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The impact of sulfate deprivation and atmospheric H2S and SO2 nutrition on the content
and composition of glucosinolates was studied in Brassica juncea and B. rapa. Both
species contained a number of aliphatic, aromatic and indolic glucosinolates. The total
glucosinolate content was more than 5.5-fold higher in B. juncea than in B. rapa,
which could solely be attributed to the presence of high levels of sinigrin, which was
absent in the latter species. Sulfate deprivation resulted in a strong decrease in the
content and an altered composition of the glucosinolates of both species. Despite
the differences in patterns in foliarly uptake and metabolism, their exposure hardly
affected the glucosinolate composition of the shoot, both at sulfate-sufficient and
sulfate-deprived conditions. This indicated that the glucosinolate composition in the
shoot was hardly affected by differences in sulfur source (viz., sulfate, sulfite and sulfide).
Upon sulfate deprivation, where foliarly absorbed H2S and SO2 were the sole sulfur
source for growth, the glucosinolate composition of roots differed from sulfate-sufficient
B. juncea and B. rapa, notably the fraction of the indolic glucosinolates was lower than
that observed in sulfur-sufficient roots.

Keywords: atmospheric sulfur nutrition, Brassica juncea, Brassica rapa, glucosinolates, hydrogen sulfide, sulfate
nutrition, sulfate deprivation, sulfur dioxide

INTRODUCTION

Brassicaceae are nutritionally important crops containing relatively high levels of sulfur-
containing secondary metabolites, viz., glucosinolates, which are not only responsible for
the flavor of these species but also may be of great significance as phytopharmaceuticals
considering their potential anti-carcinogenic properties (Fahey et al., 2001; Wittstock and
Halkier, 2002; Jahangir et al., 2009). The glucosinolate content varies strongly between
Brassica species and in seedlings may account for 10–30 % of the organic sulfur fraction
(Castro et al., 2004; Aghajanzadeh et al., 2014). Glucosinolates contain 2-3 S groups
per molecule and have a common core structure of a β-D-thioglucose group linked to a
sulfonated aldoxime moiety and a variable side chain derived from an amino acid (Wittstock
and Halkier, 2002). Cysteine, the end product of the sulfate reduction pathway in the
chloroplasts (and plastids in the root), functions as the reduced sulfur donor for the
synthesis of glucosinolates. Moreover, 3′-phosphoadenosine 5′-phosphosulfate (PAPS), which is
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synthetized from adenosine 5′-phosphosulfate (APS), the first
intermediate in the sulfate reduction pathway by APS kinase, is
essential for the synthesis of the sulfated moiety of glucosinolates
(Schnug, 1990, 1993; Halkier and Gershenzon, 2006; Falk et al.,
2007; Kopriva et al., 2012). Brassica species contain a wide variety
of glucosinolates, which on the basis of amino acid precursors,
side chain elongation and further modification are classified in
aliphatic, indolic, and aromatic glucosinolates (Wittstock and
Halkier, 2002; Halkier and Gershenzon, 2006).

The content and composition of the glucosinolate pool in
Brassicaceae depends on the developmental stage of the plant
(Falk et al., 2007; Agneta et al., 2014). For instance, the highest
glucosinolate contents were found in seeds, siliques and young
leaves, while intermediate contents were found in leaves, stems
and roots (Petersen et al., 2002; Brown et al., 2003). The
composition of the glucosinolate pools in plant tissue appears be
the consequence of in situ synthesis and/or their redistribution
via long-distance transport (Matsuda et al., 2010; Andersen
et al., 2013). Glucosinolates may be transported in plants via
the xylem (Sattelmacher, 2001) and the phloem (Lucas et al.,
2013) and recently two glucosinolate-specific transporters, GTR1
and GTR2, have been identified, which are involved in the long-
distance inter-organ transport (Andersen et al., 2013).

