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The development of the root apex is determined by progress of cells from the

meristematic region to the successive post-mitotic developmental zones for transition,

cell elongation and final cell differentiation. We addressed root development, tissue

architecture and root developmental zonation by means of light-sheet microscopic

imaging of Arabidopsis thaliana seedlings expressing END BINDING protein 1c (EB1c)

fused to green fluorescent protein (GFP) under control of native EB1c promoter. Unlike

the other two members of the EB1 family, plant-specific EB1c shows prominent nuclear

localization in non-dividing cells in all developmental zones of the root apex. The nuclear

localization of EB1c was previously mentioned solely in meristematic cells, but not further

addressed. With the help of advanced light-sheet microscopy, we report quantitative

evaluations of developmentally-regulated nuclear levels of the EB1c protein tagged

with GFP relatively to the nuclear size in diverse root tissues (epidermis, cortex, and

endodermis) and root developmental zones (meristem, transition, and elongation zones).

Our results demonstrate a high potential of light-sheet microscopy for 4D live imaging

of fluorescently-labeled nuclei in complex samples such as developing roots, showing

capacity to quantify parameters at deeper cell layers (e.g., endodermis) with minimal

aberrations. The data presented herein further signify the unique role of developmental

cell reprogramming in the transition from cell proliferation to cell differentiation in

developing root apex.

Keywords: end-binding 1c (EB1c), nucleus, root apex, development, transition zone, light-sheet microscopy

INTRODUCTION

Root development in higher plants is early defined in the developing embryo as soon as root
meristem initials appear (Scheres and Berleth, 1998). Thereon, the further growth of the primary
root as exemplified in the model dicot Arabidopsis thaliana progresses through formative periclinal
and proliferative anticlinal divisions in the root meristem and through post-mitotic cell elongation.
In this way the root can be anatomically defined laterally by the existence of distinct cell files and
longitudinally by the formation of distinct root zones.

In a center wise fashion, root cell files can be discerned to the central cylinder formed by
protoxylem and protophloem, surrounded by the pericycle, and followed by the endodermis, the
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cortex and finally the epidermis that forms the outer root
layer. All different root cell types strictly originate from stem
cells surrounding the quiescent center at the very root tip
(Weigel and Jurgens, 2002). During the growth of the root apex,
cells within certain cell files progress through different growth
stages in a highly regulated manner. They undergo proliferative
anticlinal divisions which are followed by elongation and finally
by terminal differentiation in a relatively short time period. In
this respect, the root apex is longitudinally divided into four
distinguishable zones—meristematic, transition, elongation, and
differentiation (Verbelen et al., 2006; Baluška and Mancuso,
2013). The meristematic zone, is characterized by successive cell
divisions of non- or minimally elongating cells (van der Weele
et al., 2003). In the elongation zone, cell length increases and cell
divisions are suppressed. In many classical anatomical studies,
the boundary region between meristematic and elongation zone
is often neglected. Nevertheless, previous studies demonstrated
a population of nearly isodiametric cells within all cell files,
with particular characteristics in intracellular architecture such
as actin organization (Baluska et al., 1997) or cellular functions
such as fluid phase endocytosis (Samaj et al., 2004). This cell
population forms a distinct post-mitotic zone in dicots and
monocots and it is called transition zone. The transition zone (or
otherwise called distal elongation zone; DEZ; Baluška et al., 1990;
Ishikawa and Evans, 1993) is considered to form an important
link between the meristematic and elongation zone.

The transition zone is interpolated between the meristematic
and the elongation zone while cells in this zone are also polarized.
The transition zone is sensitive to a variety of stimuli, including
plant hormones, effects of cytoskeletal disrupting drugs, gravity,
light, oxygen or heavy metal exposure (Illés et al., 2006; Dello
Ioio et al., 2007, 2008; Ruzicka et al., 2009; Baluška and
Mancuso, 2013; Eleftheriou et al., 2015). Moreover, cells of
the root transition zone exhibit unique physiological behaviors
including oscillations of ion and hormone fluxes and also of gene
expression (Benková and Hejatko, 2009; McLamore et al., 2010;
Baluška and Mancuso, 2013).

During cell remodeling in the elongating root, nucleus
shape and position undergo dramatic changes (Chytilova et al.,
2000; Ketelaar et al., 2002; Sliwinska et al., 2012). While cell
expansion proceeds in the elongation zone, DNA amount (C
value) increases by switching from mitotic to endoreduplication
cycles (Hayashi et al., 2013). The switch from the mitosis to
endoreduplication is accompanied by suppression of mitotic
entry by inactivation ofmitotic cyclin-dependent kinases (Adachi
et al., 2011). Endoreduplication causes nuclear enlargement and
reshaping.

Microtubule plus-end-tracking proteins are mostly conserved
proteins throughout eukaryotes (Jiang and Akhmanova, 2011).
They regulate MT plus-end dynamics (Bisgrove et al., 2004;
Hamada, 2007; Akhmanova and Steinmetz, 2008). Proteins
from End-binding 1 (EB1) family were first identified as
+TIPs in plants and are highly conserved both evolutionary
and structurally throughout kingdoms (Chan et al., 2003;
Mathur et al., 2003; Bisgrove et al., 2008). Significant influence
of the microtubule plus-end dynamics refers them as key
players in the cell expansion and cell division (Tirnauer et al.,

