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Global support for Conservation Agriculture (CA) as a pathway to Sustainable

Intensification is strong. CA revolves around three principles: no-till (or minimal soil

disturbance), soil cover, and crop rotation. The benefits arising from the ease of

crop management, energy/cost/time savings, and soil and water conservation led to

widespread adoption of CA, particularly on large farms in the Americas and Australia,

where farmers harness the tools of modern science: highly-sophisticated machines,

potent agrochemicals, and biotechnology. Over the past 10 years CA has been promoted

among smallholder farmers in the (sub-) tropics, often with disappointing results. Growing

evidence challenges the claims that CA increases crop yields and builds-up soil carbon

although increased stability of crop yields in dry climates is evident. Our analyses suggest

pragmatic adoption on larger mechanized farms, and limited uptake of CA by smallholder

farmers in developing countries. We propose a rigorous, context-sensitive approach

based on Systems Agronomy to analyze and explore sustainable intensification options,

including the potential of CA. There is an urgent need to move beyond dogma and

prescriptive approaches to provide soil and crop management options for farmers to

enable the Sustainable Intensification of agriculture.

Keywords: sustainable intensification, soil erosion, mulch, legumes, systems agronomy, climate smart agriculture

INTRODUCTION

Food production must increase to meet the needs of a growing population whilst minimizing
impacts on the environment (Foley et al., 2011). A consensus emerges that this requires the
Sustainable Intensification of agriculture (Tilman et al., 2011; Garnett et al., 2013; Vanlauwe
et al., 2014a). Conservation agriculture (CA) has been highlighted as a key route to Sustainable
Intensification (Hobbs et al., 2008; Pretty and Bharucha, 2014).

CA is based on three principles: (1) Minimal soil disturbance or no-till; (2) Continuous soil
cover—with crops, cover crops or a mulch of crop residues; (3) Crop rotation (FAO, 2015). The first
two principles are inter-dependent—a mulch cannot be maintained when the soil is tilled. “True”
CA is deemed to be practiced only when all three principles are meticulously applied (Derpsch
et al., 2014). Yet farmers have practiced variations of the constitutive CA elements long before the
term was coined.

The soil conservation imperative, triggered by the 1930s “Dust Bowl” in North America (Joel,
1937; Baveye et al., 2011) prompted the development of no-till approaches (Faulkner, 1943).

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://www.frontiersin.org/Plant_Science/editorialboard
http://dx.doi.org/10.3389/fpls.2015.00870
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2015.00870&domain=pdf&date_stamp=2015-10-28
http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive
https://creativecommons.org/licenses/by/4.0/
mailto:ken.giller@wur.nl
http://dx.doi.org/10.3389/fpls.2015.00870
http://journal.frontiersin.org/article/10.3389/fpls.2015.00870/abstract
http://loop.frontiersin.org/people/263599/overview
http://loop.frontiersin.org/people/268895/overview
http://loop.frontiersin.org/people/276518/overview
http://loop.frontiersin.org/people/282252/overview
http://loop.frontiersin.org/people/282305/overview


Giller et al. Beyond conservation agriculture

The expansion of no-till agriculture in the 1980–90s in the
Americas and Australia was largely driven by a combination
of factors: First, effective herbicides (atrazine, paraquat, and
glyphosate) were released in the 1960s and 1970s (Unger and
McCalla, 1980; LeBaron et al., 2008). Second, direct seeding into
a mulch of crop residues was made possible with no-till planters.
The elimination of several tillage operations led to fuel savings.
Third, government policy incentives supported a transition to
no-till in the USA (Fuglie and Kascak, 2001). Fourth, the advent
of herbicide resistant, genetically-modified (GM) crops in the
mid 1990’s enabled the use of highly efficacious post-emergence
herbicides and accelerated the expansion of no-till and CA—
particularly in the Americas (National Research Council, 2010).
To different degrees, this has led to widespread adoption of no-
till and CA on large farms in Australia (Llewellyn et al., 2012;
Kirkegaard et al., 2014a), Brazil (Bolliger et al., 2006), and North
America (Egan, 2014). By 2009 it was estimated that 62–92% of
Australian farmers practiced no-till on 73–96% of their cropland
(Kirkegaard et al., 2014a). By contrast, adoption by smallholder
farmers is limited to only 0.3% of the farm land worldwide under
CA (Derpsch et al., 2010).