It has been presumed that glucosinolates would have
significance in the storage of sulfur and that at sulfur-deprived
conditions these compounds would be degraded by myrosinase
in order to enable the re-distribution of sulfur in plants (Schnug,
1990; Hirai et al., 2004, 2005; Bloem et al., 2007; Falk et al.,
2007). However, SO2 and H2S exposure did not affect the
glucosinolate content of Brassica juncea and B. rapa, which are
characterized by a relatively high and low glucosinolate content,
respectively, showing that these sulfur-containing secondary
metabolites did not form a sink for excessive atmospheric sulfur
supply (Aghajanzadeh et al., 2014). Whilst sulfate deprivation
resulted in a decrease in the glucosinolate content of Brassica
seedlings, the proportion in the organic sulfur fraction was higher
than that of sulfate-sufficient plants, even upon SO2 and H2S
exposure, indicating that in Brassica seedlings glucosinolates had
hardly any significance in the re-distribution of sulfur upon
sulfate deprivation (Aghajanzadeh et al., 2014).

In the current paper, the impact of the plants’ sulfur source
for growth, viz., sulfate taken up by the root, and/or SO2 and
H2S taken up by the shoot, on the content and composition
of glucosinolates was studied in detail in shoots and roots of
B. juncea and B. rapa.

MATERIALS AND METHODS

Plant Material and H2S and SO2
Exposure
Seeds of B. juncea cv. Rugosa and B. rapa cv. Komatsuna
(Van der Wal, Hoogeveen, The Netherlands) were germinated
in vermiculite in a climate-controlled room. Day and night
temperatures were 22 and 18◦C (±1◦C), respectively, relative
humidity was 60–70%. The photoperiod was 14 h at a photon
fluence rate of 300 ± 20 μmol m−2 s−1 (400–700 nm) at plant

height, supplied by Philips GreenPower LED (deep red/white
120) production modules. 10 day-old seedlings were transferred
to an aerated 25% Hoagland nutrient solution at 0.5 mM sulfate
for 3 days and subsequently transferred to fresh Hoagland
nutrient solution at 0 mM sulfate (−S, sulfate-deprived) or
0.5 mM sulfate (+S, sulfate-sufficient) in 13 l stainless steel
containers (30 plants per container). Plants were exposed to
0.25 μl l−1 H2S or SO2 for 7 days in 150 l cylindrical stainless
steel cabinets (0.6 m diameter) with a polymethyl methacrylate
top. Sealing of the lid of the containers and plant sets prevented
absorption of atmospheric H2S or SO2 by the solution. Day and
night temperatures were 24 and 20◦C (±2◦C), respectively, and
relative humidity was 40–50%. The photoperiod was 14 h at a
photon fluence rate of 300 ± 20 μmol m−2 s−1 (400–700 nm)
at plant height, supplied by Philips GreenPower LED (deep
red/white 120) production modules. The temperature inside the
cabinets was controlled by adjusting the cabinet wall temperature.
See for further details Aghajanzadeh et al. (2014). Plants were
harvested 3 h after the onset of the light period and the roots
were rinsed in ice-cold demineralized water (for 3 s× 20 s). Roots
were separated from the shoots, weighed, and for glucosinolate
analyses, plant material was frozen immediately in liquid N2 and
stored at −80◦C.

Glucosinolate Content and Composition
The glucosinolates contents were analyzed with reverse phase
HPLC and UV detection method, as described by Burow et al.
(2006). The glucosinolates were extracted at 70◦C from 50 mg
freeze-dried plant material in 70%methanol (v:v) for 45 min. The
extract was centrifuged for 5min at 13,000 g. After centrifugation,
1 ml of the supernatant was loaded on a DEAE Sephadex A-25
column. The column was washed with 2 ml × 0.5 ml water and
20 mM sodium acetate. After washing, the column was treated
overnight with sulfatase to convert the glucosinolates to their
desulfated derivatives. The desulfated glucosinolates were eluted
off the column with 2 ml × 0.5 ml water and were separated
by reverse-phase HPLC using an ODS2 column (Waters) and
a gradient of acetonitrile in water (5–30% in 8 min, 30–50% in
7 min). The desulfo-glucosinolates were detected and quantified
by UV absorption at 229 nm relative to sinigrin used either as
internal standard (for B. rapa) or as standard curve (for B. juncea)
using response factors. The individual desulfo-glucosinolates
were identified based on retention times and known profiles.

