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How and why does tomato
accumulate a large amount of GABA
in the fruit?
Mariko Takayama and Hiroshi Ezura*

The Ezura Laboratory, Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan

Gamma-aminobutyric acid (GABA) has received much attention as a health-promoting
functional compound, and several GABA-enriched foods have been commercialized. In
higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt.
The GABA shunt bypasses two steps (the oxidation of α-ketoglutarate to succinate) of
the tricarboxylic acid (TCA) cycle via reactions catalyzed by three enzymes: glutamate
decarboxylase, GABA transaminase, and succinic semialdehyde dehydrogenase. The
GABA shunt plays a major role in primary carbon and nitrogen metabolism and is an
integral part of the TCA cycle under stress and non-stress conditions. Tomato is one of the
major crops that accumulate a relatively high level of GABA in its fruits. The GABA levels
in tomato fruits dramatically change during fruit development; the GABA levels increase
from flowering to the mature green stage and then rapidly decrease during the ripening
stage. Although GABA constitutes up to 50% of the free amino acids at the mature green
stage, the molecular mechanism of GABA accumulation and the physiological function
of GABA during tomato fruit development remain unclear. In this review, we summarize
recent studies of GABA accumulation in tomato fruits and discuss the potential biological
roles of GABA in tomato fruit development.
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Introduction

Gamma-aminobutyric acid (GABA), a four-carbon non-proteinogenic amino acid, is widely found
in animals, plants and bacteria. In humans, GABA functions as an inhibitory neurotransmitter in the
central nervous system (Owens andKriegstein, 2002). It has also been reported thatGABA is effective
at reducing blood pressure, inducing relaxation and enhancing immunity when administered orally
(Inoue et al., 2003; Abdou et al., 2006). Thus, GABA has received much attention as a health-
promoting functional compound, and several GABA-enriched foods have been commercialized. In
higher plants, GABA is primarily metabolized via a short pathway called the GABA shunt, which
bypasses two steps (the oxidation of α-ketoglutarate to succinate) of the tricarboxylic acid (TCA)
cycle (Satya-Narayan and Nair, 1990; Bouché and Fromm, 2004; Figure 1). In this pathway, GABA is
synthesized from glutamate in a reaction catalyzed by the enzyme glutamate decarboxylase (GAD)
and subsequently catabolized to succinate through two consecutive reactions catalyzed by GABA
transaminase (GABA-T) and succinic semialdehyde dehydrogenase (SSADH). Previous studies have
suggested that theGABA shunt is involved inmultiple physiological responses, such as the regulation
of cytosolic pH, maintenance of carbon/nitrogen balance, defense against insects, protection
from oxidative stress, and production of energy (Bouché and Fromm, 2004; Fait et al., 2008).
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FIGURE 1 | GABA metabolism and related pathways. GAD, glutamate
decarboxylase; GABA-TK, α-ketoglutarate-dependent GABA transaminase;
GABA-TP, pyruvate-dependent GABA transaminase; SSA, succinic

semialdehyde; SSADH, succinic semialdehyde dehydrogenase; GDH,
glutamate dehydrogenase; SSR, succinic semialdehyde reductase; Asp-AT,
aspartate aminotransferase.

Moreover, the GABA level rapidly increases in plant tissues
subjected to diverse stimuli, including heat shock, mechanical
stimulation, hypoxia, and phytohormones (Shelp et al., 1999).

Tomato (Solanum lycopersicum) is a major crop produced
worldwide. Tomato fruits are a significant food resource and
have been considered an experimental model for studying
the physiology, development and ripening of fleshy fruits
(Steinhauser et al., 2010; Osorio et al., 2011). Tomatoes
accumulate a relatively high level of GABA in the fruits
(Matsumoto et al., 1997). In several cultivated tomatoes, drastic
changes in GABA levels have been observed during fruit
development; the GABA level increases to the mature green
stage and subsequently rapidly decreases during the ripening
stage (Rolin et al., 2000; Carrari et al., 2006; Akihiro et al.,
2008; Saito et al., 2008; Osorio et al., 2011). In cherry tomatoes,
GABA is reported to constitute up to 50% of the free amino
acids at the mature green stage (Rolin et al., 2000). Despite
the large accumulation, the molecular mechanism of GABA
accumulation and the physiological function of this amino acid
during tomato fruit development remain elusive. Elucidating
these topics would help us to gain a better understanding of plant
physiology, particularly in fruits. In this review, we summarize
recent studies concerning GABA accumulation in tomato fruits
and discuss the potential biological roles of GABA in tomato fruit
development.

