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The biocontrol effect of the non-pathogenic Fusarium oxysporum strain CS-20 against
the tomato wilt pathogen F. oxysporum f. sp. lycopersici (FOL) has been previously
reported to be primarily plant-mediated. This study shows that CS-20 produces
proteins, which elicit defense responses in tomato plants. Three protein-containing
fractions were isolated from CS-20 biomass using size exclusion chromatography.
Exposure of seedling roots to one of these fractions prior to inoculation with pathogenic
FOL strains significantly reduced wilt severity. This fraction initiated an ion exchange
response in cultured tomato cells resulting in a reversible alteration of extracellular pH;
increased tomato chitinase activity, and induced systemic resistance by enhancing PR-
1 expression in tomato leaves. Two other protein fractions were inactive in seedling
protection. The main polypeptide (designated CS20EP), which was specifically present
in the defense-inducing fraction and was not detected in inactive protein fractions,
was identified. The nucleotide sequence encoding this protein was determined, and
its complete amino acid sequence was deduced from direct Edman degradation (25
N-terminal amino acid residues) and DNA sequencing. The CS20EP was found to be
a small basic cysteine-rich protein with a pI of 9.87 and 23.43% of hydrophobic amino
acid residues. BLAST search in the NCBI database showed that the protein is new;
however, it displays 48% sequence similarity with a hypothetical protein FGSG_10784
from F. graminearum strain PH-1. The contribution of CS20EP to elicitation of tomato
defense responses resulting in wilt mitigating is discussed.

Keywords: F. oxysporum strain CS-20, Fusarium wilt of tomato, biogenic elicitor, cysteine-rich proteins, induced
resistance, biocontrol
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INTRODUCTION

The vascular wilt pathogen Fusarium oxysporum f. sp. lycopersici
(FOL) is one of the most destructive pathogens of greenhouse
and field grown tomatoes (Benhamou et al., 1989; Fravel et al.,
2003b; Anitha and Rabeeth, 2009; Kaur et al., 2010). Integrated
protection against Fusarium wilt includes biological control as
an important alternative or component of disease management.
This pathogen can be controlled by various microorganisms
including nonpathogenic strains of F. oxysporum, which are used
individually or together with soil bacteria (Fravel et al., 2003b;
Silva and Bettiol, 2005; Alabouvette et al., 2009). As with other
microbial agents, nonpathogenic F. oxysporum strains employ
several modes of action contributing to their biocontrol activity
and the modes may vary depending on the strain or environment
(Fravel et al., 2003b; Alabouvette et al., 2009). For instance,
main mode of action of F. oxysporum strains C5 and C14 is
competition for nutrient sources (Mandeel and Baker, 1991).
Well-documented as a protective agent, strain Fo47 inhibits spore
germination and germ tube growth of the pathogen (Larkin and
Fravel, 1999; Olivain et al., 2006). Strain Fo47 also controls FOL
by priming of six genes involving in tomato defense responses
(Aime et al., 2013). Another nonpathogenic F. oxysporum strain
CS-20 does not affect the pathogen directly, but involves plant-
mediatedmode of action and functions primarily by inducing the
disease resistance (Larkin and Fravel, 1999; Panina et al., 2007).

Resistance in plants can be induced by general or/and
specific elicitors, which are widely present in both plant
pathogenic and beneficial microorganisms. These elicitors can
be proteins, peptides, glycoproteins, lipids, oligosaccharides, or
polysaccharides. As signaling molecules, elicitor and mediator
proteins capable of triggering plant defense responses play often
an important role in development of SAR or ISR caused by fungi
that control diseases in various plants. For instance, proteins with
enzymatic functions, hydrophobines or small avirulence proteins
from Trichoderma strains elicit an array of plant defense reactions
against bacteria and fungi damaging on cucumber, tomato, maize,
cotton, and tobacco (Hanson and Howell, 2004; Djonović et al.,
2006; Seidl et al., 2006; Hermosa et al., 2012; Freitas et al., 2014;
Ruocco et al., 2015). Discovery of proteinaceous elicitors provide
new potential tools for crop pathogen control by ecologically
sound disease management strategies, including expression of
the elicitor genes in transgenic plants (Islam, 2006; Kromina and
Dzhavakhiya, 2006).

The strain CS-20 considerably reduces wilt incidence on
tomato, as well as on muskmelon and basil. It is effective in sandy,
loamy and heavy clay soils, and is able to protect susceptible and
resistant tomato cultivars against all three races of the pathogen
as well as multiple pathogenic strains of each race (Larkin and
Fravel, 1999, 2002; Larkin et al., 1999). These properties make
CS-20 very promising as an anti-wilt agent. Knowledge of the
modes of action may provide avenues to expand the use of
this biocontrol agent. Previous research that was done to clarify
mechanisms underlying the plant-mediated biocontrol effect of
CS-20 was focused on identification and characterization of
genes related to its biocontrol ability to identify differences in
gene regulation between CS-20 and pathogenic FOL isolates

(Fravel et al., 2003a, 2007, 2008). The work reported here
was undertaken to further clarify the plant-mediated mode of
action of CS-20 by determining its ability to produce elicitors
of defense responses, which are associated with local and/or
systemic resistance and result in reduction of wilt severity on
tomatoes.

