
MINI REVIEW
published: 13 October 2015

doi: 10.3389/fpls.2015.00828

Edited by:
Manoj Prasad,

National Institute of Plant Genome
Research, India

Reviewed by:
Jolly Basak,

Visva-Bharati, India
Saurabh Raghuvanshi,
University of Delhi, India

*Correspondence:
Neeti Sanan-Mishra
neeti@icgeb.res.in

Specialty section:
This article was submitted to

Plant Physiology,
a section of the journal

Frontiers in Plant Science

Received: 03 August 2015
Accepted: 22 September 2015
Published: 13 October 2015

Citation:
Das SS, Karmakar P, Nandi AK

and Sanan-Mishra N (2015)
Small RNA mediated regulation

of seed germination.
Front. Plant Sci. 6:828.

doi: 10.3389/fpls.2015.00828

Small RNA mediated regulation of
seed germination
Shabari Sarkar Das 1, Prakash Karmakar 2, Asis Kumar Nandi 2 and Neeti Sanan-Mishra 1*

1 Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, New Delhi,
India, 2 Department of Botany and Forestry, Vidyasagar University, Midnapore, West Bengal, India

Mature seeds of most of the higher plants harbor dormant embryos and go through
the complex process of germination under favorable environmental conditions. The
germination process involves dynamic physiological, cellular and metabolic events that
are controlled by the interplay of several gene products and different phytohormones.
The small non-coding RNAs comprise key regulatory modules in the process of seed
dormancy and germination. Recent studies have implicated the small RNAs in plant
growth in correlation with various plant physiological processes including hormone
signaling and stress response. In this review we provide a brief overview of the regulation
of seed germination or dormancy while emphasizing on the current understanding of the
role of small RNAs in this regard. We have also highlighted specific examples of stress
responsive small RNAs in seed germination and discussed their future potential.
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Introduction

The seeds of higher plants contain the dormant embryos, as miniature new plants, along
with adequate food reserves to sustain the growing seedlings until they establish themselves as
self-sufficient, autotrophic organisms (Figure 1A). Germination is one of the most important
physiological process of a seed which begins with the uptake of water by the quiescent dry seed
and is completed when a part of the embryo, usually a radical oozes out of the seed coat (Bewley,
1997). Seed dormancy is regarded as the temporary failure or block of a viable seed to complete
germination under seemingly unfavorable conditions and is an adaptive feature for optimizing
the timing of germination (Bewley, 1997). The dynamic process of seed germination is triphasic
(Figure 1B) and involves a complex coordination of many physiological, cellular and metabolic
events (Bewley, 1997; Weitbrecht et al., 2011). Phase-I includes rapid leakage of solutes which paves
the way for respiration and protein synthesis. Phase-II represents a plateau stage where new mRNAs
and proteins are synthesized. There is also an accumulation of the mitochondrion to support the
energy requirements at this stage. During phase-III, radicle cells elongate and divide. This is also
the stage of rapid DNA synthesis and replication together with the mobilization of stored reserves
(Bewley, 1997).