2002a,b; Draviam et al., 2006; Akhmanova and Steinmetz,
2008). They are composed of N-terminal microtubule-interacting
calponin-homology (CH) domain and C-terminal EB1 unique
homology domain which mediates EB1 protein dimerization and
interaction with other proteins (Komarova et al., 2009). The
Arabidopsis genome encodes for three EB1 isoforms (Bisgrove
et al., 2008), EB1a (At3g47690), EB1b (At5g62500), and EB1c
(At5g67270). EB1a and EB1b share 78% aminoacid identity
and they are typical members of microtubule plus-end-tracking
proteins. Fused with GFP protein, EB1a and EB1b distinctly
decorate the plus end of cortical and mitotic microtubules (Chan
et al., 2003; Mathur et al., 2003). In contrast, EB1c shows different
localization and seems to have different functions (Bisgrove et al.,
2008; Komaki et al., 2010). It shares only 49% aminoacid identity
with EB1a and EB1b and it is considered to be plant-specific
(Bisgrove et al., 2008). Its aminoacid sequence differs remarkably
at its C-terminal part. EB1a and b possess acidic aminoacid
residues in the C terminal region, while C terminal part of
EB1c contains basic residues encompassing a nuclear localization
sequence. This is consistent with the nuclear localization of
EB1c in interphase and post-cytokinetic cells (Komaki et al.,
2010). Furthermore, the primary sequence of EB1c, unlike EB1a
and EB1b, contains five unique SP motifs and one D-domain
motif suggesting its targeting by protein kinases implicated in
the cell cycle including cyclin-dependent kinases and mitogen-
activated protein kinases (MAPKs) (Samajova et al., 2013). In
animal kingdom, proteins from EB1 family were shown to be
regulated by phosphorylation (Tamura and Draviam, 2012). A
putative interaction between EB1c and MAPKs was recently
shown also in plants (Kohoutová et al., 2015). All plant EB1
proteins decorate mitotic microtubules (Chan et al., 2003; Dixit
et al., 2006), however, solely EB1c becomes actively transported
to the nucleus at the end of cytokinesis (Bisgrove et al., 2008;
Komaki et al., 2010). Single eb1c mutants showed collapsed
spindles and fragmented phragmoplasts (Komaki et al., 2010) and
they exhibited hypersensitivity to microtubule-disrupting drugs
(Bisgrove et al., 2008).

Since EB1 proteins are typical microtubule plus-end-tracking
proteins, all previous studies were focused on the possible
function of EB1c during the cell division where EB1c decorates
mitotic microtubules (Bisgrove et al., 2008; Komaki et al.,
2010; Ho et al., 2011). However, accumulation of EB1c in the
mitotic interphase and post-mitotic nuclei was undermined.
Consequently, we extend the localization studies of EB1c protein
to demonstrate its occurrence and accumulation in the nuclei of
non-dividing mitotic cells but especially in cells of post-mitotic
transition and elongation root zones. Moreover, we present
the first quantitative study of EB1c nuclear content in non-
dividing and post-mitotic cells of different root tissues at different
developmental root zones with special emphasis on transition
zone.

Most of the studies which dissected root anatomy and its
developmental establishment so far were based on roots growing
on the interface of solidified nutrient media under conditions
of uniform seedling illumination (e.g., Ruzicka et al., 2009;
Sliwinska et al., 2012) and only few studies elaborated root
architecture and subcellular organization of soil grown roots
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(e.g., Panteris et al., 2013). Moreover, the microscopic elucidation
of root cellular and tissue architecture was vastly established
with microscopes equipped with horizontal working stages and
spherical aberration-limited working distances (Petricka et al.,
2012). Therefore, experimental conditions which documented
root development in the laboratory setup have been largely
deviating from the natural environment. For this reason we
employed light-sheet microscopy as an excellent tool for near-
physiological, live cell imaging in long-term with the potential to
study dynamic developmental processes using firmly established
protocol for sample preparation and imaging (Maizel et al., 2011;
Sena et al., 2011; Ovecka et al., 2015). With the setup of the
light-sheet microscope used herein it is possible: (a) to mount
seedlings vertically allowing the root to grow along the gravity
vector, (b) to achieve minimal illumination of the root as happens
under natural conditions, and (c) to grow root embedded in solid
medium closely resembling conditions in the soil.

From the technical point of view, the light-sheet microscope
allows minimal exposure of roots carrying GFP-tagged proteins
to phototoxic irradiation while importantly provides the means
for fast and adequate resolution in the three spatial dimensions
(Maizel et al., 2011; Ovecka et al., 2015). This is made possible
by the low excitation laser powers and the relatively high
numerical aperture objectives used for excitation of the sample
and acquisition of the image (Ovecka et al., 2015).

The purpose of the present study is to follow the
developmental correlation between nuclear levels of EB1c
and the organization of the root of Arabidopsis thaliana in
distinct zones and cell files. We did so in living plants which were
imaged under minimally invasive light-sheet microscopy. Thus,
we were able to address and quantify nuclear localization of EB1c
in meristematic, transition and elongation zones and we extend
the observations to three important root tissue layers in all
zones: the epidermis, the cortex and the endodermis, correlating
nuclear size with EB1c expression levels.

MATERIALS AND METHODS

Molecular Methods
Genomic DNA isolated from fresh leaves of 7-days-old
Arabidopsis thaliana (L.) Heynh. (ecotype Columbia) seedlings
was used for amplification of the complete coding region of EB1c
gene together with its upstream promoter region. EB1c promoter
region was identified according to previously published data
(Komaki et al., 2010) and designed using Arabidopsis Sequence
Viewer (http://arabidopsis.org). The promoter sequence pEB1c
was suggested to comprise of 663 base pairs upstream of the start
codon of the EB1c gene. For the cloning, we used Gateway R©

technology. Primers were designed according to manufacturer’s
instructions. Whole genomic fragment was recombined into
pDONR207 Gateway R© vector and subsequently transferred by
LR recombination reaction into the Gateway R© destination vector
pGWB450 designed for C-terminal GFP fusion with kanamycin
resistance for plant selection. All recombinations were confirmed
by sequencing. Expression vector pGWB450::pEB1c::EB1c:GFP
was transformed intoAgrobacterium tumefaciens, strain GV3101.