MATERIALS AND METHODS

Production of F. oxysporum CS-20
Biomass, Isolation of Fungal Metabolites
by Extraction with Buffer Followed by
Sephadex Gel Filtration
Strain CS-20 was cultivated in 750 ml Erlenmeyer flasks with
100 ml of liquid Czapek’s medium on an orbital shaker at
220 rpm and 25◦C in the darkness for 3 days. Fungal biomass
was harvested by vacuum filtration through sterile Miracloth,
washed with a threefold volume of sterile distilled water and
ground into a fine powder under liquid nitrogen. The powdered
biomass was extracted by stirring in 0.05 M sodium phosphate
buffer, pH 6.0 with 1 M KCl for 45 min at 4◦C (3 ml of the
buffer per 1 g air-dried biomass). The homogenate was clarified
by centrifugation at 3000 × g for 30 min at 4◦C. The pellet
was discarded, and supernatant was centrifuged at 15000 × g
for 25 min at 4◦C. A double volume of saturated (NH4)2SO4,
was added to the supernatant. After overnight incubation at 4◦C,
the precipitate was separated by centrifugation at 15000 × g for
10 min and dissolved in a minimal volume of double distilled
water (ddH2O). The dissolved precipitate was either subjected to
ultrafiltration (see below) or loaded on a gel filtration column
(5 cm × 32 cm) with Sephadex G-50 calibrated against Blue
Dextran with molecular weight of 2000 kDa. The elution process
was monitored by spectrophotometry at 280 nm. Fractions
eluted with ddH2O (2 ml/min × cm2) were ultrafiltrated and
assayed for wilt-reducing activity as described below. Active
fractions that eluted in a volume of Blue Dextran and contained
high-molecular weight metabolites (HMWM) were combined,
lyophilized and used in tests for in vitro toxicity, and further
chromatographic separation followed by plant protection and
defense response assays.

Extraction of Fungal Biomass with
Organic Solvents
Extracts with 70% aqueous methanol or a chloroform-methanol
mixture (1:1) were obtained by shaking the powdered biomass in
these solvents for 40–50 min at 4◦C (Dorofeev et al., 2001). The
solvents were removed from the extracts on a rotary evaporator.
Residues were solubilized in ddH2O and freeze-dried.

Ultrafiltration
Water-solubilized preparations of the extracts as well as fractions
purified by gel filtration were passed through 5 kDa-cut-off
membranes (Ultracel

R©
- NMWCO5K). Ultrafiltration was carried

out using Amicon
R©
Ultra-15 Centrifugal Filter Units (Millipore).

After centrifugation at 4000 × g for 15 min, permeates were
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collected. Retentates under the membrane were triply washed
with ddH2O using a volume equal to the volume of the initial
extract. The washed retentates were collected for analyses. To
nullify an accompanying concentration effect of ultrafiltering and
compare specific anti-wilt activity of HMWMand low-molecular
weight compounds, the retentate volumes were adjusted to the
volumes of the corresponding permeates. HMWMsolutions were
sterilized by passing them through a 0.22μmMillipore filter prior
to use.

HMWM Testing for in Vitro Toxicity
Against Pathogenic FOL Strains
Plant pathogenic FOL strains F37 and Fot3 were grown at 25◦C
for 7–10 days on potato dextrose agar (PDA). To prepare spore
suspensions, 5 ml of sterile ddH2O (sddH2O) were added to
the cultures and the culture surface were gently rubbed with
an inoculation loop. The suspension was filtered through a
sterile cotton to remove mycelium and centrifuged at 3000 g
for 15 min. Conidia were re-suspended in and diluted with
solutions of HMWM purified by gel filtration (0.5 mg of the
lyophilized preparation perml of ddH2O) to a final concentration
of 106conidia/ml. After hour-long incubation, 0.5 ml of the
suspension was uniformly pipetted on glass slide covered with
thin layer of 1% water agar. The slides were placed on moistened
paper filters in Petri dishes. Germination was estimated after
overnight incubation in the dark at 25◦C by counting the
number of germinated spores at 160× magnification. The
average percentage germination relative to control (spores that
germinated in sddH2O) was calculated for 300 spores in each
treatment.

Lyophilized HMWM obtained using gel filtration were
dissolved in a minimal volume of sddH2O and mixed with
molten Czapek agar at 40◦C to result in a final concentration of
0.5 g/ml, which was immediately poured into 6 cm diameter Petri
dishes. Agar disks of F73 or Fot3 mycelia (5 mm in diameter)
cut from the growing edge of PDA cultures were placed to the
center of each plate with Czapek solidified agar. Three plates with
the HMWM-augmented medium and three without HMWM
(control) were inoculated with each strain. Colony diameters
were measured after 6 days of cultivation in the dark at 25◦C.
Conidial germination and colony growth tests were repeated
three times with newly obtained HMWM preparation in each
independent experiment.