GABA Biosynthesis

In plants, GABA is primarily synthesized via the cytosolic enzyme
GAD, which catalyzes the irreversible conversion of glutamate to
GABA and CO2 (Figure 1). A plant GAD gene was first isolated
from Petunia hybrida (Baum et al., 1993), and subsequently,
several GAD homologues have been identified in various plant
species (Ling et al., 1994; Snedden et al., 1995; Turano and Fang,
1998; Yevtushenko et al., 2003). Unlike its counterparts in animals
and bacteria, most plant GADs possess a calcium/calmodulin
(Ca2+/CaM) binding domain (CaMBD) at the C-terminus. In
vitro studies have shown that GAD activity is stimulated through
a low pH or the binding of Ca2+/CaM to the CaMBD at
physiological pH (Snedden et al., 1996; Gut et al., 2009). In
addition, transgenic studies revealed that the removal of the
CaMBD increased GABA accumulation in plants (Baum et al.,
1996; Akama and Takaiwa, 2007). Thus, it is considered that the
CaMBD acts as a negative regulator/autoinhibitory domain in
the absence of Ca2+/CaM, and the negative regulation is relieved
through the binding of Ca2+/CaM.

In tomato, GAD gene was first cloned in 1995. Gallego et al.
(1995) isolated ERT D1, a gene encoding a putative GAD protein,
from a cDNA library of the pericarp of cv. “Ailsa Craig.” Similar to
other plant GADs, ERT D1 protein contained a putative CaMBD.
It was also revealed that ERT D1 mRNA levels peaked at the
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beginning of fruit ripening (Gallego et al., 1995). Subsequently,
Kisaka et al. (2006) isolated GAD-19, a gene encoding another
GAD protein, from tomato roots. The antisense suppression of
this gene in tomato plants resulted in the production of fruits
with decreased levels of GAD mRNA. However, the GABA level
in these fruits was not significantly decreased compared with
the WT levels, although increased levels of total free amino
acids (particularly glutamate, which is the precursor to GABA)
were observed (Kisaka et al., 2006). Subsequently, Akihiro et al.
(2008) isolated three GAD genes, designated SlGAD1, SlGAD2,
and SlGAD3, from the immature fruits of cv. “Micro-Tom.”
Because the amino acid sequences of SlGAD1 and ERT D1 are
precisely identical, SlGAD1 is considered an allele of ERT D1
(Akihiro et al., 2008). However, neither SlGAD2 nor SlGAD3
share precisely identical sequences with GAD-19, although blast
database searches indicate that SlGAD2 has the highest homology
to GAD-19 (95% identity and 98% similarity in amino acid
sequences). Among the three SlGADs isolated from cv. “Micro-
Tom,” SlGAD2 and SlGAD3 appear to play a major role in GABA
production in tomato fruits, as the expression levels of SlGAD2
and SGAD3 are positively correlatedwith theGABAaccumulation
during fruit development (Akihiro et al., 2008). Additionally,
transgenic tomato plants, in which SlGAD2 or SlGAD3 was
specifically suppressed, accumulated a significantly decreased
level of GABA in the fruits, whereas SlGAD1-suppressed plants
produced fruits with normal levels of GABA (Takayama et al.,
2015). Moreover, in triple SlGADs-suppressed plants, the fruit
GABA level decreased to less than 10% of theWT level (Takayama
et al., 2015), suggesting that the main route of GABA biosynthesis
in tomato fruits is the decarboxylation of glutamate via GAD
enzymes under normal growth conditions.

Enhanced GABA accumulation in tomato fruits has been
observed in plants grown under salinity conditions or in fruits sto-
red under 10% CO2 or under low O2 conditions after harvesting
(Deewatthanawong et al., 2010; Yin et al., 2010; Mae et al., 2012).
Although the expression levels of SlGAD2 and SlGAD3 were not
enhanced in the fruits under salinity conditions (Yin et al., 2010),
those in fruits stored under 10% CO2 or low O2 conditions were
up-regulated (Deewatthanawong et al., 2010; Mae et al., 2012).
These results suggest that SlGAD2 and SlGAD3 are responsive to
some types of stresses. It has been suggested that stress-induced
GABA accumulation in plant cells reflects increases in cytosolic
H+, Ca2+ or glutamate levels, as these factors stimulate GAD
activity (Shelp et al., 1999). However, in tomato, stress-induced
GAD activity might also be regulated at the transcriptional level.
Although it is reported that GABA can also be formed from
polyamines or proline via a ∆1-pyrroline intermediate formation
in response to abiotic stresses (Flores and Filner, 1985; Shelp et al.,
2012; Yang et al., 2013; Signorelli et al., 2015), the contribution of
these pathways in tomato fruits is still unclear.