Transformed Agrobacteria were used for several independent
transformations of Arabidopsis plants (Clough and Bent, 1998;
Davis et al., 2009). Seedlings were selected on kanamycin
(50mg/ml) selection medium to identify T1 transgenic plants.
T1 transformants carrying pEB1c::EB1c:GFP constructs were
checked for phenotype in comparison to control plants. No
phenotypes were discerned and thus the T2 generation of
Arabidopsis plants expressing pGWB450::pEB1c::EB1c:GFP was
harvested and used for further experiments.

Protein Extraction, SDS-PAGE and
Immunoblotting
Twelve-days old Arabidopsis plants expressing EB1c-GFP were
analyzed on fluorescent stereomicroscope Leica MZ FLIII
(Leica Microsystems, Germany) for EB1c-GFP signal. Protein
extraction was carried out from roots of plants expressing
EB1c-GFP and from wild type Arabidopsis thaliana (L.) Heynh.
(ecotype Columbia). Roots were harvested, weighted, flesh frozen
and immediately ground in the liquid nitrogen. Powder was
extracted in extraction buffer (1:1, w/v) (50mM Na-HEPES pH
7.5, 150mMNaCl, 1mMMgCl2.6H2O, 1mMEGTA, 1mMDTT,
1mM NaF) supplemented with protease inhibitors Complete
(Roche, Germany) and phosphatase inhibitors PhosStop (Roche,
Germany). Crude extract was centrifuged 10min, 8000 g at 4◦C.
Resulting supernatant was used for SDS-PAGE and subsequent
western blot analysis. 15µg of total protein was loaded on
8% SDS-PAGE gels followed by immunoblotting with PVDF
membrane and Western blotted with antibody against GFP (anti
GFP rabbit ABCAM AB290) in dilution of 1:2000. Secondary
antibody (goat anti-rabbit, Santa Cruz Biotechnology) was
used in dilution of 1:5000. After incubation in ECL reagents
(according tomanufacturer instructions), immunoreactive bands
were documented using the BioRad ChemiDoc™MP System.

Plant Material and Sample Preparation for
Light-Sheet Imaging
Seeds of Arabidopsis thaliana (L.) Heynh. (ecotype Columbia)
transgenic line expressing pEB1::cEB1c:GFP were surface
sterilized, plated onto solidified ½ MS medium and kept in
4◦C for 4 days. After this period seeds were transferred to
round 90 × 25mm Petri dishes filled with 80ml of ½MS
medium solidified with 0.6% w/v Phytagel, and placed into small
depressions facilitating gravitropic root growth inside solidified
culture medium. Plates were cultivated in culture chamber
horizontally for 2 days at 22◦C, 50% humidity, 16/8-h light/dark
cycle. After germination of seedlings when they were 1-days-old,
they were enclosed by fluorinated ethylene propylene (FEP)
tube with an inner diameter of 1.1mm and wall thickness of
0.2mm (Wolf-Technik, Germany). FEP tubes were carefully
inserted into culture medium to enclose individual seedling
inside. After 24 h seedlings in FEP tubes were removed from the
plate, transferred to the microscope and prepared for imaging
according to established protocol (Ovecka et al., 2015). Seedlings
in FEP tubes were prepared according to an “open system,”
where root is growing in the original Phytagel-solidified culture
medium in the lower part of FEP tube and shoot is growing in the
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upper aerated part of the FEP tube. This approach provides green
parts of seedlings with continuous access to oxygen and allows
growth and development of roots and shoots in the microscope
chamber during long-term imaging experiments (Ovecka et al.,
2015). All experiments and measurements were done on 2-days
old seedlings.

Light-Sheet Microscopy
Developmental live cell imaging was done with the light-sheet
Z.1 fluorescence microscope (Carl Zeiss, Germany), equipped
with W Plan-Apochromat 20×/1.0 NA water immersion
detection objective (Carl Zeiss, Germany) and LSFM 10x/0.2
NA illumination objective (Carl Zeiss, Germany). Seedlings were
imaged using dual-side illumination by a light-sheet modulated
into a pivot scan mode, with excitation laser line 488 nm and
with emission filter BP505-545. Image acquisition was done every
2min in Z-stack mode for a time period of 2–5 h. Scaling of
images in x, y, and z dimensions was 0.228 × 0.228 × 0.477µm.
To prevent the movement of the growing root apex out of the
field of view, images were acquired in two subsequent views
coordinated to each other in y coordinate. Images were recorded
with the PCO.Edge sCMOS camera (PCO AG, Germany) with
the exposure time 25ms.

Measurements, Statistical Analyses, and in

silico Predictions
From images of the whole root acquired using Zen 2014 software
(Carl Zeiss, Germany) subsets of data were created, with defined
x−, y−, and z− dimensions comprising whole volume of several
nuclei from one particular cell file. Several subsets were created
in order to segment nuclei of all cells of particular cell file in
ordered positions from the stem cells surrounding quiescence
center of the root up to visible cell differentiation at the end of
elongation zone. All subsets were transformed to 2D images using
Maximum intensity projection function of the Zen 2014 software.
In all images uniform correction of brightness and contrast
was done before they were exported for image analysis. All
quantitative data were produced with publicly available software
CellProfiler 2.1.1 (http://www.cellprofiler.org; Carpenter et al.,
2006; Lamprecht et al., 2007). Nuclear area from 2D images
that represent surface projection of the nuclear volume (referred
herein as nuclear surface area) was measured as the actual
number of pixels in the manually defined region multiplied
by the pixel area. Mean intensity values were calculated as
the average pixel intensity in the defined region, integrated
intensity values were calculated as the total pixel intensity in
the defined region. Values were subsequently normalized to a
0–1 range using the following formula: xN = (xi-xmin)/xmax-
xmin (where xN = normalized intensity, xi = absolute intensity,
xmin = minimum absolute intensity and xmax = maximum
absolute intensity). Thus, all biological variables within measured
root tips were brought into the comparable proportions and
plant—to—plant differences in the expression of EB1c-GFP were
compensated. Data from 4 individual cell files were collected and
evaluated separately for epidermis, cortex and endodermis from
two independent experiments (two independent roots). Final

statistical data evaluation and plot production was done with
Microsoft Excel software.