Preparative Size-Exclusion
Chromatography of HMWM
High-molecular weight metabolites isolated by gel filtration on
Sephadex G-50 was lyophilized, dissolved in minimal volume
of sddH2O, and guanidine-HCl was added for a complete
solubilization of a water-undissolved residue. The solvent was
centrifuged at 14000 × g for 10 min, the supernatant was
separated by size-exclusion chromatography on a HiPrep26/60
Sephacryl S-400 HR column (GE Healthcare) equilibrated with
sddH2O and held at 4◦C. Fungal metabolites were eluted with
freshly prepared ddH2O at a flow rate of 0.5 ml/min (10 min

a 5-ml fraction) and detected at 280 nm. The collected 5-
ml fractions were combined into seven fractions I–VII (see
Figure 3). All samples except fraction VII (guanidine-HCl) were
tested for ability to protect tomato seedlings. Absorption spectra
of the tested fractions were recorded on a Hitachi U-3210
spectrophotometer (Hitachi, Tokyo, Japan) in the range of 180–
320 nm. Fractions III, IV, and V with an UV-spectra typical for
proteins and the absorption maximum at 214 nm were further
analyzed by electrophoresis in 15% SDS-PAAG with or without
mercaptoethanol (ME) followed by Coomassie staining.

Plant Protection Assay
Four-week-old tomato plants (cv. Volgogradsky, 10–15 equal-
sized seedlings per treatment) grown in pots with disinfected
sand under control conditions (Shcherbakova et al., 2011)
were gently removed from the substrate, and their roots
were thoroughly washed with freshly prepared ddH2O, and
then with sddH2O. Lyophilized samples that were tested for
protective activity were dissolved in sddH2O. The seedlings
were placed in these solutions to cover the roots but not
the leaves. Control seedlings were immersed in sddH2O.
After 2 days incubation at a room temperature under aseptic
conditions, seedlings exposed to the tested samples and a
portion of non-exposed seedlings were inoculated by a spore
mixture of two pathogenic FOL strains F37 and Fot3 with
final concentration of 106 conidia/ml as described previously
(Shcherbakova et al., 2011). After 2 days incubation with the
pathogen, infected seedlings as well as non-inoculated control
seedlings were re-planted and grown for 15 or 21 days. The
wilt symptoms on inoculated tomatoes were assessed visually.
Index of the disease for each individual plant was determined
using a five-point rating scale (0 = healthy plants, 1 = 25%,
2 = 50%, 3 = 75% wilt severity, and 4 = dead plants).
In some experiments, the disease severity (R, %) were also
calculated by an appropriate formula (Shcherbakova et al.,
2011).

Protein Digestion Assay
Samples of the protein-containing fractions isolated by size-
exclusion chromatography were treated with proteinase
K (Promega, USA) following a protocol recommended
by the manufacturer for native protein cleavage1. Briefly,
the samples were dissolved in 50 mMTris-HCl buffer,
pH 8.0; proteinase K was added into these solutions to a
final concentration of 100 μg/ml; co-incubation with the
enzyme was carried out at 37◦C for 2 h; and the reaction was
inhibited by 5 mM phenylmethylsulfonyl fluoride (PMSF).
Biocontrol potential of the treated fractions was assessed as
above except that control seedlings were exposed to not only
water but also to 50 mM Tris-HCl amended with proteinase
and PMSF at the same concentrations. Two independent
experiments were carried out, each treatment was done in
triplicate.

1http://worldwide.promega.com/resources/protocols/
product-information-sheets/n/proteinase-k-protocol
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Methods for Assessment of Elicitor
Activity and Induced Plant Defense
Responses
Extracellular Alkalinization Assay
Tomato cell (lines β and γ) were grown in Murashige and Skoog
medium (4.4 g/liter) at pH 5.5, supplemented with sucrose (3%),
myo-inositol (2.78 mM), α-naphthlaneacetic acid (5.4 μM) and
n-benzyladenine (1.0 μM). Suspension cultures were maintained
at a constant temperature (25◦C) in the dark on an orbital shaker
NewBrunswick E-25R at 140 rpm and sub-cultured every 10 days
by the addition of 8 ml of cell suspension to 60 ml of fresh
complete medium. After 5–7 days, cells in the exponential growth
phase were used in assays according to method developed by
Felix et al. (1993). Portions of the suspension (8–10 ml) were
transferred in 30 ml vials, and then equilibrated for 1–1.5 h at
25◦C and 150 rpm on a shaker ELMI S-3.02 (ELMI Ltd.) before
treatments were applied. Aliquots of 50–200 μl from the sterile
ddH2O-dissolved lyophilized protein fraction V were added to
cells, and changes in extracellular pH were monitored with time
by using a universal pH-meter ZV-74 (ZIP, Russia) with an
Orion semimicro pH electrode (Orion, USA) connected to a Cole
Parmer recorder (USA).

Chitinase Activity Analysis
Root extracts of tomato seedlings were prepared as described by
Pozo et al. (1998) except that 200 mM sodium phosphate buffer,
pH 7.0 was used for extraction, and supernatants of centrifuged
homogenates were concentrated by ultrafiltration. The chitin
azure test described by Thompson et al. (2001) was applied to
measure enzymatic activity in the extracts.