Various environmental factors such as light, temperature, moisture, oxygen, soil, humidity, stress
etc and some physiological factors such as viability of seeds, thickness of seed coat, dormancy period
etc also play vital role in seed germination stages (Martin et al., 2010;Weitbrecht et al., 2011). Several
studies have implicated that the interactions between different phytohormones such as abscisic acid
(ABA), gibberellins (GAs), ethylene, brassinosteroids (BRs), auxin, and cytokinins (CKs) play a
key role in regulating the interconnected molecular processes that control dormancy release and
activation of the stages of seed germination (Liu et al., 2007; Finkelstein et al., 2008). The activity
of plant hormones needs to be precisely regulated, since some phytohormones exert crucial but
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FIGURE 1 | (A) Schematic representation (hand drawn by SS) of different parts of seeds and seed germination stages. Seeds and germination stages of
dicotyledonous (chickpea) and monocotyledonous (maize) plants have been shown in upper and lower panels, respectively. (B) Major events associated with seed
germination and post-germinative growth phases. Germination stages are represented by phase 1 and phase 2; postgermination events includes phase 3. The time
(x-axis) for events varies from several hours to many weeks, depending on different plant species and germination conditions. Uptake of water and related increase in
biomass is indicated in y-axis and shown in line graph during three phases. Some events (such as DNA repairing, transcription, translation, and mitochondria
production etc.) are spread over more than one phases and indicated with shaded color; dark colors indicate more activity and light colors indicate less activity. This
figure has been reproduced with modification, after written permission of the corresponding author (Prof. J. D. Bewley) and the original publisher, American Society of
Plant Biologists (ASPB).
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contrasting influence on the process. ABA is a positive regulator
of dormancy and its maintenance, while it is a negative regulator
of germination (Finkelstein et al., 2008). The absence of, or
insensitivity to ABA during seed development results in the
production of viviparous or precociously germinating seeds
as exemplified by maize viviparous (vp), tomato sitiens (sit),
and Arabidopsis ABA-deficient (aba), and ABA-insensitive (abi)
mutants (Finkelstein et al., 2008). GA releases dormancy and
its role is analogous to that of Ethylene and BR in promoting
germination by counteracting ABA effects. Recently, the crosstalk
between ABA and auxin has also been highlighted (Finkelstein
et al., 2008).

The discovery of small non-coding RNAs (of 19–24 nucleotides
length) has added a new dimension to the understanding of the
regulation of cellular environment (Bartel, 2004; Axtell et al.,
2007). They have been shown to play diverse roles in growth,
development, morphogenesis and stress responses of both plants
and animals (Chen, 2012; Kamthan et al., 2015). The functional
small RNAs are produced from double stranded RNA precursors
through the activity of RNA-dependent RNA Polymerase (RDR),
DICER-like (DCL), and ARGONAUTE (AGO) proteins (Allen
et al., 2005; Mallory et al., 2008; Axtell, 2013). There are two
major classes of small non-coding RNAs—short interfering RNAs
(siRNAs) and microRNAs (miRNAs) that negatively regulate
their target genes by binding to the complementary sequences.
At the transcriptional level, the small RNAs may be involved
in chromatin remodeling (Huettel et al., 2007; Pontier et al.,
2012; Xie and Yu, 2015) while at the post-transcriptional level,
depending upon the nature of homology they can bring about the
cleavage of the target mRNA (Rajagopalan et al., 2006; Vaucheret,
2006) or block their translation (Poethig et al., 2006; Vaucheret,
2006; Bartel, 2009). The biosynthesis and function of many of
these small RNA genes are also regulated by different plant
hormones and environmental stress (Mallory et al., 2005; Reyes
and Chua, 2007; Sunkar et al., 2007; Shukla et al., 2008; Martin
et al., 2010; Khraiwesh et al., 2011; Sanan-Mishra et al., 2013).

Biogenesis of miRNA and ta-siRNA

miRNAbiogenesis is amultistep process that ismainly resistricted
to the nucleus in plants. Briefly, the miRNA gene is transcribed
into a capped and poly-adenylated primary miRNA (pri-miRNA)
by enzyme RNA polymerase II (Chen, 2012; Axtell, 2013). The
pri-miRNA is processed to precursor miRNA (pre-miRNA), of
around 70–100 nt long, by DCL protein (Axtell, 2013). The pre-
miRNA is further processed to form miRNA and miRNA* duplex
by the activity of DCL protein. The duplex is then methylated at
the 2′OH of the 3′nucleotide end by HEN1 (Allen et al., 2005;
Chen, 2009) and transported to the cytoplasm.