Prediction of putative nuclear export sequences was
performed using the NetNES 1.1 server with the accession
numbers of the three Arabidopsis thaliana EB1 isoforms (EB1a,
AT3G47690; EB1b, AT5G62500; and EB1c, AT5G67270) (la
Cour et al., 2004). For protein domain structure illustration,
DOG 1.0 illustrator was used (Ren et al., 2009).

RESULTS

We studied the in vivo subcellular nuclear localization of the
EB1c protein during root development in stably transformed
Arabidopsis thaliana plants. Beside the already published
presence of nuclear localization sequence in EB1c protein
sequence (Komaki et al., 2010), our in silico search using
NetNES 1.1 prediction server (la Cour et al., 2004) revealed the
occurrence of putative nuclear export signals at positions 213L,
215I, 217S, and 218L for EB1c (Supplementary Figure 1). At
the same respect, we compared the other EB1 family members
in Arabidopsis, EB1a and EB1b. NES was not predicted for
EB1b, while for EB1a, there is one prediction at position
193I albeit with a low score over the threshold. We prepared
EB1c:GFP construct driven by its own promoter. The 663 bp
long promoter sequence and the complete coding region of
EB1c gene were cloned using Gateway R© technology into the
binary vector and subsequently transformed into A. thaliana
plants (ecotype Col-0) while T2 generation of plants was used
for experiments. To prove the expression of EB1c-GFP fusion
protein in the plants, we performed SDS-PAGE with subsequent
Western-blot analysis using seedlings expressing EB1c-GFP and
Col-0 as a negative control (Figure 1A). EB1c-GFP protein signal
was clearly detected using anti-GFP antibody at the molecular
mass corresponding to 64 kDa which is the predicted size of
the fusion protein. As negative controls, we used extracts from
untransformed wild-type plants as well as extracts from plants
expressing EB1c-GFP treated only with secondary antibody
(Figure 1A).

Root growth and development require passage of root
cells through successive developmental zones. Large extend
of this process from spatial and temporal point of view
requires special microscopic applications for effective live cell
imaging. Developmental light-sheet microscopy overcomes these
limitations and allows real-time or time-lapse imaging of whole
developing seedlings (Ovecka et al., 2015). We performed live
cell imaging with seedlings growing over a period between 2 and
5 h inside the light-sheet microscope. EB1c-GFP was localized
in nuclei of all non-dividing root cells within the root apex,
with particularly strong expression level in cells of the root
meristematic zone (Figure 1B). General overview of EB1c-GFP
expressing roots revealed zonation of the root apex into different
cell developmental zones, namely into meristematic, transition,
elongation, and differentiation zones (Figure 1B). Seedlings were
prepared and cultivated in cylinders of Phytagel-solidified culture
medium. During imaging over a range of several hours, seedlings
exhibited undisturbed continuous root growth inside of the
microscope (Figure 1C, Supplementary Movie 1). Average root
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FIGURE 1 | Characterization of transgenic Arabidopsis thaliana plants expressing EB1c-GFP driven by EB1c own promoter and localization of

EB1c-GFP. (A) SDS-PAGE followed by western blot analysis using anti-GFP antibody from protein extract of A. thaliana T2 plants expressing EB1c-GFP (lane 1),

protein extract from untransformed Col-0 plants (lane 2), and protein extract from Arabidopsis plants expressing EB1c-GFP immunoblotted only with secondary

antibody (lane 3). (B) General overview of the root tip of 2-days old A. thaliana seedling expressing EB1c-GFP. Average root zonation into individual cell developmental

zones consisting meristematic zone (m), transition zone (t), elongation zone (e), and differentiation zone (d) is depicted. EB1c-GFP was localized in nuclei of root cells,

with particularly strong expression level in cells of the root meristematic zone. (C) Live cell imaging of seedling growing inside of the light-sheet microscope over the

period of 2 h. (D) Localization of EB1c-GFP by light-sheet microscopy in cells of individual root tissue layers, in epidermis (arrow, ep), cortex (arrow, c), endodermis

(arrow, en), central cylinder (arrow, cc), and lateral root cap cells (arrow, lrc). In all imaged tissues, light-sheet microscopy revealed clearly nuclear localization of

EB1c-GFP in root cells. (E) Localization of EB1c-GFP by light-sheet microscopy during mitotic cell division of root cells in the meristematic zone. EB1c-GFP relocated

from G2 stage nuclei to spindle in prophase (p), metaphase (m), and anaphase (a), to phragmoplast at early and late telophase (et, lt), and redistributed back to

reconstructed G1 stage nuclei after cell division. Time progression of the cell division is indicated in min. Scale bar = 50µm in (B,C) and 5µm in (D,E).
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growth rate of 2-days old seedlings expressing EB1c-GFP in the
light-sheet microscope was 1.686 (± 0.721)µm.min−1 (±SD,
n = 6).

Light-sheet microscopy, in addition to time-lapse imaging
of the entire root development, allowed localization of EB1c-
GFP at the cellular and subcellular levels. At the level of cellular
resolution, this method was suitable for visualization not only
surface cells and tissues of the root, like lateral root cap cells and
epidermis, but further allowed visualization of individual cells
from inner tissues of the Arabidopsis root including the cortex,
the endodermis and the central cylinder. In all imaged tissues,
light-sheet microscopy revealed clearly nuclear localization of
EB1c-GFP in root cells (Figure 1D). Subcellular resolution of
the light-sheet microscopy was documented during mitotic cell
division of root cells in the meristematic zone, where EB1c-GFP
relocated fromG2 stage nuclei to mitotic spindles and cytokinetic
phragmoplasts during the respective cell division stages and
finally was redistributed back to reconstituted G1 stage nuclei
after completing cell division (Figure 1E).