Statistical Analysis
Data from different experimental sets ware analyzed for
statistical significance using an unpaired two-tailed Student’s
t-test (P < 0.01).

RESULTS

Impact of Sulfur Nutrition on
Glucosinolate Content
Similarly to previous observations (Aghajanzadeh et al., 2014),
the glucosinolate content was substantially higher in shoots of
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B. juncea than B. rapa seedlings (5.5-fold), but it was not affected
upon a 7-day exposure to 0.25 μl l−1 H2S or 0.25 μl l−1 SO2
(Figure 1). Sulfate-deprivation resulted in strongly decreased
glucosinolate content, both in shoots and roots of B. juncea and
B. rapa (Aghajanzadeh et al., 2014; Figure 1). The glucosinolate
content of both shoot and root of sulfate-deprived plants was
substantially enhanced upon H2S or SO2 exposure, although
was still lower than that observed in sulfate-sufficient plants
(Aghajanzadeh et al., 2014; Figure 1).

Glucosinolate Composition
Seven different glucosinolates could be identified in shoots and
roots of B. juncea; three were short-chain (C3–C4) aliphatic
glucosinolates (sinigrin, gluconapin and progoitrin), one
long-chain (C5) aliphatic glucosinolate (glucobrassicanapin),

two indolic glucosinolates (glucobrassicin, neoglucobrassicin)
and the aromatic glucosinolate gluconasturtiin; Table 1,
Figure 2). All of these glucosinolates, except sinigrin were
also detected in the shoots and roots of B. rapa (Table 1 and
Figure 2). Roots and shoots of B. rapa also contained glucoerucin
(an aliphatic glucosinolate) and 4-hydroxy-glucobrassicin (an
indolic glucosinolate; Figure 2). The aliphatic glucosinolates
were the predominant secondary sulfur compounds present in
the shoots of both B. juncea and B. rapa, and they accounted for
more than 98 and 84% of the total glucosinolates, respectively
(Figure 1).

Sinigrin was the major aliphatic glucosinolate present in the
roots and shoots of B. juncea. In the shoots it even accounted
for more than 90% of the aliphatic and more that 80% of the
total glucosinolates (Figures 2 and 3). The observed 5.5-fold

FIGURE 1 | Impact of H2S and SO2 and sulfate deprivation on the content and composition of glucosinolates in shoots and roots of Brassica juncea
and B. rapa. 10 day-old seedlings were grown on a 25 % Hoagland solution containing 0.5 mM sulfate for 3 days and subsequently transferred to fresh 25%
Hoagland solution at 0 (−S) or 0.5 mM sulfate (+S) and exposed to 0.25 μl l−1 H2S or SO2 for 7 days. The content of the aliphatic (white bars; μmol g−1 DW),
indolic glucosinolates (gray bars; μmol g−1 DW) and aromatic (dark gray bars; μmol g−1 DW) represent the mean of three measurements with nine plants in each
(±SD). Different letters indicate significant differences between treatments (P < 0.01, Student’s t-test).
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TABLE 1 | Nomenclature of the individual glucosinolates identified in
shoots and roots of Brassica juncea and B. rapa.

GSL type Trivial name Chemical name

Aliphatic Sinigrin (3C)∗ 2-Propenyl GSL

Glucoerucin (4C)∗ 4-Methylthiobutyl GSL

Gluconapin (4C)∗ 3-Butenyl GSL

Progoitrin (4C)∗ 2-Hydroxy-3-butenyl GSL

Glucobrassicanapin (5C)∗ 4-Pentenyl GSL

Indolic Glucobrassicin Indol-3-ylmethyl GSL

Neoglucobrassicin 1-Methoxy-indol-3-ylmethyl GSL

4-Hydroxyglucobrassicin 4-Hydroxy-indol-3-ylmethyl GSL

Aromatic Gluconasturtiin 2-Phenylethyl GSL

∗Carbon side chain.The individual glucosinolates are classified by trivial name and
chemical name.

higher glucosinolate content in the shoots of B. juncea was
for the greater part attributed to the high sinigrin content, a
compound which was not detected in the shoots and roots of
B. rapa (Figures 2 and 3). Gluconapin was the major aliphatic
glucosinolate present in roots and shoots of B. rapa. In the shoot
its content accounted for 65% of the aliphatic glucosinolates and
57% of the total glucosinolates (Figures 2 and 3). The roots
of both species, however, contained high contents of aromatic
glucosinolates, which in accounted for 32 and 40% and indolic
glucosinolates, which content accounted for 56 and 50% of the
total glucosinolates in roots of B. juncea and B. rapa, respectively
(Figure 1). Gluconasturtiin was the major glucosinolate in roots
of B. juncea and B. rapa (Figures 2 and 4).