One strand of the duplex is loaded into RISC (RNA-induced
silencing complex) containing AGO1. The strand selection widely
depends on the relative stability of the two ends of the duplex
(Axtell, 2013). It is observed that generally the strand whose
5´ end is comparatively loose, gets incorporated into the RISC
(Allen et al., 2005; Axtell, 2013). The RISC complex containing
the miRNA identifies its target transcripts based on perfect or
nearly perfect sequence complementarity. In plants the stringency

of target recognition is very high and the target transcripts
are normally cleaved, however, the central mismatches in the
miRNA:mRNA pair direct the inhibition of translation (Allen
et al., 2005; Axtell, 2013).

Recently, the ta-siRNA (trans-acting small interferring RNAs)
have also been implicated in plant development thereby attracting
major research interest for many plant biologists (Nogueira
et al., 2006; Axtell, 2013). ta-siRNAs are generated from TAS
(Trans-Acting SiRNA locus) gene derived non-coding transcripts
through specific miRNA guided cleavage. The cleaved precursors
of ta-siRNAs are bounded and stabilized by SUPPRESSOR of
GENE SILENCING3 (SGS3) and further synthesized into double
stranded RNAs by RDR6 (Chen, 2009; Allen and Howell, 2010;
Axtell, 2013). The double stranded RNAs are cleaved several times
by DCL4 from the miRNA mediated cleavage sites, so that 21-
nt long phased ta-siRNAs are produced. Similar to miRNAs, the
ta-siRNAs are incorporated into RISCs, where they cleave the
target mRNAs or repress translation (Allen et al., 2005; Allen and
Howell, 2010). There are four families of TAS gene in Arabidopsis,
namely TAS1, TAS2, TAS3, TAS4 (Rajagopalan et al., 2006; Allen
and Howell, 2010). For the initial processing TAS1 and 2 require
miR173 whereas TAS3 and TAS4 require miR390 and miR828,
respectively for initial processing (Chen, 2009; Allen and Howell,
2010; Axtell, 2013).

The Role of miRNAs and ta-siRNAs in Plant
Growth and Development

The miRNAs constitute a major class that play important and
diverse roles in regulation of various aspects of plant development
(Sanan-Mishra and Mukherjee, 2007; Chen, 2012; Sharma et al.,
2015). The classical examples include regulation of CUC1/CUC2
and NAC1 transcripts by miR164 to affect reproductive and root
development (Guo et al., 2005); determination of abaxial/adaxial
leaf polarity and root development by miR166/165 mediated
control of Class III HD-ZIP transcription factor mRNAs (Chen,
2012; Barik et al., 2014; Singh et al., 2014) and the regulation of
flower development in Arabidopsis thaliana by miR172 targeted
AP2 and other mRNAs (Wollmann et al., 2010). The function
of miRs has been shown to be affected by hormones and stress
responses (Mallory et al., 2005; Liu et al., 2007; Reyes and Chua,
2007)

The miRNA mediated, ta-siRNA production is also
significantly altered in drought, salinity and hypoxia stresses,
besides their regulation by auxin and other hormones (Moldovan
et al., 2009; Matsui et al., 2014). This is evident by TAS3
derived ta-siR-ARF that target different AUXIN RESPONSE
FACTOR2, 3 and 4 (ARF2,3,4) and regulate various aspects of
plant development such as vegetative to reproductive phase
changes, leaf polarity and lateral root development in Arabidopsis
(Peragine et al., 2004; Chitwood et al., 2007; Allen and Howell,
2010; Marin et al., 2010). Mutations in ta-siRNA biogenesis
pathway lead to the upregulation of target mRNAs and affect
the aforesaid aspects of plant development. The rice and maize
ta-siRNA biogenesis mutants have been shown to have severely
affected shoot and leaf development (Itoh et al., 2006; Nogueira
et al., 2006; Nagasaki et al., 2007; Douglas et al., 2010). DCL4 is

Frontiers in Plant Science | www.frontiersin.org October 2015 | Volume 6 | Article 8283

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Das et al. Small RNA in seed germination

TABLE 1 | List of miRNAs that are involved in seed germination and dormancy.