The longitudinal developmental zonation of the root apex
of plants expressing EB1c-GFP fusion protein into different
developmental zones was determined in individual cell files of
epidermis (Figures 2A–D, arrows in B and C denote the first
cell of each consecutive zone), cortex (Figures 2E–H, arrows
in F and G denote the first cell of each consecutive zone)
and endodermis (Figures 2I–L, arrows in J and K denote the
first cell of each consecutive zone). The cell arrangement in
the meristematic zone of the epidermis was influenced by
frequent cell divisions rather than by cell elongation (along
longitudinal root axis). This leads to generation of tightly-packed
wide but very short cells, with compressed nuclei (Figure 2A).
Very similar cell and nuclear shapes were observed within
the meristematic zone in the cortex layer (Figure 2E). In the
endodermis nuclei of cells in the meristematic zone appeared
smaller and due to different ratio between cell width and cell
height their shape was not deformed to the same extent as
in the epidermis and the cortex (c.f. Figures 2A,E,I). With
termination of the mitotic activity in the meristematic zone, cell
sizes, and shapes were changing. At the end of the meristematic
zone, nuclei became round and larger in all three layers
(Figures 2B,F,J). Before starting rapid cell elongation, however,
there was a population of cells with short length, as indicated
by short and similar distance between nuclei of individual cells
(Figures 2B,F,J). In addition, they showed reduction in the EB1c-
GFP fluorescence intensity. Based on these characteristics, an
onset of the transition zone placed before rapid cell elongation
could be identified in each cell file of epidermis (Figure 2B),
cortex (Figure 2F), and endodermis (Figure 2J). Cells from the
transition zone of each tissue layer entered subsequently cell
elongation zone, which was indicated by further changes in
the nucleus size, EB1c-GFP fluorescence intensity and apparent
dilatation of distances between neighbor nuclei within the cell
files (Figures 2C,G,K). Rapid cell elongation was connected with
apparent enlargement of nuclei in epidermis (Figure 2D) and
cortex (Figure 2H), changes in nuclear shape in all three tissue
layers (Figures 2D,H,L) and further reduction in EB1c-GFP
fluorescence intensity.

To characterize the distribution of EB1c-GFP in the apex
of Arabidopsis root in detail, we quantified the intensity of
EB1c-GFP nuclear fluorescence in the previously defined root
cell developmental zones (meristem, transition zone, elongation
zone and differentiation zone). The quantitative evaluation of
the EB1c-GFP protein content in interphase nuclei of root cells
was performed in light-sheet images acquired in 4D modes
(encompassing x, y, z, and t dimensions). In individual cell files
of the epidermis, the cortex and the endodermis all interphase
nuclei in order were taken into account, starting from the stem
cell niche region and progressing up to cell elongation before
cells reached the zone of cell differentiation (i.e., as evidenced by
root hair emergence in the root epidermis). In each cell file, the
meristem—to—transition zone border (Figures 2B,F,J) and the
transition zone—to—elongation zone border (Figures 2C,G,K)
were identified. Parameters for identification of particular
borders and range of individual cell developmental zones
included the spatial extent of the cell division, size, and
fluorescence intensity reference values from nuclei of cells in G1
and G2 stages, increase in the nuclear size after termination of
the cell division, and increase in the distance between nuclei of
individual cells in the elongation zone. Thus, all cells in each cell
file were topologically divided into meristematic zone, transition
zone, and elongation zone (Figure 1B).

Values of nuclear surface area and EB1c-GFP mean signal
intensity for quantitative evaluation were plotted against cell
position counted from the stem cells surrounding quiescence
center. Both parameters were measured and evaluated separately
for the epidermis, the cortex and the endodermis. We found
that in all tissues, as cells proceeded from proliferation to
the differentiation, the nuclear surface area increased while
fluorescence intensity of EB1c-GFP signal decreased. This trend
was apparent from quantification of individual cell files of
the epidermis (Figure 3A), the cortex (Figure 3B) and the
endodermis (Figure 3C). In the meristematic zone, actively
dividing cells contained the smallest nuclei exhibiting the highest
EB1c-GFP content. In the transition zone, the mean nuclear
fluorescence intensity of EB1c-GFP was steeply decreased. This
decline in EB1c-GFP fluorescence intensity continued in the
elongation zone while the nuclear area progressively increased
(Figure 3). Cross-correlation of nuclear EB1c-GFP mean signal
intensity of some individual nuclei with their size and shape at
certain position within the cell file revealed negative correlation
between nuclear size and mean EB1c-GFP signal intensity in
the meristematic zone (numbered insets in Figures 3A–C). This
negative correlation trend was stabilized in the transition zone
and the elongation zone of all measured cell files in all evaluated
tissue layers (Figure 3) as evidenced by the continuous decrease
in EB1c-GFP fluorescence intensity with the progressive increase
in nuclear size.

Further, we quantified collectively measured data from several
individual cell files of two independent roots. Data were evaluated
separately for epidermis, cortex, and endodermis. Quantitative
evaluation of nuclear surface area values revealed rather stable
distribution of this parameter in the meristematic zone of
the epidermis. It increased slightly only in meristematic cells
at gradually increasing distances from the stem cell region,
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FIGURE 2 | Shoot-ward developmental zonation in the root apex of transgenic Arabidopsis thaliana plants expressing EB1c-GFP protein. Cell

arrangement and position were assessed in individual cell files of epidermis (A–D), cortex (E–H) and endodermis (I–L). Typical appearance of cells in each tissue layer

with nuclear localization of EB1c-GFP is shown for meristematic zone (A,E,I), at the meristem-transition zone border (B,F,J), at the transition zone-elongation zone

border (C,G,K) and within the elongation zone (D,H,L). Arrows define nuclei of first cell within the transition zone (B,F,J) and first cell within the elongation zone