The rationale for developing CA systems (i.e., reducing
soil degradation and production costs), and its guiding
principles and practices were considered valid for Africa
and consequently sparked large interest among research
organizations and funding agencies (Ekboir, 2003). The past
10 years have seen a massive wave of enthusiasm for CA
among scientists, with strong support from the Food and
Agriculture Organization of the United Nations (FAO). In
Africa, CA is now government policy in Tanzania, Kenya,
Malawi, Mozambique Zimbabwe, Zambia, and Lesotho and is
actively promoted by regional organizations [e.g., the African
Conservation Tillage Network (ACT), the New Partnership for
Africa’s Development (NEPAD), Southern African Development
Community (SADC)], in research for development projects
of international research centers (CIMMYT, ICRISAT, CIRAD,
ICARDA, and ICRAF), by many local and international
development NGOs, including many church-led organizations,
and private donors such as the Howard G. Buffet Foundation.

There is a burgeoning literature on CA [including more
nuanced views in recent special issues in Agriculture, Ecosystems,
and Environment (Stevenson et al., 2014) and Agricultural
Systems (Erenstein et al., 2015)]; numerous and diverse journal
articles; two recent books (Jat et al., 2013; Farooq and Siddique,
2015) and numerous international conferences, workshops, and
scientist-supported “Declarations”1.

The popularity of CA and the general adherence to its
principles appear to be based on a number of factors. First,
the belief that soil disturbance is unsustainable as it causes soil
degradation/erosion and reduces soil carbon (C) stocks (Hobbs
et al., 2008; Lal, 2009; Kassam et al., 2014). Second, the view
that continuous no-till with crop residue retention results in “soil

1The 2009 New Delhi Declaration on Conservation Agriculture (http://

www.fao.org/ag/ca/doc/NewDelhiDeclarationCA.pdf), The 2014 Declaration of

the First Africa Congress on Conservation Agriculture (http://www.fanrpan.

org/documents/d01679/), The 2013 Nebraska Declaration on Conservation

Agriculture (http://www.sciencecouncil.cgiar.org/publications).

health” improvements which will, in time, translate to higher
yields, and sustainable agriculture (Kassam et al., 2014). Failure
to see yield improvements in the first 5–10 years of adoption
(Rusinamhodzi et al., 2011) was therefore commonly dismissed
as a transition period (Derpsch et al., 2014). Third, the name,
which many interpret as meaning a form of low-external-input,
biodiversity-enhancing, and sustainable agriculture. Fourth, the
apparentmimicking of natural systems in which biomass remains
on the soil surface and soils are not often exposed (Altieri and
Nicholls, 2004). Some religious protagonists of CA thereby refer
to mulch as “God’s blanket” (Andersson and Giller, 2012). CA
has increasingly been endorsed as Climate Smart Agriculture,
contributing to both climate change adaptation, and mitigation
(Harvey et al., 2013; Pretty and Bharucha, 2014).

THE MANY SHAPES OF CONSERVATION
AGRICULTURE ACROSS THE GLOBE

Alongside the development of no-till technologies, a range
of approaches and definitions emerged, such as zero-
tillage, minimum tillage, conservation tillage, etc. The term
“Conservation Agriculture” was coined in the late 1990s, just
before the 1st World Congress on CA in Madrid in 2001, yet
considerable diversity in approaches and understandings persists.
While for some CA means resource conserving, low-external
input agriculture, others associate it with highly industrial,
glyphosate resistant, GM-based agriculture, resulting in unlikely
bedfellows such as Charles, Prince of Wales (an ardent organic
farmer), and the large agri-business company Monsanto. The
diversity of understandings is matched by a great variety of
CA practices in the world’s diverse agro-ecologies and farming
systems (Table 1, Figure 1).

Objective measurement of CA adoption is challenging. None
of the underlying principles is systematically captured—let alone
the combination of the three principles. CA adoption figures are
guesstimates—confounded by varying degrees of emphasis on
one or more of the principles and interpretations (Derpsch et al.,
2010). Often no-till areas are simply counted as CA adoption.
Still there is increasing evidence of problems emerging with
the practice and adoption of CA across the world—particularly
for smallholders and less intensive systems. CA promotion in
Africa and Asia often provides adoption incentives (e.g., fertilizer
support) to smallholder farmers, thus creating an unwarranted
policy success based on misleading yield effects and adoption
figures (Andersson and D’Souza, 2014; Whitfield et al., 2015).

EMERGING ISSUES

Despite calls for a more nuanced view in the academic
literature on CA’s potential benefits and applicability in different
agro-ecologies (see special issue of Agriculture, Ecosystems
& Environment 2014 volume 187), CA continues to polarize
the global R&D establishment. CA advocates, including FAO,
faithfully adhere to the principles and continue to promote
CA as a silver bullet that can be made to fit all circumstances
(Kassam et al., 2014). Any critique or questioning of CA still
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provokes strong reactions from advocates—so strong that it
remains impossible to discuss and debate. A common reaction
to countervailing evidence—including the recent meta-analysis
of Pittelkow et al. (2015a) in Nature—is that the studies have not
used a correct definition of CA, that CA is a holistic approach
and therefore cannot be analyzed using the tools of reductionist
science (Derpsch et al., 2014). For example, questioning of
the appropriateness of the widespread CA promotion across
Africa in Nature (Gilbert, 2012) led to a strong retort (Buffet,
2012). The 2013 Nebraska Declaration was an attempt to seek
consensus among scientists about a widening of the CA concept,
but was criticized for its potential to suffocate scientific debate
(Andersson et al., 2014).