miRNAs Targets of miRNA Target regulation Seed germination related function References

Up-regulation Down-regulation

miR395 ATP Sulfurylases
(APS1, APS3, APS4);
Sulfate transporter
(SULTR2:1)

APS1, APS4,
SULTR2:1 by
miR395c

APS1, APS4, SULTR2:1
by miR395c and APS3
by miR395e

Regulatory effects on seed germination under salt
and dehydration stress

Kim et al. (2010b)

miR402 DEMETER-LIKE
protein 3 (DML3)

↓ Regulatory effect on seed germination and
seedling growth under salt, dehydration and cold
stress

Kim et al. (2010a)

miR417 Unknown Unknown Unknown Plays a role as a negative regulator of seed
germination in Arabidopsis thaliana under salt
stress condition.

Jung and Kang
(2007)

miR160 ARF10, ARF16,
ARF17

↓ ARF10 mutant show up regulation of ABA
responsive genes during germination

Liu et al. (2007)

miR159 MYB33, MYB65,
MYB101

MYB33, MYB101 MYB33 and MYB101 are the positive regulators
of ABA signaling during seed dormancy and
germination

Reyes and Chua
(2007)

miR165/166 PHB, PHV, REV etc. Unknown Unknown Maintain the auxin signal during seed
development and maturation.

Huang et al. (2013)

miR164 NAC1, CUC1/CUC2 Unknown Unknown Maintain the auxin signal during seed
development and maturation.

Huang et al. (2013)

miR167 ARF6, ARF8 Unknown Unknown Maintain the auxin signal during seed
development and maturation.

miR158 Unknown Unknown Unknown Seed development and maturation.
miR156 SPL 3, 4, 5 ↓ Seed development and maturation. Huang et al. (2013);

Li et al. (2013)
miR172 AP2 ↑ Seed development and maturation.

The first five miRNAs in the gray shaded region of the table are also involved in mediating the stress response signals during germination.

suggested to redundantly regulate processing of some miRNAs,
besides role in ta-siRNA biogenesis (Rajagopalan et al., 2006).
ABA signaling is shown to be, at least partially, affect RDR6
accumulation (Zhang et al., 2013). Although ta-siRNA has not
directly been implicated in seed germination, their cross talk with
miRNA and hormone signaling in feed-back loops (Marin et al.,
2010; Chen, 2012) as well as role in seed development (Zhang
et al., 2013) indicate their potential function in seed maturation
and germination. This remains to be an interesting area to be
explored in the complex process of seed germination.

Molecular Network of Small RNAs in Seed
Germination and Dormancy

Throughout the life cycle of an angiosperm plant, there are
two major developmental phase transitional periods. One is
germination (from seed to seedling stage; Huang et al., 2013)
and another is flowering (from vegetative to reproductive stage;
Wu et al., 2009). Recent studies indicate that genes, regulating
phase transition to flowering are also involved in transition
from dormancy to germination (Huang et al., 2013). The genes
that regulate cellular phase transitions from embryo to seedling
growth also play important role in the process. In addition,
phytohormones and environmental factors affect expression of
seed germination (Liu et al., 2007; Finkelstein et al., 2008).
Recently, a role for small RNAs has been indicated in this process
by characterizing the mutants of small RNA biogenesis pathway
genes, such asDCL1,HYL1,HEN1, and AGO1 that display severe
defects in embryogenesis and seed development (Willmann et al.,

2011). This can be illustrated by the dcl1 mutant, which shows
early seed maturation phenotype than the normal wild type seeds.
The positive regulators of DCL1 gene are leafy cotyledon (LEC)
genes like LEC2 and FUS3. Whereas the negative regulators or
repressors of early embryo maturation are ASIL1, ASIL2, and
HDA6/SIL1 (Willmann et al., 2011).