GABA Catabolism

In many organisms, GABA is first converted to SSA via a
transamination reaction through GABA-T (Figure 1). According
to substrate specificity, the GABA-T enzyme can be divided into
two types: α-ketoglutarate-dependent GABA-T (GABA-TK) and

pyruvate-dependent GABA-T (GABA-TP). The former uses α-
ketoglutarate as an amino group acceptor to generate glutamate,
whereas the latter uses pyruvate to generate alanine (Bouché and
Fromm, 2004). It is clear that GABA-TP also has glyoxylate-
dependent GABA-T (GABA-TG) activity, which uses glyoxylate
as an amino group acceptor to generate glycine (Clark et al.,
2009a,b; Shimajiri et al., 2013; Trobacher et al., 2013). GABA-
TK is exclusively utilized in bacteria, yeast, fungi and mammals
(Satya-Narayan and Nair, 1990). However, both GABA-TK and
GABA-TP activities have been detected in plant crude extracts
(Shelp et al., 1995; Van Cauwenberghe and Shelp, 1999; Bartyzel
et al., 2003), although only the GABA-TP gene has been
isolated from plants (Van Cauwenberghe et al., 2002). Tomato
is one of the species exhibiting both GABA-TK and GABA-
TP activities. Although most previously investigated plants have
shown lower GABA-TK activity than GABA-TP activity, Akihiro
et al. (2008) detected a significantly higher level of GABA-TK
activity in tomato fruits after the breaker stage. Comparison
analyses between ordinary and GABA rich cultivars revealed
a negative correlation between GABA contents and GABA-TK
activity during fruit development (Akihiro et al., 2008). Similar
trends were also observed in the tomato fruits stored under low
O2 conditions, in which GABA levels were increased compared
with those in fruits stored under control (air) conditions (Mae
et al., 2012). These observations suggest that GABA-TK plays a
major role in catabolism in tomato fruits. However, Clark et al.
(2009b) presented a different view, as no GABA-TK activity was
detected in assays using the cell-free extracts from the fruits of
cv. “Micro-Tom,” which is the same cultivar used in Akihiro
et al. (2008). Moreover, Clark et al. (2009b) observed higher
levels of GABA-TP activity in tomato fruits. Thus, these authors
noted the possibility that the previous study detected artificial
GABA-TK activity and concluded that pyruvate/glyoxylate-
dependent GABA-T activity probably accounts for the GABA
catabolism observed in tomato fruits. Currently, three GABA-
T genes, designated SlGABA-T1, SlGABA-T2, and SlGABA-T3,
have been isolated from tomato cv. “Micro-Tom” (Akihiro
et al., 2008; Clark et al., 2009b). Although the encoded
proteins are localized to distinct subcellular compartments
[i.e., mitochondrion (SlGABA-T1), cytosol (SlGABA-T2), or
plastid (SlGABA-T3)], all three isoforms are characterized as
GABA-TPs, which exhibit pyruvate/glyoxylate-dependentGABA-
T activity (Clark et al., 2009b). To clarify the physiological
function of these SlGABA-T isoforms in tomato fruits, Koike
et al. (2013) conducted loss-of-function analyses using RNA
interference (RNAi) transgenic lines with suppressed SlGABA-
T genes. In this study, increased GABA accumulation was
observed in the fruits of SlGABA-T1-suppressed lines (1.3–2.0
times higher in mature green fruits and 6.8–9.2 times higher
in red fruits), whereas almost no correlation was observed
between the GABA content and the expressions of SlGABA-
T2 and SlGABA-T3 (Koike et al., 2013). Considering that the
enzymatic activity of SlGABA-T1 is highest among the three
isoforms in tomato fruits (Clark et al., 2009b), Koike et al. (2013)
concluded that pyruvate- and glyoxylate-dependent SlGABA-T1
is the essential isoform for GABA reduction in the ripening
fruits.
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In plants, GABA-derived SSA is catabolized via the NAD+-
dependent enzyme SSADH, which oxidizes SSA to succinate
concomitantly with NADH production in mitochondria
(Breitkreuz and Shelp, 1995; Busch and Fromm, 1999; Figure 1).
Alternatively, SSA can also be catabolized to γ-hydroxybutyric
acid (GHB) through enzymes with SSA reductase (SSR) activity
(Breitkreuz et al., 2003; Hoover et al., 2007; Simpson et al., 2008;
Figure 1). The former pathway provides substrates (succinate
and NADH) for the mitochondrial respiratory machinery, which
produces ATP as a final product (Bouché and Fromm, 2004). It is
also known that SSADH activity is highly sensitive to the energy
status in mitochondria (Busch and Fromm, 1999). Thus, under
stress conditions in which the NAD+:NADH ratio is low, SSADH
activity would be inhibited, resulting in the accumulation of SSA
and feedback inhibition of GABA-T (Busch and Fromm, 1999;
Van Cauwenberghe and Shelp, 1999). However, the pathway
from SSA to GHB is stimulated under stress conditions and likely
functions in stress tolerance through the detoxification of SSA
(Breitkreuz et al., 2003; Allan et al., 2008). In tomato, one SSADH
gene (SlSSADH) and two SSR genes (SlSSR1, SlSSR2) have been
isolated (Akihiro et al., 2008). SlSSADH is expressed in fruits
at all developmental stages, and the expression of this gene is
poorly correlated with the GABA contents (Akihiro et al., 2008).
However, the expression of SlSSR1 gene is slightly higher in red
fruits than in breaker fruits, whereas SlSSR2 expression is higher
in breaker fruits compared with red fruits (Deewatthanawong
et al., 2010). However, the biochemical properties of the encoded
proteins and their contribution to GABA accumulation in tomato
fruits remain unclear.