Concern about the gathering momentum and funding
allocation to CA among development agencies, donors and
governments in Africa despite limited scientific evidence of its
suitability and benefits to diverse smallholder farmers, prompted
publication of a critical journal article in 2009 (Giller et al.,
2009). This “heretics’ view” paper provoked a storm of protest
internationally2. Five years on, there is a growing concern about
the quality of CA research and the dogmatic application of CA
(Stevenson et al., 2014); both in smallholder systems and in large-
scale mechanized agriculture. It is therefore timely to review the
advances made and the current state of evidence.

THE EVIDENCE BASE FOR
CONSERVATION AGRICULTURE

Unfortunately the wall of scientific evidence to support many of
the claims made for CA is cracking at the seams—even in large-
scale agriculture. In this section we analyze each of these claims
in turn.

Purported Gains in Yields and Profitability
Claims that CA increases crop yields do not hold up to close
scrutiny. The latest comprehensive meta-analysis of 5463 paired
yield observations from 610 studies suggests that no-till in itself
results in a yield penalty of around 10% overall (Pittelkow et al.,
2015a). Yet, this evidence also shows that a nuanced view is
necessary as yield responses of crops and agro-ecologies to CA
differ. The yield penalty was strongest for cereal crops: oilseeds,
cotton, and legumes gave similar yields under no-till to those
with tillage (Pittelkow et al., 2015b). The negative effects of no-till
are minimized when combined with mulching and crop rotation
in what would be considered true CA (Pittelkow et al., 2015a).
Only in dry climates is an increase in crop yields observed with
CA (Rusinamhodzi et al., 2011; Pittelkow et al., 2015a). Even
under dryland conditions in the Middle-East (Jones, 2000; Pala
et al., 2000) and in Australia there is little evidence for yield
increases (Figure 2)—and certainly not increases related to lack
of soil disturbance (Kirkegaard and Hunt, 2010; Kirkegaard et al.,
2014a). Nitrogen (N) fertilizer was shown to compensate for the
negative effects of no-till in the (sub-)tropics where lack of N is

2https://conservationag.wordpress.com/2009/12/01/ken-gillers-paper-on-

conservation-agriculture/
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FIGURE 1 | The many forms of Conservation Agriculture across the globe. (A) Digging planting basins using a hoe in Zimbabwe. Note the absence of crop

residues. (source: Jens A. Andersson); (B) Seeding on no-tilled soil with a direct seeder and fertilizer distributor in Parana, southern Brazil. (source: CIRAD, France);

(C) Direct seeding on no-tilled soil using a jab planter in Burkina Faso (source: Patrice Djamen, ACT, Kenya); (D) Tractor drawn zero-till seed-cum-fertilizer drill in the

Indo-Gangetic Plains, India (source: Olaf Erenstein, CIMMYT, Mexico); (E) Direct seeding using a pointed stick in Madagascar (source: Eric Penot, CIRAD, France); (F)

No-till, controlled traffic crop sowing in Australia using a disc-seeder with satellite guidance with 2 cm accuracy to sow between the rows of previous crop stubble.

(source: CSIRO and Grass Roots Agronomy, Australia); (G) Field of smallholder farmer in Zimbabwe that has been minimally tilled using a Magoye ripper (see inset

photo). (source: Jens A. Andersson).

often strongly limiting, but less so in temperate climates (Lundy
et al., 2015).

Yield benefits of CA under such conditions are mostly due
to more timely sowing, early crop establishment, and summer
fallow weed control, rather than “soil health” improvements,
though soil protection and cost-savings are undisputed
(Kirkegaard et al., 2014b). In the Great Plains of US and Canada,
switching to no-till/stubble retention allowed replacement of
fallow with opportunity cropping of oilseeds and legumes

(Kirkegaard et al., 2008). In Brazil’s Cerrados, land productivity
benefits of CA occur through the possibility of growing two
crops sequentially in the same growing season (Bolliger et al.,
2006).