Different miRNAs like are miR160, miR159, miR417, miR395,
miR402, mir165/166, miR164, miR167, miR156, miR172, and
miR158 (Table 1) are known to control both the activators
and repressors of seed germination and dormancy (Jung and
Kang, 2007; Liu et al., 2007; Reyes and Chua, 2007; Kim et al.,
2010a,b; Martin et al., 2010; Huang et al., 2013). Increased level
of miR156 and reduced level of SPLs and miR172 (Table 1)
in the mature embryo could down regulate the developmental
transition and keep seeds in dormant stages (Martin et al., 2010;
Huang et al., 2013). The imbibition step itself has been shown
to differentially down-regulate twelve miRNA families, miR156,
miR159, miR164, miR166, miR167, miR168, miR169, miR172,
miR319, miR393, miR394, and miR397; while four families,
miR398, miR408, miR528, and miR529 were up-regulated during
the seed germination (Li et al., 2013). Interestingly, miR156 and
miR157 have also been implicated in vegetative to reproductive
phase change (Wu et al., 2009), indicating their functional
diversification.

The complex regulatory cross-talk between the hormones
and the small RNAs, was evident by the identification of two
ABA supersensitive mutants for germination viz. absg1 and
absg2 as the alleles of dcl1 and hen1. The absg1 and absg2
mutants show up regulation of the expression of ABA responsive
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genes (Zhang et al., 2008). An important role for miR159 has
been demonstrated in regulating the dynamic seed germination
procedure by modulating GA and ABA hormone signaling
(Table 1). The expression of miR159 is controlled by both
GA and ABA (Martin et al., 2010). The GAMYB proteins
act as the positive regulators, whereas DELLA proteins act
as the negative regulators of the GA signaling cascade (Peng
and Harberd, 2002; Finkelstein et al., 2008; Weitbrecht et al.,
2011). The GAMYB mRNAs are regulated by miR159 during
floral development, fertility and seed germination (Reyes and
Chua, 2007). Recently, it was shown that alurone vacuolation, a
GA-mediated (GAMYB protein) programmed cell death (PCD)
process in alurone is required for seed germination (Peng and
Harberd, 2002; Finkelstein et al., 2008; Alonso-Peral et al., 2010).
The miR159 also regulates transcription factors MYB33 and
MYB101, which are the positive regulators of ABA signaling
during seed dormancy and germination (Reyes and Chua, 2007;
Martin et al., 2010). miR159 expression is upregulated in rdr2
and dcl2 dcl3 dcl4 triple mutants. Interestingly, RDR2, DCL2,
DCL3, DCL4 are the essential factors in case of siRNA biogenesis,
especially heterochromatic siRNA biogenesis pathway (Allen and
Howell, 2010; Axtell, 2013). This suggests that different kinds of
small RNAs, besides miRNAs, could essentially play significant
role in seed germination and dormancy.

The role of phytohormone Auxin in seed germination, became
evident when Liu et al. (2007) showed that miR160 mediated
down regulation of ARF10 plays crucial roles in seed germination
(Table 1; Liu et al., 2007). ARFs are transcription factors
involved in auxin signaling pathway during many plant growth
and developmental stages. The miR160 also appears to be
the converging point of Auxin and ABA mediated cross-talk
during seed germination, since mutation in ARF10 results in
developmental defects and overexpression of ABA responsive
genes (Liu et al., 2007). Similarly, it was shown that over
expression of miR160 caused hyposensitivity to ABA during
germination (Liu et al., 2007). Auxin homeostasis is vital
for embryo development and is mediated by the action of
miR165/166, miR167, miR164, miR158, and miR160 (Martin
et al., 2010). This suggests an important role for the miRNAs
in mediating suitable auxin signaling during embryo and seed
development (Table 1). Thus, it could be concluded that these
miRNAs play important roles in maintaining dormancy and
breaking of dormancy to promote embryo into seedling stage
through seed germination (Martin et al., 2010; Huang et al., 2013;
Zhang et al., 2013).