Tomato PR1 Gene Expression Analysis
Seventy tomato seedlings were grown to the fourth true leaf
stage at 27–28◦C, 150 μE m−2 s−1 (16-h day period) and 60%
relative humidity under aseptic conditions. Samples of second
and third leaves of 10 seedlings were immediately frozen in
liquid nitrogen (they are referred to as intact leaves). Thirty
seedlings were placed in an aqueous solution of the freeze-
dried protein-containing fraction V (200 μg/ml, 9 ml per each
seedling) to cover their roots. For the control treatment, 30
seedlings were immersed in sddH2O (9 ml a plant). After
24 h of incubation under above conditions, samples of second
and third leaves from 10 seedlings, which roots were treated
with the fraction V, and from 10 control seedlings were
harvested and immediately frozen in liquid nitrogen. Twenty
remaining treated and 20 remaining control seedlings were
inoculated with the pathogen by root soaking in a sterile spore
suspension (see above). After a 48 h-inoculation period, leaf
samples from 10 seedlings pre-exposed to the tested fraction
as well as from 10 control those were collected and frozen
in liquid nitrogen. All leaf samples were stored frozen at
−70◦C until RNA extraction. The remaining 20 pathogen-
inoculated seedling (10 pre-treated with fraction V plus 10
water-treated ones) were transported to 50% Knop solution
and kept for next 5 days to monitor development of wilt
symptoms.

Expression of PR-1 in the sampled leaf tissues was investigated
by semi-quantitative RT-PCR (qRT-PCR). Total RNA were
isolated with Trizol RNA prep 100 reagent (ISOGENCo., Russia),
treated with DNAse (DNAse I, 1 U/μliter, 1000 units, Fermentas,
Lithuania) and reverse transcribed using a RevertAidTM, First
Strand cDNA Synthesis Kit (Fermentas, Lithuania). Tomato PR-
1-specific primers (forward, 5′ TCT TGC GGT TCA TAA C 3′)
and - (reverse, 5′ CCAGTTGCCTACAGGATCATA 3′), which
flanked a common conserved sequence in genes encoding family
of tomato PR-1 proteins, were synthesized by Syntol Co. (Russia)
to amplify a PR-1 fragment of 364 bp in size. A housekeeping
β-tubulin gene used as a constitutively expressed endogenous
control was amplified with the specific primers F-4056 and R-
4057 (expected product of 610 bp in size). The reaction mixture
consisted of 1xTaq buffer (with ammonium sulfate), 0.2 M of
each dNTPs, 2 mM MgCl2, 0.5 pmol of each primer, 0.1 U
Taq polymerases, and 50 ng of the first strand cDNA. The
amplification program consisted of 35 cycles (20 s at 94◦C, 20 s at
54◦C, and 20 s at 72◦C) and 30 cycles (40 s at 94◦C, 40 s at 58◦C,
and 40 s at 72◦C) for PR-1 and β-Tubulin fragments, respectively.
In both cases, the amplification was initiated with denaturation
for 4 min at 94◦C, and was terminated with a 10 min final step
at 72◦C. The PCR products were separated and visualized by
electrophoresis in 1.5% agarose containing ethidium bromide
(0.5 μg/ml), and results of PT-PCR were scanned and quantified
by ImageJ software. The ratio of indications obtained for PR-
1 and β-Tubulin bands was calculated for each seedling, and
the level of PR-1/β-Tubulin expression was averaged for each
treatment. Two independent experiments were carried out.

Methods Used for Identification of a
CS-20 Elicitor Protein
HPLC of Proteins Isolated from HMWM
Protein-containing samples III, IV, and V, each sample
individually, were pooled after the size-exclusion
chromatography of five HMWM preparations independently
isolated from CS-20 biomass and concentrated on a SpeedVac
rotary concentrator to 2ml. The concentrates were supplemented
with guanidine-HCl and analyzed by reversed-phase HPLC (RF-
HPLC) on an Aquapore C8 RP300 column (4.6 mm × 100 mm).
Proteins were eluted with a 60-min linear acetonitrile gradient
(10–60%) in 0.1% trifluoroacetic acid at a flow rate 0.7 ml/min
and detected spectrophotometrically at 214 nm.

Protein Molecular Mass Determination and
N-terminal Sequencing
The molecular weight of proteins discovered during RF-HPLC
were evaluated by MALDI-TOF MS (Ultraflex MALDI-TOF-
TOF mass spectrometer, Bruker Daltonics, Bremen, Germany).
Calibration was performed using a ProteoMass peptide and
protein MALDI-MS calibration kit (mass range 700–66 000 Da;
Sigma–Aldrich). Molecular masses were determined in linear and
reflector positive-ion mode. The samples prepared by the dried-
droplet method with α-cyano-4-hydroxycinnamic acid (Sigma–
Aldrich) as a matrix (10 mg/ml of 50% acetonitrile with 0.1%
trifluoroacetic acid).
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N-terminal amino acid sequences of the protein specific
elicitor fraction V were determined by automated Edman
degradation on a model 492 Procise sequencer (Applied
Biosystems, Foster City, CA, USA).

Total RNA Isolation and cDNA Synthesis
Total RNA was extracted from freeze-dried fungal mycelium
with TRIZOL reagent (Invitrogen, USA) according to
the manufacturer’s protocol. The reverse transcription
reaction was carried out in GNOM thermostat (DNA-
technology, Russia) using RevertAid Premium First Strand
cDNA Synthesis Kit (Thermo Scientific, USA) according to
manufacturer’s instructions. The oligonucleotides containing
(dT)18 with the adapters (dT)18AdLo and (dT)18AdLo2
(Ryazantsev et al., 2014) were used to initiate the first
cDNA strand. Concentration of cDNA was estimated
using NanoVue spectrophotometer (GE HealthCare, USA).
Before adding to a PCR mix, cDNA samples were diluted to
50 ng/μl.