The enhanced timeliness of crop establishment made possible
through no-till can enhance yields by better using available
moisture and reducing off-season heat stress. Mulch can
reduce soil temperatures, which is beneficial in heat stressed
environments. By contrast, in wetter and colder climates, tillage
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FIGURE 2 | The yield response to Conservation Agriculture also

varies with seasonal conditions at individual sites. At two long-term

experiments in south-eastern Australia [Harden (Kirkegaard et al., 1994)

and Wagga Wagga (Heenan et al., 1994)], the yield of wheat under a

stubble-retain, no till (CA) treatment suffers a yield penalty compared to

minimum-tillage-late burn treatment in wetter seasons (>300mm), shows

little difference in dry seasons (<250mm) with only two instances of

significantly higher yield. Open symbols are shown where treatments were

not significantly different (P < 0.05).

accelerates warming, and drying of soils thereby extending the
length of the growing season (Kirkegaard and Hunt, 2010).
This is one of the reasons why few farmers practice no-till in
northern and western Europe, whereas its use is increasing in
Mediterranean countries (Soane et al., 2012).

As the capacity of CA to increase farm incomes is
mainly realized through cost reductions (particularly in fuel
consumption) and the capacity of large mechanized farms to
“scale-up” where farming a larger area brings with it economies
of scale (Egan, 2014) rather than increases in yields, the farm size,
degree of mechanization, and capital investment capacity are key
to understanding farmer investment in equipment and herbicides
for CA. The cost reductions that can be realized with new
CA technologies by—often cash-strapped—small family farms in
developing countries are often very small, also because family
labor is not usually monetized (Andersson and D’Souza, 2014;
Corbeels et al., 2014; Pannell et al., 2014).

Soil Carbon and Soil Fertility
The UNEP Emissions Gap Report 2013 (UNEP, 2013) repeats
many earlier claims that conversion to no-till canmitigate climate
change by stimulating C sequestration in the soil (Powlson et al.,
2014). There is increasing acceptance that increases in soil bulk
density under no-till lead to erroneous estimates of increased
soil C stocks (Ellert and Bettany, 1995; Wendt and Hauser,
2013; Olson et al., 2014) and meta-analysis and literature reviews
(Govaerts et al., 2009; Palm et al., 2014; Powlson et al., 2014)
reveal inconsistent effects of CA. CA leads to accumulation of
soil C at the surface due to the lack of soil mixing, but the
impacts on increased C stocks are unclear (Powlson et al., 2014;
Singh et al., 2015). There remain indications that soil C may
be sequestered at depth when legumes are included in the CA
crop rotation in Brazil (Boddey et al., 2010). This observation,
and other evidence (Rasse et al., 2005; Kätterer et al., 2010)

suggests that roots provide a substantial contribution to soil
organic matter. In a global meta-analysis of the effects of CA
on soil C contents (Luo et al., 2010) no-till did not increase
the overall soil organic C stocks in most cases, except for those
with increased biomass production and crop residue retention
through growing two crops each year. The lack of an appropriate
balance of the nutrients N, phosphorus (P), and sulfur (S)
often limits soil organic matter build-up (Kirkby et al., 2011;
Richardson et al., 2014). Part of the observed increases of soil
C under CA at field level may be due to decreased soil erosion
(Scopel et al., 2005).

Increased soil C accumulation in the soil surface layers,
together with the presence of mulch, has important impacts on
enhancing the soil water supply for crop growth. The enhanced
soil structural stability and the protection of the soil surface from
direct raindrop impact leads to greater infiltration and capture
of rainfall for crop growth. The mulch cover can also lead to
reduced soil evaporation which explains why CA shows overall
yield benefits in some dry climates (Scopel et al., 2004; Pittelkow
et al., 2015a). There are indications that over the long term the
accumulation of soil C can lead to excess water retention and
declines in crop yield (Rusinamhodzi et al., 2011). Long-term
increases in soil bulk density due to the lack of soil tillage can
contribute to such yield declines.

Rather than focusing solely on the use of crop residues as
mulch, a more universal approach would encompass the use of
fertilizers and N2-fixing legumes and pastures to maintain soil
organic matter and crop productivity (Da Silva et al., 2014).
Maintenance of soil organic matter is a key to sustainability
of agricultural soils and has major benefits in mitigation and
adaptation to climate change (Harvey et al., 2013). This requires
N, P, and S, not just C inputs (Richardson et al., 2014).

There are few agricultural systems in the world where
productivity can be sustained without import of nutrients.
Nutrient import to replace nutrients removed in crops or lost
requires the use of mineral fertilizer and N2-fixing legumes as
there is insufficient organic fertilizer available globally (Connor,
2013). Mineral fertilizers can also play a critical role for the
mulch component—both in terms of overcoming the problems
of N-immobilization in low input systems and boosting biomass
production to reduce biomass use trade-offs (Vanlauwe et al.,
2014b). Even organic agriculture requires import of organic
manures from other farms in the majority of systems, as well
as import of nutrients as rock phosphates or feldspars. In
low-external input agriculture, reliance solely on recycling is
equivalent to recycling poverty (Dudal, 2002; Lal, 2007).