Gaseous hormone ethylene promotes seed germination
through interaction with ABA signaling (Finkelstein et al.,
2008) The two mutants namely ethylene resistant1 (etr1) and
ethylene insensitive2 (ein2) or, enhanced response to aba3 (era3)
show upregulation of ABA responsive genes and delay in seed
germination (Finkelstein et al., 2008).Whereas wild type seeds
treated with ethylene precursor ACC (1-aminocyclopropane
-1-carboxylic acid) show downregulation of ABA response
factors (Finkelstein et al., 2008). Again, etr1-2 mutant show the
over accumulation of GA content, which could be a compensation
to over accumulation of ABA (Finkelstein et al., 2008). Since
miR160 and miR159 both have regulatory effects on ABA

and GA, and ethylene has a cross talk with ABA and GA,
therefore, it is hypothesized that these miRNAs may have direct
or indirect control over ethylene mediated regulation during seed
germination and dormancy.

Plant steroid hormone BRs that mainly effect stem elongation
and leaf unfurling also effect seed germination. The mutants
for BR biosynthetic and signaling pathway are sensitive to ABA
leading to decrease in the germination potential (Finkelstein
et al., 2008). The possibility of a cross talk between BR and
ABA signaling cannot be ruled out in the activation of the
miR160 regulatory pathway in seed germination (Liu et al., 2007).
Also, BRs induce the expression of distinct EXPANSIN (EXP)
family members, which are cell wall loosening proteins that can
indirectly influence seed germination (Bewley, 1997).

Parallel studies have shown that the small RNA biogenesis
pathway mutants, that show high expression of ABA, are highly
sensitive to salt and osmotic stresses (Zhang et al., 2008), thereby
indicating the overlap with the environmental cues. Under abiotic
stress conditions, miR395 (Table 1) acts both as a positive
and negative regulator of seed germination (Kim et al., 2010b).
miR395 has six family members in Arabidopsis genome, that
target the proteins APS1, APS3, APS4, and SULTR, involved in
sulfate assimilation and transport. It was shown that miR395e
that differs from miR395c in a single nucleotide cannot target
APS1 and APS4. These miRNAs have different effects on the
seed germination of Arabidopsis under high salt or dehydration
stress conditions (Kim et al., 2010b). Over expression of miR395c
reduces the germination potential under high salt or dehydration
stress condition; whereas over expression of miR395e enhances
the germination potential under the same stress condition in
Arabidopsis thaliana (Kim et al., 2010b). Similarly over expression
of miR402 (Table 1) enhances the seed germination potential in
Arabidopsis under salt, dehydration and cold stress conditions
(Kim et al., 2010a). miR402 downregulates its target gene
DML3 (DEMETER-LIKE protein3), which is involved in DNA
demethylation, an epigenetic regulatory process of plants in
various stress conditions (Kimet al., 2010a).miR417 (Table 1) also
exhibits a negative regulation over seed germination under salt
stress condition (Jung and Kang, 2007). However, its mechanism
of molecular action is not yet clear.

Conclusion and Future Perspective

Agriculture exclusively depends on growing crops; so the success
of cultivation as well as productivity largely depends on seed
viability, seed germination and efficiency of seed development.
Small RNAs play critical roles in regulation of gene expression
in developing and germinating seeds (Kamthan et al., 2015). In
this review we describe that specific small RNAs, mainly miRNAs
regulated nodes, play crucial roles in regulating seed germination
in response to different phyto-hormones and abiotic stresses.
But the mechanism of action and the interconnection of the
various signaling cascades with their regulatory networks remain
largely unknown till date. Thus, functional analysis of small RNAs
expressed in seeds or during germination process will provide
useful information for seed biology. Future studies are required to
unravel the molecular details of small RNAs regulated pathways
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in seed germination and viability maintenance, and their
association with the stress responses and hormonal signals,
especially in crop plants. Expression and functional analysis
using transgenic approach, proteomic analysis and the use of
different bioinformatics tools could also help to throw light on this
issue.
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