(C,G,K). Fluorescence intensity of images is presented to the scale recorded during the acquisition of each individual cell type. Scale bar = 5µm.
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FIGURE 3 | Nuclear surface area and nuclear EB1c-GFP mean signal

intensity distribution in root developmental zones of the root apex in

individual cell files. Relationship between nuclear area (blue line) and nuclear

EB1c-GFP mean signal intensity (red line) in respect to cell position counted

from the stem cells surrounding quiescent center in individual cell file of

epidermis (A), cortex (B), and endodermis (C). Values for nuclei in the

transition zone are highlighted by yellow points, which allow distinguishing also

meristematic zone (appearing before the transition zone) and elongation zone

(appearing after the transition zone). Inset images over the lines show

individual nuclei of cells at the actual position, documenting changes in nuclear

shape, size, and mean EB1c-GFP fluorescence intensity. Major vertical axis

(on the left) represents the values for the normalized mean intensity and minor

vertical axis (on the right) represents values for area measurements. Horizontal

axis represents the actual cell position counted from the stem cells

surrounding quiescent center. Data are shown for one representative cell file

from each tissue layer. Interruptions of the curve in the cortex (B) are caused

by presence of dividing cells within the file.

surpassing slightly even the average reference value for the size
of G2 nuclei (Figure 4A). Further recognizable increase in the
nucleus size took place within the transition zone, and dramatic
increase in the elongation zone of epidermis (Figure 4A). Mean
fluorescence intensity of EB1c-GFP in interphase nuclei of
epidermis fluctuated considerably; however, it was high in the
meristematic cells. In nuclei of cells entering the transition zone

mean fluorescence intensity of EB1c-GFP dropped considerably
and in nuclei of elongating cells this drop in mean fluorescence
intensity was dramatic, reflecting the inversely proportional
increase in the nucleus size (Figure 4A).

A similar tendency of stable nuclear size in the meristematic
zone, a gradual increase in the transition zone and a considerable
increase in the elongation zone was recorded also in cell files of
the cortex layer (Figure 4B). Nuclear size in the meristematic
zone did not exceed the reference value for the size of G2
nuclei (Figure 4B). Mean fluorescence intensity of EB1c-GFP in
interphase nuclei of cortex cells was highest in the meristematic
zone. However, it decreased dramatically in the transition zone,
keeping further decreasing in the elongation zone as well
(Figure 4B).

Size of nuclei of endodermal cells in themeristematic zone was
constant, not exceeding the reference value of size measured for
G2 nuclei, showing increase only after passage of meristematic
cells into the transition zone. Size distribution of nuclei in the
transition zone and the elongation zone of endodermis was wider
as in cortex and epidermis, but the general tendency of gradual
nuclear size increase from meristem through transition zone to
elongation zone was maintained also in endodermis (Figure 4C).

Quantitative comparison of nuclear surface area and nuclear
EB1c-GFP mean signal intensity in cell developmental zones of
the root apex thus showed that the expression of EB1c-GFP
decreased along the longitudinal axis of the root apex in all
three measured tissue layers. Highest intensity was measured in
the meristematic zone where cells are actively dividing, while
in the transition zone and further in the elongation zone,
expression levels of EB1c-GFP decreased inversely in relation to
the nuclear area which progressively increased before entering
the differentiation zone.

Reference values for comparison of nuclear surface area
and nuclear EB1c-GFP mean signal intensity in all types of
measured cells from the root apex were recorded from typical
cells of the root meristematic zone, which were present in G1
and G2 stages of mitotic cell division. For safe identification
of nuclei in G1 and G2 stages, we took advantage of long-
term time-lapse imaging of growing root apex in the light-
sheet microscope. Using play-back function we identified and
picked cells just before mitotic division and marked them as G2
cells. Daughter cells derived from mitotic division of these cells
were marked as G1 cells (Figure 1E). We compared obtained
average values of G1 and G2 nuclei with average values of all
measured nuclei from non-dividing cells of meristematic zone,
and all cells of transition and elongation zones for nuclear surface
area (Figure 5A) and nuclear EB1c-GFP mean signal intensity
(Figure 5B). This comparison was done separately for epidermis,
cortex and endodermis. Average values of nuclear surface area
of meristematic cells corresponded well with reference values
from G1 and G2 nuclei. Most importantly, the average size of
nuclei in the meristematic zone did not exceed the size of G2
nuclei (Figure 5A). Size of nuclei in transition zone as well as in
elongation zone was significantly higher. Significant differences
in size of nuclei were also observed between transition zone
and elongation zone (Figures 5A,C). Similarly, average values
of nuclear EB1c-GFP mean signal intensity of meristematic
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FIGURE 4 | Nuclear surface area and nuclear EB1c-GFP mean signal intensity in cells of different tissues along diverse developmental root zones.

Average values of nuclear surface area (blue line) and EB1c-GFP mean signal intensity (red line) plotted against cell position counted from the stem cells surrounding

quiescence center. Data from 4 individual cell files were collected and evaluated separately for epidermis (A), cortex (B), and endodermis (C) from two independent

roots. The transition zone is highlighted in pink color. Dashed red lines for average mean intensity and dashed blue lines for average nuclear area of G1 and G2 nuclei

are indicated as reference values. Major vertical axis (on the left) represents the values for the normalized mean intensity and minor vertical axis (on the right)

represents values for area measurements. Horizontal axis represents the actual cell position counted from the stem cells surrounding quiescence center. Because

number of cells in cell files is not the same, data from individual cell files in average graphs were aligned according to their meristem-to-transition zone borders.
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FIGURE 5 | Reference values of nuclear area and nuclear EB1c-GFP mean signal intensity in G1 and G2 stage meristematic cells as compared to

post-meristematic cells. Average nuclear surface area (A) and average nuclear EB1c-GFP mean signal intensity (B) in G1 and G2 stage of cell cycle were

compared with average values of the same parameters of non-dividing cells from meristem (M), transition zone (T), and elongation (E) zone in epidermis, cortex, and

endodermis. Comparison of average nuclear surface area and average nuclear EB1c-GFP mean signal intensity values in individual cell developmental zones among

individual tissue layers (C). Different letters represent statistical significance according to One-way ANOVA test at P < 0.05.

cells corresponded well with reference values from G1 and G2
nuclei, and there were found significantly lower values of nuclear
EB1c-GFP mean signal intensity in cells of transition zone and
elongation zone in comparison to cells of meristematic zone
and reference G1 and G2 nuclei (Figures 5B,C). From these
data we can conclude that both nuclear size and EB1c-GFP
fluorescence intensity showed significant differences between
cells of meristematic zone, transition zone and elongation zone,
and supported the correct classification of cells of the root apex
into three distinct developmental zones.