All approaches to maintenance of soil organic matter need
to recognize the integration of livestock in mixed-farming
systems. Evidence suggests little damage to soil from grazing
animals when managed well (Bell et al., 2011). Efficient recycling
of animal manures is a key aspect of sustainable nutrient
management, both to avoid pollution and to maintain soil
organic matter and crop nutrient supply. With the exception of
the largely mixed farming systems in Australia (Kirkegaard et al.,
2014a), crop and livestock production on large-scale farms are
often separated so that competition for crop residues for mulch
or livestock feeding is less important.
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Increasing Diversity of Cropping and
Integrating Livestock
The benefits of crop rotation in controlling pests and disease
build-up are well-established and not unique to CA (Abawi
and Widmer, 2000; Kirkegaard et al., 2008). In particular,
rotations with grain legumes offer the additional benefits of
enhancing soil fertility through biological N2-fixation (Giller,
2001). Yet rotations with legumes or other crops are frequently
less economically attractive and leave less soil cover (Kirkegaard
et al., 2014a). Even where the profitability of cereal production is
limited, smallholder farmers in developing countries often grow
crops such as maize in continuous monoculture for food security
reasons and their limited labor requirements (Baudron et al.,
2012a).

Diverse multiple crop/pasture systems are required rather
than crop rotations alone (Franzluebbers et al., 2014). This is
increasingly recognized by the FAO, which has adapted their
description of CA to refer to crop diversity. Whereas the
adaptation of CA principles was relatively easy for dryland grains
(cereals, legumes, oilseeds) it has proved much more challenging
for roots and tubers, flooded rice, and cash crops like cotton and
tobacco. Intercropping is particularly important on small farms
in the tropics. A major benefit of multiple cropping is weed, pest
and disease management.

In the USA, the overwhelming majority of maize is rotated
with soybean and approximately a quarter of the maize planted
is not rotated but continuously cropped for multiple years.
Much of this is managed under various forms of CA. As the
rotational diversity decreases, the chemical intensity associated
with managing the crop increases (Davis et al., 2012). Where
the economy is driven by ethanol-based biofuels (as in much of
the Midwestern US) then maize is the most profitable crop. The
development of the bio-fuels industry over the past 15–20 years in
the US has resulted in major changes in farming practices with a
much greater proportion of maize grown and a larger proportion
of continuously cropped maize. In most developed economies,
monoculture also is strongly driven by local economies and
infrastructure investment. For example, in Nebraska, two-
thirds of the maize is irrigated (USDA – National Agricultural
Statistics Service, (NASS), 1970–2008). Farmers have invested
in irrigation equipment and the complementary equipment to
grow, cultivate, and harvest maize. Maize is the most water
responsive crop in the Midwest so yields the largest return
on investment.

Legume cover crops and short-duration fallows of fast-
growing legume trees can fix substantial amounts of N2 from
the air (Giller, 2001) and improve soil fertility giving strong
increases in the yield of subsequent cereal crops (Sanchez, 2002),
as well as providing substantial biomass for mulch (Naudin et al.,
2012). Despite many claims of adoption of green manures or
cover crops by smallholder farmers, these have not outlived
the promotion campaigns due to the substantial investment of
land and labor required and the delayed benefits to farmers
(Douthwaite et al., 2002; Kiptot et al., 2007). Use of cover crops
is also very limited (2% on average) on large farms in the USA
(Bryant et al., 2013).

Weed, Pest, and Disease Management
Tillage has clear benefits in the management of biotic stresses
(weeds, pests, and diseases). The repeated reliance on specific
herbicides such as glyphosate has led to rapid evolution of
herbicide-resistant weeds (Cerdeira et al., 2011; Mortensen et al.,
2012; Kirkegaard et al., 2014a). Strategic tillage is one of the
main tools that can assist in avoiding or managing such weed
problems (Kirkegaard et al., 2014a). In addition to selecting
for herbicide resistant weeds, the absence of tillage selects for
increasing abundance of difficult to control, perennial weeds
(Buhler, 1995; Smith et al., 2011). In less herbicide-intensive
systems, tillage is the single most effective tactic for managing
perennial weeds.

A bulky mulch can constrain crop establishment by reducing
optimal seed placement, creating a suitable habitat for seed-
and seedling-feeding herbivores, and impeding placement of
supplemental fertilizers (Mirsky et al., 2012). Lepidopteran larvae
and slugs can build up to damaging intensity in such high residue
environments (Douglas et al., 2015). Residue retention and the
associated increased humidity at the soil surface favor the survival
of pathogens until the following crop is planted. For example,
surface crop residues infected with gray leaf spot (Cercospora
zeae-maydis) provide an early-stage inoculum for the next maize
crop resulting in acute infection (Thierfelder et al., 2014).
Similar problems arise with retained crop residues increasing
infections of important diseases such as tan spot (Pyrenophora
tritici-repentis) (Bhathal and Loughman, 2001) and crown rot
(Fusarium pseudograminearum) (Burgess et al., 2001) in cereals,
sclerotinia (Sclerotinia sclerotiorum) in legumes (Simpfendorfer
et al., 2004) and blackleg (Leptosphaeria maculans) in Brassica
oilseeds (West et al., 2001).