Rapid Amplification of cDNA Ends (3′ RACE)
3′ RACE was carried out in TERTSIK thermal cycler (DNA-
technology, Russia) using the following reaction mix (total
volume 35 μl): 3.5 μl 10x PCR buffer (750 Tris-HCl, PH 8.8;
200 MM ammonium sulfate; 0.1% Tween-20), 0.5 MM each
of dNTP, 7 MM of primers, 2.5 units of Taq-polymerase and
3 μl of cDNA solution. The oligonucleotide pairs AdLo2-CS20F
(CS20F: AARTGYGAYWSNGGNTGYTAYYTNAARGT) for the
first round and AdLo-CS20F1 (CS20F1: GGNTGYTAYYTNAA
RGTNTGYGAYTGYAGRAA; for AdLo and AdLo2 sequences
see Ryazantsev et al., 2014) for the second round were applied
(all oligonucleotides synthesized by Evrogen JSC, Russia).
Properties of primers were estimated using the Oligo 6.71
program. The following optimized universal profile has been
used for PCR amplification: 93◦C–90 s; 93◦C–20 s, 52◦C–
10 s; 72◦C–10 s (35 cycles); 72◦C–2 min. PCR products were
separated and visualized by electrophoresis in 1% agarose
gel run in 1x TAE buffer (40 mMTris; 20 mM ice-cold
acetic acid; 1 mM EDTA) containing ethidium bromide
(0.5 μg/ml). The GeneRulerTM 1-kb DNA Ladder (Fermentas,
Lithuania) was used to estimate the size of the target PCR
product.

DNA Cloning and Sequencing
PCR products were purified with QIAEX II Gel Extraction Kit
(Qiagen, Germany) followed by ligation of DNA fragments into
pTZ57R/T vector and cloning according to the instructions
of the InstA Clone PCR Cloning Kit (Fermentas, Lithuania).
Transformation was carried out using Escherichia coli strain
XL-1 Blue. Plasmid DNA was isolated with a GeneJet Plasmid
Miniprep Kit (Fermentas, Lithuania). Sequence analysis
was performed by Evrogen JSC using automatic sequencer
ABI PRISM 3730 (Applied Biosystems, USA) with ABI
PRISM BigDyeTM Terminator v. 3.1. reagents kit using a
dideoxy chain termination method reaction (Sanger et al.,
1977).

Phylogenetic Analysis
The predicted protein sequence of CS-20 was compared with
sequences deposited in GenBank by BLAST2. A phylogenetic tree
was constructed in MEGA5 software (Tamura et al., 2011) using
maximum likelihood (ML) method and Jones-Taylor-Thornton
(JTT) model (Jones et al., 1992). Bootstrap analysis with 1000
bootstrap replications was carried out to infer tree topology.

Statistical Analysis
Quantitative data of the experiments were statistically analyzed
with Microsoft software STATISTICA 6.0 (StatSoft Inc.). Means
of different treatments, standard errors or standard deviations,
and significant differences (p < 0.05) of means among treatments
and controls were determined using a t-test for independent
variables.

RESULTS

Isolation of CS-20 Proteins Responsible
for Protection of Tomato Plants from
Fusarium Wilt Agent
In order to find CS-20 metabolites conferring anti-wilt activity,
we compared the disease development on seedlings pre-
exposed to 70% water-methanol, chloroform/methanol or
buffer extracts of fungal biomass, which had been subjected
to ultrafiltration. Before inoculation by the Fusarium
wilt pathogen, tomato seedling were incubated in water-
solubilized preparations of the lyophilized extracts passed
through 5 kDa-cut-off membranes. Seedling experiments
on testing the compounds with NMWCO greater than
5 kDa (retentates) and permeates containing substances
of lower molecular mass showed the target activity was
associated with HMWM, which were extracted by the buffer
(Figure 1).

Similar results were obtained when HMWM, which were
purified by gel filtration (Figure 1) on a preparative Sephadex
G-50 column, and then was tested for their ability to reduce
wilt severity (Table 1). Wilt-reducing properties were detected
in a high-molecular weight fraction that was eluted as a single
peak in the column void volume, while other fractions did not
influence wilt severity (data not shown). Fifteen-minute boiling
fully inactivated the HMWM (Table 1).

Cultivation of two pathogenic strains F37 and Fot3 on Czapek
agar supplemented with HMWMresulted in no retardation of the
colony growth (Figure 2A). No inhibition of spore germination
was found when spores of these strains were incubated in the
testedmetabolites (Figure 2B). Thus, protective effect of HMWM
observed on tomato was not caused by their toxicity toward the
pathogen.