Impact of Sulfur Nutrition on
Glucosinolate Composition
H2S and SO2 exposure did not affect the total content, and only
slightly affected the glucosinolate composition in the shoots and
roots of sulfate-sufficient B. rapa seedlings (Figures 1–4). H2S
exposure resulted in a slight increase in the gluconapin and
glucobrassicin content and slight decrease in the progoitrin in
the shoots of B. rapa, whereas it did not affect the aliphatic
and indolic glucosinolate composition in the roots (Figure 2–4).
SO2 exposure resulted in a slight increase in the glucobrassicin
content and a decrease in the gluconapin and glucobrassicanapin
content of the shoots of B. rapa.

A 7-day sulfate deprivation resulted in 96 and 85% decreases
in total glucosinolate content in shoots and roots of B. juncea and
90 and 76% decreases in shoots and roots of B. rapa seedlings,
respectively (Figure 1). Sulfate deprivation also strongly affected
the glucosinolate composition and resulted in a 94, 74, and 82%
decrease in the content of the aliphatic, indolic, and aromatic
glucosinolates in the shoot and a 84, 85, and 88% decrease of these
glucosinolates in the roots of B. juncea, respectively (Figure 1).
In B. rapa, the content of aliphatic, indolic, and aromatic
glucosinolates decreased by 93, 79, and 97% in the shoots, and
by 55, 73, and 84% in the roots, respectively, upon sulfate
deprivation (Figure 1). Evidently, the content of progoitrin and
neoglucobrassicin in the shoots and roots of B. juncea and B. rapa
were less affected by sulfate deprivation than that of the other
glucosinolates (Figures 3 and 4).

Exposure of sulfate-deprived B. juncea seedlings to 0.25 μl l−1

H2S or SO2 partly alleviated the decrease in the glucosinolate
content in both shoots and roots, but was always lower than
that observed in sulfate-sufficient plants (Figure 1). Moreover,
exposure of sulfate-deprived B. rapa seedlings to 0.25 μl l−1

H2S and SO2 partly alleviated the decrease in the glucosinolate
content in the roots, whereas that of the shoots hardly changed
(Figure 1). Again, sinigrin was the most abundant glucosinolate
in the shoots of B. juncea and the overall glucosinolate
composition in the shoot of this species was quite similar to
that observed in sulfate-sufficient plants both in presence and
absence of H2S and SO2 (Figures 2 and 3). Gluconapin was the
most abundant glucosinolate present in the shoots of sulfate-
deprived B. rapa upon H2S and SO2 exposure, and the overall
glucosinolate composition was somewhat altered to that observed
in sulfate-sufficient plants in presence and absence of H2S and
SO2, due to the relatively higher content of this glucosinolate
(Figures 2 and 3). In both sulfate-deprived H2S- and SO2-
exposed B. juncea and B. rapa plants, the short-chain (C3) and
(C4) aliphatic glucosinolates were predominant glucosinolates
present in the shoots (Figure 3). Exposure of sulfate-deprived
B. juncea to H2S and SO2 resulted in a substantial enhancement
in the sinigrin content of the root, whereas the content of the
other glucosinolates were less affected (Figures 2 and 3). As
a consequence, the overall composition of the glucosinolates
in H2S and SO2 exposed sulfate-deprived B. juncea roots was
somewhat different than that observed in sulfate-sufficient plants
(Figure 2). The composition of the glucosinolates of sulfate-
deprived roots of B. rapa upon H2S and SO2 exposure was also
different to that observed in sulfate-sufficient plants (Figure 2).
The latter was mainly due to the overall higher proportion
of progoitrin in the roots (Figures 2 and 3). H2S and SO2
exposure largely alleviated the decrease in short-chain (C4)
aliphatic glucosinolates in roots of both B. juncea and B. rapa
upon sulfate-deprivation.