From the data presented above it is apparent that there
might be a high degree of correlation, positive or negative,
between nuclear size and EB1c-GFP expression levels. We
pursued this idea by quantitative correlation analysis plotting
nuclear surface area, mean signal intensity (mean values per
object area) and integrated signal intensity (sum values per

object area) to clarify, whether the decrease of EB1c-GFP
mean signal intensity during passage of root cells through cell
developmental zones corresponds to the increase of nuclear
surface area or not. This comparison was done separately for
epidermal, cortical, and endodermal cells. In the meristematic
zone, we observed the highest variability of the nuclear EB1c-
GFP mean fluorescence signal intensity (Figures 3, 4) and thus
not surprisingly, this zone exhibited the lowest correlation
between nuclear surface area and nuclear EB1c-GFP mean
signal intensity (Figure 6A). Measurements from transition zone
and elongation zone were better correlated with prevalent
negative values indicating that the decrease of EB1c-GFP mean
signal intensity in the transition zone and the elongation zone
corresponded mainly to increase of nuclear surface area and
not to decline of EB1c-GFP expression levels. This suggests
prior regulation of EB1c protein in the meristematic zone where
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FIGURE 6 | Quantitative correlation analysis of nuclear surface area, nuclear EB1c-GFP mean signal intensity, and nuclear EB1c-GFP integrated

signal intensity in diverse tissues and developmental root zones. Separate graphs presenting correlation between nuclear surface area and nuclear EB1c-GFP

mean signal intensity (A), nuclear surface area and nuclear EB1c-GFP integrated signal intensity (B), and nuclear EB1c-GFP mean signal intensity and nuclear

EB1c-GFP integrated signal intensity (C). Data from 4 individual cell files were collected and evaluated separately for epidermis, cortex and endodermis from two

independent roots. Data are plotted separately for meristem (M, blue dots), transition zone (T, red dots), and elongation zone (E, green dots). Pearson’s correlation

coefficients (R) are shown for each individual cell developmental zone of the root apex.

cells are actively dividing. Most importantly, values from these
three cell developmental zones were separated, albeit partially
overlapping at their borders in the respective correlation scatter
plots (Figure 6A). This observation proves the regular passage of
cells from one developmental zone to another. Similar correlation

analysis between nuclear surface area and nuclear EB1c-GFP
integrated signal intensity revealed again the partial separation
of measurements from meristematic zone, transition zone and
elongation zone in all three measured tissue layers, although
lower correlation coefficients and higher variability, especially
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in epidermis and endodermis, were apparent (Figure 6B). The
highest intensity of EB1c-GFP fluorescence signal was measured
in the meristematic zone, however, it was largely fluctuating
(Figure 4). In accordance with this fact, the correlation between
nuclear EB1c-GFP mean signal intensity and nuclear EB1c-GFP
integrated signal intensity was lowest in the meristematic zone
(Figure 6C). It could reflect cell cycle-dependent regulation of
EB1c in the zone of mitotically-active root cells. In the transition
zone and the elongation zone expression of EB1c-GFP decreased
opposite to the increased nuclear area, observation which was
corroborated by the higher positive correlation coefficients for
comparing nuclear EB1c-GFP mean signal intensity and nuclear
EB1c-GFP integrated signal intensity (Figure 6C).

DISCUSSION

Development of Environmental Imaging in
Light-Sheet Microscope
The growing plant root system is physically challenged in its
natural soil environment. Root growth is strongly affected by
the mechanical properties of the soil causing direct changes
in root cell length and width compared to experimentally
grown plants (Bengough et al., 2006; Panteris et al., 2013). This
may also indirectly affect the shoot growth (Jin et al., 2015).
Conversely, in the conventional experimental setup, seedlings
are mostly cultivated on air—solid medium interface which
is significantly differing from the physical properties of the
soil. Such a setting may cause the misinterpretation of the
results, however, these cultivation methods are widely used and
therefore widely accepted. Mimicking of the soil conditions in
experimental environment is a challenging task (Okamoto et al.,
2008). In the light-sheet microscopic setup, the seedling root
is growing embedded in a solid agarose matrix and thus root
growth is challenged by the rigidity of the medium, as happens
during growth in the soil.

Another advantage of the light-sheet microscope is the
ability to carry out long-term experiments at near-physiological
conditions allowing root recordings with minimal stress (Maizel
et al., 2011; Ovecka et al., 2015). By performing live cell imaging
of 2-days old Arabidopsis seedlings for 2–5 h inside the light-
sheet microscope, we demonstrate that by using light-sheet
microscopy, plants grow in healthy conditions and thus they
might be studied at the subcellular level withminimal limitations.
Additionally, the light-sheet setup allowed for fast and up to some
extent aberration free imaging at a considerable depth of the root,
providing the opportunity to quantify nuclear levels of EB1-GFP
not only for epidermis, but also for cortex and endodermis.

Nuclear Localization of EB1c
EB1c, the distinct subtype from EB1 family, is specifically present
in vascular plants. It contains at its unique C-terminal sequence
two composite motifs that serve as nuclear localization sequence
(Komaki et al., 2010). Besides, our in silico search showed putative
nuclear export signals at positions 213L, 215I, 217S, and 218L for
EB1c. These findings suggest that EB1c is not tightly enclosed in
the nucleus and that it may follow a canonical routine of active

nucleocytoplasmic shuttling. Thus, EB1c cytoplasmic localization
during mitosis and cytokinesis might be independent to nuclear
envelope breakdown. The observation of EB1c localization in
nuclei of post-mitotic, non-dividing cells such as those of the
transition zone and the elongation zone, suggests that it might
have a nuclear function. Thus, the visualization of nuclear EB1c-
GFP in cells up to the differentiation zone suggests that EB1c
might not be exclusively necessary for mitotic progression but
rather have a broader role.