Size-exclusion chromatography on the column with Sephacryl
S-400 showed the presence of two main (fractions I, VII),
three minor (fractions III, IV, V) peaks, and two intermediate
areas (fraction II, VI) in the elution profile of the HMWM

2http://blast.ncbi.nlm.nih.gov/Blast.cgi
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FIGURE 1 | Comparison of specific anti-wilt activity of different
extracts from biomass of biocontrol Fusarium oxysporum strain CS-20
separated by ultrafiltration and gel filtration on Sephadex G-50.
∗Ret.-retentate contains solutes greater than 5 kDa (are considered as
high-molecular weight metabolites); Rer. -permeate contains low-molecular
weight solutes. Water-solubilized preparations of freeze-dried extracts passed
through 5 kDa-cut-off membranes were tested. Retentates and permeates
were adjusted to equal volumes. Means of three independent experiments,
with three replications per treatment in each ones, are presented. Bars
represent SE. Activity in the permeates from samples extracted with the buffer
were tested against H2O amended with salts, which remained in this
permeate after isolation procedure used (see Materials and Methods,
Ultrafiltration). Eluate means an active fraction that was eluted from Sephadex
G-50 with double distilled water (see section ‘Materials and Methods’).

(Figure 3). A plant assay to determine the possible role of the
eluted portions in wilt reduction revealed no protective activity
in fractions I, II (Figure 4). Fraction VI was contaminated
with guanidine-HCl that was used for solubilization of the
frozen-dried HMWM preparation prior to the chromatographic
analysis. This fraction was phytotoxic and was excluded from the
further studies. The fractions eluted in the range of peaks from
III to V were not phytotoxic and contained colorless opalescent
substances, which absorbed in the range of 180–230 nm with a
maximal absorbance level near 214 nm (data not shown). These
spectral characteristics suggested that fractions III–V contained
proteins. Indeed, a number of bands covering a relatively wide
range of molecular weights lower than 66 kDa were revealed

in these fractions by SDS-PAGE (patterns not shown). In
fraction V, the number of bands with a higher electrophoretic
mobility increased after its separation in a ME-containing
gel, suggesting the presence of proteins with inter-chain S–S
bonds. Among the three protein-containing fractions, anti-wilt
activity was found only in fraction V (Figure 4). Incubation
of seedling roots in fraction V before plant inoculation with
the pathogen significantly reduced the disease index resulting
in a sustainable plant protection throughout the observation
time, while other protein fractions (III and IV) did not
prevent or delay wilt development (Figure 4). Hydrolysis of
the active fraction V with proteinase K nullified its protective
effect, but did not make any impact on wilt development if
seedlings were pretreated with other protein fractions (Figure 5).
The loss of protection properties after enzymatic proteolysis
demonstrated that the activity of HMWM against Fusarium
wilt agent was determined by their proteinaceous constituent.
Moreover, reduction in disease severity on tomato seedlings
due to the pre-inoculation exposure of roots to the fraction
V together with above in vitro experiments on cultivation
pathogenic FOL strains at the presence of HMWM denoted
plant-mediated mode of action of the isolated proteins, such
as an induction of plant defense responses involved in induced
resistance.

Defense Responses Induced in Tomato
Plants by Protective Proteins from CS-20
To establish whether the proteins protecting tomatoes acted
as disease resistance elicitors, their ability to induce plant
defense responses involved in local and systemic resistance
against various causative agents including pathogenic FOL was
investigated.

Induction of Extracellular Alkalinization
The first approach to obtaining data on putative eliciting
properties of the tested proteins was investigation of their
alkalinization-inducing activity. The protein-containing fraction
V that reduced wilt on tomato seedlings was also effective
in elicitation of a reversible change of extracellular pH in

TABLE 1 | Reduction of wilt severity on tomato seedling pre-treated with high-molecular weight metabolites (HMWM) isolated from biocontrol Fusarium
oxysporum strain CS-20.

Concentrations of HMWM eluted from
Sephadex G-50, µg/ml

Days after root inoculation

15 21

Average wilt
severity index

Wilt severity reduction
respective to control, %

Average wilt
severity index

Wilt severity reduction
respective to control, %

200 0.7c 81 2.0b 49

50 2.0b 44 3.6a 8

10 2.5b 31 3.5a 10

5 3.5a 3 3.8a 3

0∗ 3.6a − 3.9a −
200 + 100◦C, 15 min 3.6a 0 3.8a 0

∗No pre-incubation in HMWM prior to inoculation with the pathogen; seedlings were immersed in sterile double distilled water. Results represent means values calculated
from means obtained in each of five experiments. Numbers within the columns denoted with different lower case letters differ from each other at P ≤ 0.05.
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FIGURE 2 | Histograms showing the lack of direct toxic impact of
high-molecular weight metabolites (HMWM) from F. oxysporum CS-20
toward pathogenic F. oxysporum f. sp. lycopersici strains (F37 and
Fot3). Mean values of three independent experiments, each of them
comprised in vitro growth (A) and spore germination (B) tests, are presented.
Bars represent SD.