DISCUSSION

Brassicaceae are able to utilize foliarly absorbed atmospheric H2S
or SO2 as sulfur sources for growth which may replace sulfate
taken up by the root as the sulfur source for growth (Stuiver
and De Kok, 2001; Buchner et al., 2004; Yang et al., 2006; De
Kok et al., 2007; Koralewska et al., 2008; Shahbaz et al., 2013;
Aghajanzadeh et al., 2014). It was evident, that an atmospheric
concentration of 0.25 μl l−1 of these sulfur gasses was sufficient
to cover the sulfur requirements for growth. At an ample sulfate
supply, the total sulfur contents of the plants were hardly affected,
indicating a good coordination between uptake and assimilation
of these sulfur gasses in the shoot and uptake of sulfate by
the root and exposure of Brassicaceae to atmospheric sulfur
resulted to a down-regulation of the sulfate uptake by the root
and its reduction in the shoot (Westerman et al., 2000, 2001;
Buchner et al., 2004; De Kok et al., 2007; Durenkamp et al., 2007;
Koralewska et al., 2008; Shahbaz et al., 2013).

Despite the differences in the uptake of H2S and SO2 in the
shoots (the uptake of H2S is determined by the rate of metabolism
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FIGURE 2 | Impact of H2S and SO2 and sulfate deprivation on the composition of glucosinolates in shoots and roots of B. juncea and B. rapa. For
experimental details, see legends of Figure 1. The pie graphs represent the composition of the glucosinolates (for details on their nomenclature see Table 1), the
absolute data are presented in Figures 3 and 4.

into cysteine, whereas that of SO2 by dissociation in the
aqueous phase of the mesophyll), their impact at an atmospheric
concentration of 0.25 μl l−1 on the total sulfur content of
B. juncea and B. rapa seedlings was quite similar for both sulfate-
sufficient and sulfate-deprived conditions (Aghajanzadeh et al.,
2014). Neither H2S nor SO2 exposure affected the glucosinolate

contents of shoots and roots of these species, demonstrating that
these sulfur compounds did not form a sink for the storage
of excessive sulfur, at least at a seedling stage (Aghajanzadeh
et al., 2014). From the present study it was again evident that
the shoots of B. rapa contained considerably lower levels of
glucosinolates compared to B. juncea, although the differences
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FIGURE 3 | Impact of H2S and SO2 and sulfate deprivation on the content of the aliphatic glucosinolates in shoots (above x axis) and roots (below x
axis) of B. juncea and B. rapa. For experimental details, see legends of Figure 1; for details on their nomenclature see Table 1. Data on glucosinolate content
(μmol g−1 DW) represent the mean of three measurements with nine plants in each (±SD). Different letters indicate significant differences between treatments
(P < 0.01, Student’s t-test).

in contents were mainly due to the high levels of sinigrin,
which was absent in B. rapa. Moreover, the transcript level
of APS kinase, a key enzyme in the synthesis of the sulfate
moiety of the glucosinolates, was also substantially higher in
shoots and roots of B. juncea (data not shown). However, H2S
and SO2 exposure also hardly affected the composition of the
glucosinolates.

Sulfate-deprivation of B. juncea and B. rapa for a week resulted
in stunted growth and diminished sulfur and glucosinolate
contents (Aghajanzadeh et al., 2014). The exposure of sulfate-
deprived plants to 0.25 μl l−1 H2S or SO2 fully alleviated the

decrease in biomass production, demonstrating that plants to
utilize these atmospheric sulfur gasses as sole sulfur sources
for growth. Again, despite the differences in patterns of uptake
and metabolism between H2S and SO2, their impact on sulfur
and glucosinolate contents in shoots and roots of B. juncea and
B. rapa were quite similar. Their contents were lower than that
observed in sulfur-sufficient plants in absence or presence of H2S
and SO2 (Aghajanzadeh et al., 2014), although the proportion
of the glucosinolates in the organic sulfur fraction was higher
than that of sulfate-sufficient plants (Aghajanzadeh et al., 2014).
From the current results it was evident that sulfate deprivation