The Potential Role of GABA Metabolism
in Tomato Plants

In plants, GABA metabolism is involved in a wide range
of physiological processes. For example, pop2, an Arabidopsis
GABA-T-deficient mutant, is defective in the guidance and
growth of pollen tubes (Palanivelu et al., 2003; Renault et al.,
2011). Arabidopsis SSADH-deficient mutants exhibit severe
dwarfism and necrotic lesions under the standard light conditions
(Bouché et al., 2003). Additionally, these mutants exhibit
the enhanced accumulation of reactive oxygen intermediates
and cell death under environmental stresses (Bouché et al.,
2003). Another Arabidopsis SSADH-deficient mutant, enf1,
forms both abaxialized and adaxialized leaves (Toyokura et al.,
2011). Notably, the abnormal phenotypes observed in the
two different studies of ssadh mutants (Bouché et al., 2003;
Toyokura et al., 2011) are both suppressed through an additional
mutation in GABA-T, suggesting that these phenotypes reflect
the accumulation of SSA or close derivatives, such as GHB
(Ludewig et al., 2008; Toyokura et al., 2011). In tomatoes,
several abnormalities have also been observed when GABA
metabolism is altered. For example, SlGABA-T1-suppressed plants
exhibited severe infertility, and both SlGABA-T1- and SlGABA-
T3-suppressed plants exhibited dwarf phenotypes (Koike et al.,
2013). Moreover, SlSSADH-suppressed plants show a dwarf
phenotype, curled leaves and enhanced ROS accumulation under

normal conditions (Bao et al., 2014). Interestingly, when tomato
seedlings were grown under salt stress (200mMNaCl), SlSSADH-
suppressed plants exhibited significantly higher shoot biomass
levels and increased chlorophyll contents and photosynthetic
rates compared with control plants (Bao et al., 2014). However,
SlGADs-suppressed plants and SlGABA-Ts-suppressed plants are
more sensitive to salt stress, resulting in reduced biomass and
the total collapse of tissue (Bao et al., 2014). These observations
indicate that GABA shunt is involved in salt stress tolerance in
tomato plants. Moreover, GABA shunt has been implicated in
resistance against Botrytis cinerea, as GABA shunt genes are up-
regulated in the leaves of the B. cinerea-resistant mutant, sitiens,
and the exogenous application of GABA decreases susceptibility
to B. cinerea in wild-type leaves (Seifi et al., 2013).