FIGURE 3 | Elution profile of F. oxysporum CS-20 high-molecular
weight metabolites (HMWM) separated by size-exclusion
chromatography on a column HiPrep26/60 Sephacryl S-400. Protein
constituents of HMWM are indicated by a light gray box; protein-containing
fraction V possessing protective activity against F. oxysporum f. sp. lycopersici
is marked with a dark gray box. Fraction VII represents guanidine-HCl, which
was added to a HMWM solution before the chromatographic analysis.

cultured tomato cells. A rapid alkalinization of the extracellular
medium was observed in response to addition of the lyophilized
preparation of this fraction into the cell suspensions of two
tomato lines used in our experiment. Extracellular pH started
to increase from the initial level after a 2.5–3 min lag phase
and reached a maximum to 5–10 min followed by a gradual
subsidence over the next 50–50 min (Figure 6A). The fraction
V induced a reversible response of similar profile with close
values of �pH in both cell lines. The cells did not react
to ddH2O passed through column with Sephacryl S-400 after
passing the extraction buffer, and addition of the tested fraction
in the cell-free incubation medium up to a final concentration
of 100 μg/ml did not influence extracellular pH, indicating
that there was no artifact alkalinization due to the eluent or
the protein solution itself. The increased pH level and the
cell, response duration positively correlated with amount of
the added fraction, however, the dose-response effect was not
linear (Figure 6B). The tested fraction at 0.5 μg/ml did not
induce any significant reaction, while the highest �pH averaged
0.84, if the fraction was added to a concentration of 10 μg/ml.

FIGURE 4 | Time course of Fusarium wilt on tomato seedlings treated
with different fractions isolated by exclusion chromatography from
high-molecular weight metabolites of a biocontrol F. oxysporum
CS-20. Prior to inoculation by pathogenic FOL strains (F37 + Fot3), roots of
tomato seedlings were exposed to fractions I–V (see Figure 3) for 2 days.
Control seedlings were exposed to sterile ddH20. The fractions were sterilized
by passing through a microporous filter. After 2 days of incubation under
aseptic conditions, seedlings were planted, and disease symptoms were
visually monitored. Mean values of the disease index from four independent
experiments, five replications a treatment in each ones, are presented. Bars
represent SD.

Further increase of the concentration produced no elevation of
pH although cell response was still reversible. Fractions III and
IV, which were not able to mitigate wilt symptoms, did not
elicit any significant change in extracellular pH (Figure 6C).
Cells treated with proteins containing in the fraction V remained
viable and could be re-stimulated at repeated contact with it,
herewith the level of the medium alkalinization during the
second response was almost as high as upon the first stimulation
(Figure 6B). In contrast, a preparation obtained from the
pathogenic FOL by the same isolation procedures that were used
for purification of CS-20 proteins initiated a gradual slow growth
of extracellular pH without any visible lag phase, produced
irreversible response (Figure 6B), led to cell death and browning
of the suspension. The cleavage products of the fraction V
pretreated with proteinase K were almost completely inactive as
alkalinization inducers. In this case, difference between control
and the treatment did not go beyond 0.1 pH unit even if
the inactivated preparation was added to a concentration 10-
fold exceeded the effective concentration of the native fraction
(Figure 6A). These results indicate proteins contained in fraction
V that we isolated from CS-20 strain were able to elicit the
ion exchange response in tomato cells, a well-known early non-
specific defense reaction governing plant–pathogen relationships.

Chitinase Activity
To gain more information about mode of action of the isolated
proteins, we analyzed activity of chitinase, one of the PR-proteins
closely associated with interrelationships of several plant species
with Fusariumwilt agents (e.g., Benhamou et al., 1990; Cachinero
et al., 2002) including tomato-FOL interactions, and biocontrol
of Fusarium wilt of tomato (Recorbet et al., 1998; Fravel et al.,
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FIGURE 5 | Comparison of anti-wilt activity of the fractions obtained
by exclusion chromatography of high-molecular weight metabolites
from F. oxysporum strain CS-20. Seedlings were inoculated by immersion
in a suspension with a final concentration of 106 spores/ml, containing spores
of two pathogenic strains F37 and Fot3 (1:1). Disease symptoms were
examined at 15 (A), and 21 (B) days after inoculation of tomato seedlings,
which roots were pre-exposed to intact (dark gray columns) or proteinase
K-treated (light gray columns) fractions eluted as peaks III, IV, and V.
Inoculated seedlings non-exposed to the fractions are referred to as infected
control (IfCtrl, black columns). Histograms represent values of average
disease index from two independent experiments of each treatment done in
triplicate. Bars represent SD.

2003b; Aime et al., 2013). In our experiments, inoculation of
untreated tomato seedlings by the pathogen alone as well as a
3-day incubation in protein fraction V alone slightly enhanced
chitinase activity in root extracts, while pre-exposure of tomato
roots in the fraction V resulted in 1.6- or 2.3-fold stimulation
of the enzyme in response to a subsequent contact with the
pathogenic FOL strains Fot3 or F37, respectively (Figure 7).

PR-1 Expression
Analysis of PR-1 expression in tomato leaves exposed to fraction
V showed this defense gene systemically responded in plants
to the treatment with those CS-20 proteins that mitigated wilt
symptoms and manifested elicitor properties in cultured cells.
The target product of qPT-PCR of 364 bp in size was found
in leaves from seedlings, roots of which were immersed in
the elicitor fraction V for 24 h. Over the same time period,
no accumulation of PR-1 was detected in leaves sampled from
water-treated (control) seedlings compared to intact leaves. Root
exposure to fraction V proteins activated the PR-1 protein gene,
but gene expression was higher in tomato leaves of the seedlings,
whose roots were exposed to the fraction V prior to the pathogen
attack (Figure 8).

While both treated and control plants showed wilt symptoms
at 7 days after inoculation, the severity and incidence of leaf
yellowing and wilting were significantly less in protein-pretreated

seedlings compared to control (wilt severity indices averaged
0.5 and 1.2, respectively, p = 0.02). These data demonstrate the
fraction V induces a systemic resistance in tomato to FOL and
suggest that one of mode of the protein action may be elicitation
of plant response pathways involving PR-1.