Enhanced activity of the soil macrofauna in the absence of
tillage, and in particular earthworms, can alleviate excessive
buildup of soil organic matter in the surface horizons (Wardle,
1995; Singh et al., 2015). The detritivore earthworm Lumbricus
terrestris was shown to reduce the biomass of Fusarium
culmorum in wheat straw, thus compensating for the negative
effects of no-till due to crop residue accumulation (Wolfarth
et al., 2011).

Soil Erosion Control
A major benefit of CA is the control of soil erosion due to
maintenance of soil cover, greater infiltration and reduced runoff
(Roose and Barthes, 2001; Erenstein, 2002). Approximately 97%
of the soil erosion reduction from adoption of no-till and CA
in the US occurred prior to 1996, the year herbicide-resistant
crops were first marketed, driven by price supports made possible
by the US Farm Bill (USDA – Natural Resources Conservation
Service, 2010). However, when no-till is practiced in the absence
of effective soil mulch cover, the effects can be disastrous with
rapid surface sealing leading to increased run-off and accelerated
soil erosion (Guto et al., 2011; Baudron et al., 2012b). Rather than
focusing on “no-till or minimal soil disturbance,” tillage, and soil
conservation measures should be used strategically. Prevention
of soil erosion requires a more integrated approach to soil
conservation than simply no/reduced tillage and mulch. Where
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no-tillage is adopted, often it is practiced as non-permanent
rotational tillage (Hill, 2001), and the average time out of tillage
is approximately 2 years (Hill, 2001; Derpsch et al., 2010). Tillage
can be important in loosening the soil and creating a rough
soil surface to enhance water infiltration where mulch is not
available (Aina et al., 1991). Continuous no-till can lead to soil
compaction, which can be overcome by strategic tillage (USDA –
Natural Resources Conservation Service, 2010; Wortmann et al.,
2010).

TRADE-OFFS CONCERNING
CONSERVATION AGRICULTURE IN
SMALLHOLDER AGRICULTURE

Although scientific research tends to focus on enhancement of
land productivity measured in yield per unit area per season,
farmers focus on maximizing productivity of all production
factors (including labor and capital) with minimal risk from the
whole farm over the calendar year. In particular, for farmers
throughout the world their labor or time is of critical importance.
Even on large-scale farms in Australia, North and South America,
adoption of CA is largely driven by the ability to expand farm
size, reduction in input costs, fuel, labor, timeliness of sowing, the
farm program and soil protection, with less expectation that yield
would necessarily improve (Llewellyn et al., 2012). In developing

countries, rural households are often categorized as farmers,
although they have a diverse livelihood portfolio. Many such
households are net food purchasers, meaning that they spend a
considerable part of their time earning money off-farm.

For smallholder, “part-time” farmers, the adherence of CA
principles may imply costly or unpopular changes. One problem
is the increase in labor burden, when no-till is practiced without
herbicides in manual low-input systems such as in large swathes
of Africa (Grabowski and Kerr, 2014). Inversion plowing is
an effective means to control weeds. If herbicides are not
available the labor burden for hand weeding under CA is strongly
increased (Giller et al., 2009; Rusinamhodzi, 2015), limiting the
CA area to what can be managed by a farming family without
having to hire additional labor (Marongwe et al., 2011). The
increased labor burden may be particularly strong for women.
The increased drudgery of CA, particularly the form of planting
basin technology (Table 1) as promoted by many church-based
organizations and FAO in southern and East Africa, has led
farmers to reject the technology (Andersson and Giller, 2012;
Rusinamhodzi, 2015).

In addition to labor, a second problem is the competition for
crop residues for soil mulching or livestock feed in smallholder
farms across the (sub-) tropics that are commonly mixed crop-
livestock farms. This results in CA in practice being merely no-
till, with counterproductive impacts on yields, water retention
and erosion control. Livestock are often key in the provision of

FIGURE 3 | Evolution of Conservation Agriculture practice, from PAST (conventional to no-till, Conservation Tillage), to PRESENT (Conservation

Agriculture) to FUTURE (Systems Agronomy). There is a need to expand CA from PAST and PRESENT (i.e., the gray area) toward a Systems Agronomy (down

and to the right), not losing, but adapting the three CA principles.
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meat and milk, of traction and manure, as well as being a means
of accumulating capital and managing risk (Herrero et al., 2010).
Smallholders prioritize feeding of crop residues to livestock over
soil mulching (Giller et al., 2009; Naudin et al., 2014; Erenstein
et al., 2015). Soil cover may be limited due to fast degradation
of crop residues or removal by termites (Erenstein, 2002). Where
crop productivity is poor due to exhaustion of soil fertility and
soil degradation, the amounts of crop residues available are
limited (Rufino et al., 2011). The need for increased productivity
to produce acceptable grain yields and the crop residues needed
for mulch and stockfeed suggests that use of mineral fertilizers is
a pre-requisite for the success of CA (Vanlauwe et al., 2014b).