Frontiers in Plant Science | www.frontiersin.org 6 October 2015 | Volume 6 | Article 924

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Aghajanzadeh et al. Sulfur nutrition and glucosinolate composition

FIGURE 4 | Impact of H2S and SO2 and sulfate deprivation on the content of the indolic and aromatic glucosinolates in shoots (above x axis) and
roots (below x axis) of B. juncea and B. rapa. For experimental details, see legends of Figure 1; for details on their nomenclature see Table 1. Data on
glucosinolate content (μmol g−1 DW) represent the mean of three measurements with nine plants in each (±SD). Different letters indicate significant differences
between treatments (P < 0.01, Student’s t-test).

not only decreased the total glucosinolates contents but also
strongly affected the composition. However, if sulfate-deprived
plants were exposed to H2S and SO2, the composition of the
glucosinolates in the shoots of both B. juncea and B. rapa
hardly differed from that of sulfate-sufficient plants. Remarkably,
the pattern of synthesis of the different aliphatic and indolic
glucosinolates was hardly affected by the differences in oxidation
state of the supplied sulfur sources in the shoots. Apparently,
upon absorption and subsequent metabolism of H2S and SO2
in the shoots, not only sufficient cysteine, which functions as
the reduced sulfur donor for the synthesis of glucosinolates, but

also sufficient sulfate was formed/available for the synthesis of
the sulfate moiety of glucosinolates via the ATP sulfurylase/APS
kinase/sulfotransferase pathway. Evidently, foliarly absorbed SO2
may, after its reaction with water and dissociation in the
mesophyll apoplast and symplast, be either non-enzymatically
and/or enzymatically oxidized to sulfate or reduced in the
chloroplast, and subsequently assimilated into cysteine (De Kok,
1990; De Kok and Tausz, 2001; De Kok et al., 2007). The direct
metabolism of the foliarly absorbed H2S by O-acetyl(thiol)lyase,
the rate limiting step for the uptake of these gas by the
shoot, should provide ample cysteine as reduced sulfur donor
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for the synthesis of glucosinolates (De Kok, 1990; De Kok and
Tausz, 2001; Stuiver and De Kok, 2001; De Kok et al., 2007).
However, the source of sulfate moiety under these conditions
needs further to be evaluated. The pattern of H2S oxidation in
plant tissues is rather obscure; the presence of superoxide may
catalyze the oxidation of sulfide, though it is still unclear to what
extent elemental sulfur or sulfate is formed (De Kok et al., 1983).
It has been observed that degradation in cysteine in cells may
result in the formation of sulfate, although here the pathway also
needs further to be investigated (Harrington and Smith, 1980).

The glucosinolate composition of sulfate-deprived roots after
H2S and SO2 exposure was different from that observed in
sulfate-sufficient B. juncea and B. rapa. In sulfate-deprived plants
exposed to H2S or SO2, the roots fully depend on the sulfur
supplied by the shoots. Roots of B. juncea and B. rapa express
all enzymes of the sulfate reduction pathway and APS kinase
(data not shown) which is essential for the synthesis of the sulfate
moiety of the glucosinolates, indicating that the roots have the
capacity to synthesize glucosinolates, despite the observation that
they might also be transported in plant tissue (Andersen et al.,
2013). It is widely accepted that in the majority of plant species
glutathione is most important form of reduced sulfur transported
from source (viz., shoot) to sink (root; Rennenberg et al., 1979;

Herschbach et al., 2000). However, the pathway of degradation of
glutathione, which, e.g., would be necessary for the synthesis of
the sulfated moiety (via the APS/PAPS pathway) of glucosinolates
in the roots, is still not well understood (Ohkama-Ohtsu et al.,
2008).

CONCLUSION

The glucosinolate composition in the shoot was hardly affected
by differences in sulfur source (viz., sulfate, sulfite and sulfide)
for growth, whereas that in the root was substantially altered.
The latter indicated that the presence of sulfate in the root
environment is essential for the synthesis of some of the
glucosinolates.
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