but only some have an assigned
function in meristem maintenance (Birnbaum et al., 2003). TFs
are regulating the expression of other genes, but information
on direct targets of TFs involved in RAM regulation are scarce,
except for the above mentioned examples. Regulation of the TF
WOX5 alone includes phytohormones, small signaling peptides,
histone modifications, and cell-to-cell movement, demonstrating
the diversity of control mechanisms (Figure 1B). Although, e.g.,
root cap development is mainly regulated by parallel pathways,
also a regulatory connection between WOX5 and SMB has
been described (Bennett et al., 2014). Therefore, it is tempting
to speculate that there might be complex regulatory networks
involved, but that some important links have not been found yet.
One could speculate that not only transcriptional regulations or
TF protein stability are important but that, e.g., the interaction
of TFs with other TFs or proteins create differential outputs.

Also, the described subcellular translocations of some TFs might
represent mechanisms to regulate TF function. Movement of
TFs via plasmodesmata for short-range signaling could represent
yet another level of regulation (Long et al., 2015a), but if this
is directional and how it is exactly controlled remains to be
elucidated.

The future challenge is to develop methods that will help
to analyze and consolidate the supposed complex regulatory
mechanisms. Here the rise of sequencing and bioinformatic
tools together with sophisticated imaging techniques will be a
prerequisite to enable the necessary modeling approaches.
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