EB1c localization and function was previously documented in
dividing cells of Arabidopsis thaliana (Dixit et al., 2006; Bisgrove
et al., 2008; Komaki et al., 2010; Ho et al., 2011). In all the
above studies, EB1c was studied in the context of cell division
and studies were focused on the localization of EB1c at the
microtubule plus ends with special emphasis on phragmoplast.

However, the evident interphase nuclear localization and
function of EB1c was not systematically addressed in these former
studies. For this reason we surveyed the nuclear occurrence
of EB1c not only in the interphase cells of the meristematic
zone, but also in post-mitotic non-dividing cells of the root
transition and elongation zones. Measuring nuclear parameters
revealed clear distinction among root developmental zones and
correlated them with specific patterns of EB1c accumulation
in the nuclei of different tissues and in both meristematic
and post-meristematic root zones. Thus, EB1c-GFP can be
considered a reliable physiological nuclear marker for root
developmental studies including post-meristematic cells. With
the help of previously published data about longitudinal root
zonation (Dello Ioio et al., 2007; Baluška and Mancuso, 2013;
Panteris et al., 2013), we identified particular zones inArabidopsis
plants expressing EB1c-GFP. As expected, EB1c-GFP signal was
present in all nuclei across the studied root zones and tissues.
We thus employed correlative quantitative studies monitoring
developmental fluctuations in EB1c-GFP expression levels with
the trend of nuclear size increase which is observed in the
shoot-ward root growth gradient. Inversely to the nuclear
area increase, expression of EB1c-GFP showed root-ward trend
within all tissues along the longitudinal root axis with the
highest intensity peak in the meristematic zone. The highest
expression level and the lowest correlation between EB1c-GFP
mean intensity and nuclear surface area in the meristematic zone
are in accordance to previously published data about the role
of EB1c in the cell division progression. eb1c mutants showed
defects in spindle pole alignment, chromosomal segregation
and phragmoplast orientation, however, the organization of
the preprophase band was not impaired (Komaki et al.,
2010). Nevertheless, EB1c might have a dual function in
meristematic cells, depending on its subcellular localization (one
on microtubule plus ends during mitosis and another one in
nuclei during interphase).

More importantly we demonstrate for the first time, an
evident persistent localization of EB1c in the nuclei of post-
meristematic, non-dividing root cells residing within the
transition and the elongation zones. As such this is the first
study using quantitative advanced light-sheet microscopy to
follow nuclear changes in correlation to the nuclear accumulation
of a native cytoskeletal protein (EB1c was expressed under
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its native promoter) during development of the primary root.
There seems to be a turning point for the expression of EB1c
protein in the transition zone, where division is ceased while
differentiation and endoreduplication are progressing. From
this developmental point, expression of EB1c seems to be
mechanistically related to increase in cell nucleus size which
is carried out by endoreduplication. What exactly happens at
the transition point and how switch from mitotic division to
endoreduplication occurs is not well documented (del Pozo et al.,
2006; Ishida et al., 2009, 2010; Adachi et al., 2011; Heyman et al.,
2011; Doskocilova et al., 2013).

Our analyses highlight the nuclear localization of EB1c,
opening in this way the hitherto unexplored field with
several possible questions. According to its size (37 kDa)
native EB1c is within the limits of passive diffusion through
the nuclear pore (Brandizzi et al., 2012). However, we have
never observed cytoplasmic localization of GFP-tagged EB1c
in interphase cells suggesting that somehow it is tethered to
the interphase nucleus. Whether this tethering is of functional
significance or it serves storage purposes extends beyond
the scope of the present manuscript. Nevertheless, it was of
interest to see that EB1c is strongly predicted to interact
with essential cell cycle check point proteins with nuclear
localization during interphase. Using the STRING v10 protein
interaction database (Szklarczyk et al., 2015) with a high
stringency cutoff (0.9) we found putative interactors of EB1c,
that include MAD2 (spindle assembly checkpoint protein
with nuclear localization during interphase and kinetochore
localization during mitosis; Ding et al., 2012), BUB3 (cell cycle
arrest protein; Paganelli et al., 2015), and BUBR1 (checkpoint
serine/threonine-protein kinase; Paganelli et al., 2015). Whether
EB1c interacts with the above checkpoint proteins and/or
other nuclear proteins and whether the nuclear presence of
EB1c is of any functional significance are matters under
investigation.
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Supplementary Figure1 | Predictions of putative nuclear export sequences

in EB1a/EB1b (A) and EB1c (B) proteins using the NetNES 1.1 server (la

Cour et al., 2004). (A) Analysis of EB1a and EB1b proteins showed one putative

NES at the position 193I in EB1a protein; however, the score is low over the

threshold. Main domains are marked at the DOG protein model (Ren et al., 2009).

(B) Analysis of EB1c protein showed four putative NES at the positions 213L,

215I, 217S, 218L. Main domains, D-motif and putative nuclear localization

sequence are marked at the DOG protein model of EB1c. NN, neural network

algorithm; HMM, Hidden Markov Model algorithm; NES score, combination of NN

and HMM algorithms; CH, calponin homology domain; EBH, end binding

homology domain; D, D domain (serves as a platform for interaction with MAPK).

Supplementary Movie 1 | Root growth of Arabidopsis thaliana seedling,

expressing EB1c-GFP, observed by light-sheet microscopy. Root of 2-days

old plant was recorded for a time period of 5 h. Movie was produced from

time-lapse image acquisition of every 2min and is presented in the speed of

14 fps.
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