As described above, effects of impaired GABA metabolism on
tomato plants have been increasingly reported. However, little
is known about the function of GABA and the metabolism of
this amino acid in fruits. Previous studies have suggested that
GABA production during fruit development might contribute to
the regulation of cellular pH (Rolin et al., 2000). During tomato
fruit development, organic acids are continuously synthesized
from unloaded sucrose, coupled with proton production.
Overaccumulation of protons would cause an intracellular
acidification, but the intracellular pH is probably regulated by
ATP-driven proton pumps that extrude intracellular protons out
of the cytoplasm, or by the proton-consuming decarboxylation
of organic acids. Because GAD reaction requires protons, it
might act as a sink for excess protons, preventing intracellular
acidification (Rolin et al., 2000; Figure 2A). Moreover, the GAD
reaction also promotes glutamate transport. In cherry tomatoes,
glutamate is translocated through phloem sap and unloaded
in fruits. The unloaded glutamate is subsequently transported
symplastically or taken up through a proton symport mechanism
across the membrane. In the latter transport mechanism,
glutamate and protons are cotransported into the cytosol, thereby
promoting cytoplasmic acidosis and the depolarization of the
plasma membrane. Thus, continuous GABA accumulation
during fruit development reflects the continuous GAD reaction,
which potentially maintains glutamate transport through the
consumption of excess protons (Snedden et al., 1992; Rolin
et al., 2000). In addition, accumulated GABA in tomato fruits
functions as an energy source, as 14C-labeled CO2 was discharged
from fruits fed 14C-labeled GABA, indicating that GABA is
utilized as a substrate for respiration (Yin et al., 2010; Figure 2B).
Indeed, GABA shunt also functions as an alternative pathway
for the production of succinate (the substrate for respiration) in
tomato leaves when the enzyme of the TCA cycle is impaired
(Studart-Guimarães et al., 2007). However, recent findings
suggest that GABA metabolism has little effect on tomato fruit
development under normal conditions, as the fruits of RNAi
transgenic plants targeting the three SlGADs exhibited normal
development, although the enzymatic activity of GAD and the
GABA content in fruits were dramatically decreased (Takayama
et al., 2015). Similarly, RNAi transgenic plants targeting SlGABA-
T also produced normal fruits, although the GABA levels in
red fruits were 6.8–9.2 times higher than those in wild-type
controls (Koike et al., 2013). Therefore, GABA metabolism
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FIGURE 2 | Potential roles of GABA in tomato fruits. (A) Fruits at the early
developmental (green) stage when GABA is biosynthesized. (B) Fruits at the
ripening stage when GABA is catabolized. MG, mature green; Br, breaker; GAD,

glutamate decarboxylase; GABA-T (K), (α-ketoglutarate-dependent) GABA
transaminase; SSADH, succinic semialdehyde dehydrogenase; Asp-AT,
aspartate aminotransferase; Glu, glutamate; Asp, aspartate.

in tomato fruits might be involved in stress tolerance, similar
to other plants. Another possibility is that GABA contributes
to tomato seed dispersal through changes in the amino acid
composition during fruit development. Because GABA functions
in defense against pests and pathogens (Bown et al., 2006;
Seifi et al., 2013), GABA accumulation in fruits at the early
developmental stage might protect immature seeds (Figure 2A).
However, the GABA levels in fruits rapidly decline during the
ripening stage, when seeds have already matured. In parallel, the
levels of glutamate and/or aspartate, which provide the “Umami
taste,” dramatically increase during the ripening stage. These
changes in the amino acid composition might attract insects and
animals, resulting in successful seed dispersal (Figure 2B). The
increases in glutamate and/or aspartate during fruit ripening have
been well characterized in various cultivars (Rolin et al., 2000;
Akihiro et al., 2008; Koike et al., 2013). The increase in glutamate
probably reflects the increase in glutamate dehydrogenase
(GDH) and GABA-TK activities during the ripening stage and
the decreased consumption of glutamate through GAD, which
is almost undetectable in ripe fruits (Sorrequieta et al., 2010;
Ferraro et al., 2015; Figure 1). On the other hand, aspartate is
synthesized from glutamate through aspartate aminotransferase

(Figure 1). In GABA-rich cultivars, lower levels of glutamate
and aspartate have been observed in ripening fruits (Akihiro
et al., 2008), suggesting that GABA catabolism contributes to
the accumulation of glutamate and glutamate-derived aspartate
in ripening fruits. Furthermore, Snowden et al. (2015) recently
identified a tonoplast-localized glutamate/aspartate/GABA
exchanger (SlCAT9) in tomato fruits. As overexpression of the
SlCAT9 gene strongly influences the accumulation of glutamate,
aspartate, and GABA during tomato fruit development, it
is suggested that the intracellular transport of amino acids
between vacuole and cytosol is also a major determinant of their
accumulation in ripening fruits (Snowden et al., 2015). Although
the pathway involving the conversion from GABA to glutamate
remains uncertain, GABA catabolism might play a crucial role in
the determination of tomato fruit taste during ripening.
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