There is mounting evidence that claims for (full) CA
adoption in Africa have been too optimistic as adoption is
often partial (one or two principles only), limited in extent
(both in terms of numbers of practicing farmers and area),
and frequently temporary in nature as reports on dis-adoption
suggest (Andersson and D’Souza, 2014; Arslan et al., 2014). Even
CA practices on small farms in Brazil, tend to be partial and on
limited land areas at best (Bolliger et al., 2006). In South Asia’s
rice-wheat systems no-tillage is still largely confined to the wheat
season (Erenstein and Laxmi, 2008). As the growing literature
on CA shows, such limited and partial adoption of CA is rooted

in agro-ecological and socio-economic constraints (Arslan et al.,
2014), not only at the plot and farm-level, but also in the wider
market, institutional and policy context (Andersson andD’Souza,
2014).

TOWARD A “SYSTEMS AGRONOMY”

Our overall conclusion is that the CA principles are too narrow
and restrictive to apply across the world’s wide diversity of
agro-ecologies and farming systems. CA places emphasis on
conservation and thereby implicitly the status quo—in contrast
to the inherent dynamism in the current drive toward sustainable
intensification. The underlying CA principles also confer a value
statement—norms that must be adhered to. As an alternative
we suggest a Systems Agronomy approach, which entails a
radical shift away from adapting principles or technologies
to local circumstances, toward localized agronomic knowledge
production (Figure 3).

Acknowledging that agronomic knowledge is fundamentally
situated knowledge, the role of science is to explore systematically
the needs and opportunities of the diversity of farmers in any
given region. A Systems Agronomy then, is fundamentally
a methodological approach which seeks to understand

FIGURE 4 | The DEED approach (Giller et al., 2011) proposes a logical sequence of activities for researchers and farmers to learn together

(Co-learning) through ex-ante analysis of the options and the prerequisite conditions (Describe), testing and analyzing options using theory, on-farm

experiments and modeling to understand current practices and systems (Explain), analyzing trade-offs, opportunities and constraints to adoption of

technologies at multiple scales through scenario analysis (Explore), and proposing and testing new configurations of cropping systems, farm, and

farming systems and landscapes (Design).
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(describe and explain) cropping, farm household, and farming
systems—nested systems—and their interactions, to explore and
develop (design) a broad basket of options for diverse farming
conditions and diverse contexts (Figure 4).

The theoretical foundations of a Systems Agronomy approach
are the well-established principles of plant production ecology
recognizing the defining, limiting and reducing factors for crop
production (van Ittersum and Rabbinge, 1997). Modeling of
crop growth in relation to light, water and nutrients was one of
the first applications of “systems biology” (van Ittersum et al.,
2003). While agronomy has tended to focus on the development
of technology for crop production at the plot or field level,
there is increasing recognition that the tools of systems analysis
can be used at multiple levels. They can assist in identifying
environmentally appropriate, economically viable, and socially
acceptable technologies for farmers depending on their differing
availability and access to resources, as well as their production
orientations (van Ittersum et al., 2008; Giller et al., 2011;
Erenstein et al., 2012).

Agronomy, and the identification and validation of new
technologies or practices, thus becomes a “place-based” science
in which general production ecology principles (theory) and
agricultural development aspirations (direction) are applied in
specific local contexts and systems. For instance, a focus on
enhancing resource use efficiency (of capital, land, labor—
and light, water, and nutrients), is the starting point of
a sustainable intensification-directed agronomy. A Systems
Agronomy perspective on Sustainable Intensification implies an
empirically grounded, adaptive approach that does not merely
focus on production and environment, but calls attention to
social acceptability and economic viability (benefits vs. costs;
private vs. public). Thus, interactions and trade-offs are taken
into account between investments in different production units
within a single farm and between operations on different
farms within a farming system and beyond (e.g., landscape
features such as refugia and buffer zones). Agronomists are thus
developers of tools and providers of knowledge on farmers’
realities at different scales. Such grounded knowledge can
help farmers—and those organizations directly interacting with
farmers—to identify and apply appropriate management options
suited to their circumstances.

ASSESSING CURRENT APPROACHES TO
SUSTAINABLE INTENSIFICATION FROM A
SYSTEMS AGRONOMY PERSPECTIVE

Current, principle-based approaches to Sustainable
Intensification, such as CA, Integrated Soil Fertility Management
(ISFM), Integrated Weed Management, or Integrated Pest
Management (IPM) address only specific aspects of crop
management and vary in the degree to which they consider
multi-scale interactions and trade-offs in farming systems.
In addition, the potential of CA for intensification—yield
benefits—is limited to specific agro-ecologies (Pittelkow et al.,
2015a). ISFM (Vanlauwe et al., 2010) aims to increase crop
productivity and maximize the efficiency of nutrient use through

improved crop varieties, appropriate fertilizer, and organic
inputs, all adapted to local farming conditions. Integrated Weed
Management relies on multiple approaches to manage weeds that
have a firmly grounded basis in ecology (Mortensen et al., 2012).
IPM seeks adapted solutions to reduce or eliminate weed, insect,
and disease pressure and has gone further to address multiple
scales and actors, and to minimize negative environmental
externalities (Brewer and Goodell, 2012).

Applying a Systems Agronomy approach to the identification
of appropriate agronomic management practices to local
circumstances will diffuse the emotions engulfing current debates
on approaches toward Sustainable Intensification and place the
ultimate beneficiaries at the center of activity where they belong.

HOW CAN SYSTEMS AGRONOMY MOVE
SCIENCE FORWARD?

A Systems Agronomy approach goes beyond prescriptive
approaches such as CA to create a “basket of options” for farmers,
suited to their production conditions. Grounded analysis can
inform farmers and policy makers of interactions and trade-offs
(e.g., between short-term productivity increases and the longer-
term sustainability) to support their technology choices. Such
approaches can also learn from the ecology of natural systems
and ecological theory when appropriate (Denison and McGuire,
2015).

Using the metaphor of avoiding to force a “square peg into
a round hole,” we depict the matching of technologies with
farming systems and farmers. Different practices (technology

FIGURE 5 | Delineating socio-ecological niches for diverse crop/soil

management practices/technologies (inspired by Sumberg, 2005;

Ojiem et al., 2006). Using the metaphor of avoiding to force a “square peg

into a round hole,” the matching of technologies to particular farmer

circumstances involves (1) a selection and adaptation process of technology

options suitable for the specific agro-ecological and socio-economic

environment, as well as (2) a process of understanding the drivers of farmer

diversity to establish for which farmers the technical options may be suitable in

a given environment. Thus, we move from “Best Bet” to “Best Fit” options.

Frontiers in Plant Science | www.frontiersin.org 10 October 2015 | Volume 6 | Article 870

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Giller et al. Beyond conservation agriculture

options—sometimes called “Best Bets”), each have their specific
requirements for labor, equipment, fertilizer, etc., that are suitable
for different types of farmers (and farming environments) (Giller
et al., 2011). In general, new, suitable technologies (or “Best
Fits”) will be most rapidly adopted by smallholder farmers
with adequate resources of land, cash, and labor, and not by
the most resource-constrained groups (Pannell et al., 2014).
Systems Agronomy entails a shift from developing “Best Bets”
toward understanding “Best Fits,” grounded in farmers’ realities.
Farm typologies based on farmers’ production orientations and
resource endowments (including the importance of farm size)
will help in better tailoring of technologies (Figure 5).

OUTLOOK AND CHALLENGES

A consensus has emerged around the need for Sustainable
Intensification. The focus of CA is too restricted to address
the technology needs for Sustainable Intensification. It is likely
that the principles underlying CA will remain a key strategy
for a large proportion of farmers who have the resources to
invest in mechanization, agrochemicals and herbicide-resistant
crop varieties, though its implementation in practice will become
more pragmatic. If current trends continue this will lead to
increasing farm sizes or cooperation among large farms to
justify the investment in large-scale, expensive machinery (van
Vliet et al., 2015). Yet at the same time, CA will remain

beyond the grasp of smallholders who lack the resources to
invest in herbicides and (small-scale) mechanization or animal
traction. The no-till area can be expected to increase where
smallholders can access these labor-saving technologies, but with
little mulching and thereby likely detrimental effects on soil and
water conservation.

A more flexible approach is needed to harness the benefits
of “strategic tillage” to overcome major problems associated
with continuous no-till, such as soil compaction, excessive
build-up of soil organic matter in the surface horizons and
herbicide-resistant weeds. Herbicide use in smallholder systems
also requires effective extension to avoid potential health hazards
associated with incorrect use. A key role of science is to support
farmers with the knowledge required to make their own strategic
choices among the various appropriate technologies that are
available.

A Systems Agronomy combining the tools of experimentation
and simulation modeling to evaluate multi-scale trade-offs
and synergies can support the development of the required
knowledge. We propose that the focus should move beyond a
set of narrow principles, to provide the toolbox and methods to
allow informed choices of technology tailored to local conditions,
and taking into account the trade-offs associated with technology
choice in the short and long-term. Above all there is a need
to open up debate and discussion to develop pathways for the
Sustainable Intensification of agriculture.
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