Determination of Amino Acid and
Nucleotide Sequences of a Putative
Elicitor Protein from CS-20
Among three protein-containing fractions isolated from CS-20
biomass, only fraction V elicited local and systemic plant defense
responses that reduced wilt symptoms on tomato exposed to
the Fusarium wilt pathogen. In this context, we presumed
that elicitor properties of this fraction, and consequently, its
ability to protect tomato against FOL were determined by some
proteins, which were absent in two other protein fractions.
To confirm this hypothesis, fraction V from size-exclusion
chromatography was subjected to RP-HPLC. Inactive fractions
III and IV were separated in parallel (Figure 9). Three main
peaks with retention time (RT) 20, 32, and 55 min were
present in RP-HPLC chromatogram of the elicitor fraction
(Figure 9A). Two of them, peaks 1 and 3 (RT 20 and
55 min, respectively), were also found in the elution profiles
of the inactive fractions III and IV (Figures 9B,C). MALDI-
TOF MS showed these peaks were formed by polypeptides
of similar molecular masses in all tested fractions (peak 1:
20000 Da; peak 3: 28410, 38971, 53917 19214, 32534 Da). The
occurrence of these identical polypeptides in active and inactive
fractions makes it highly improbable that elicitor and anti-
wilt activity of fraction V was associated with these common
constituents. By contrast, a polypeptide with molecular mass of
10033 Da eluted at 32 min (Figure 9A, peak 2) was specific
to the fraction V, and was missing from the inactive fractions.
Collectively, these findings suggest the 10033-Da protein is a
likely candidate for elicitation of plant defense responses resulting
in significant reduction of wilt symptoms on tomato seedlings
after pre-treatment with CS-20 proteins presented in the fraction
V.

The N-terminal sequence of the 10033-Da protein (25 amino
acid residues: 1KCDSGCYLKVCDCRNLKGNCHTKCY25) was
determined by automated Edman degradation. The sequenced
region was found to be enriched in basic and cysteine amino
acid residues. To determine the complete amino acid sequence
of the 10033-Da protein, the protein-encoding cDNA was
generated by two-step 3′-RACE. Because we failed to obtain
a homogenous amplification product after one-step 3′-RACE,
the second 3′-RACE round was carried with use of AdLo-
CS20F1 inner primer pair, where CS20F1 was complementary to
the cDNA fragment encoding the N-terminal sequence starting
from the fifth amino acid residue. The deduced amino acid
sequence of the protein, therefore, started from the fifth amino
acid residue. Electrophoresis of the products after two-step
3′-RACE demonstrated the presence of a single amplicon
of 320 bp in size (Figure 10A). This product was cloned
and sequenced. The obtained nucleotide sequence (GenBank
accession number KR028481) was translated into an amino acid
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FIGURE 6 | Alkalinization of the incubation medium by cultured tomato cells in response to CS-20 proteins contained in fraction V, which reduced
Fusarium wilt severity in tomato seedlings. (A) Profiles of extracellular pH change in suspensions of two cell lines after addition of the lyophilized fraction V to a
final concentration of 10 μg/ml. Cell response (line β) to the fraction pretreated with proteinase K shown by dotted line. The solid line shows extracellular pH of
non-treated cells. (B) Dose-rate effect of the fraction V isolated from CS-20 on tomato cell line γ. Numerals near curves show final concentrations (μg per ml) of the
lyophilized fraction V in the tomato cell suspension. Re-stimulation of the reversible response is exemplified for a concentration of 2.5 μg/ml. Dotted line illustrates
the irreversibility of alkalinization response to preparation from the pathogenic FOL (strain F37), obtained by the same procedures that were applied to isolate fraction
V from CS-20. (C) The extracellular pH values after addition of inactive fractions III (white circles) or IV (white triangles) at a concentration of 10 μg/ml. Asterisks show
extracellular pH of non-treated cells. Arrows indicated starting point of treatments. The representative data are out of one of three experiments with the protein
fraction V samples independently isolated from CS-20 culture.

sequence containing 90 residues, while the four first amino
acids (1KCDS4) in the N-terminal fragment of the polypeptide
were determined on the base of Edman chemistry. Thus,
the complete primary structure of the CS-20 elicitor protein
(CS20EP) was reconstructed from direct Edman and cDNA
sequencing (Figure 10B). The calculated molecular mass of the
deduced polypeptide of 94 amino acid residues is 9940.15 Da.
The discrepancy between the calculated and measured molecular
mass values suggests post-translational modifications of the
molecule. The identified protein is basic, and its pI is 9.87.
Uneven distribution of basic residues should be especially noted,
the N-terminal region of the polypeptide being particularly
enriched. CS20EP is also cysteine-rich. It contains a cysteine
motif with eleven cysteine residues in the molecule, six of them
were located in N-terminal region. Hydrophobic amino acid
residues comprise 23.43%.

BLAST search in the NCBI database revealed no high
homology to fungal, bacterial or plant proteins, including
antifungal proteins and peptides, suggesting the protein
is new, although it displays the similarity with other
predicted polypeptide sequences (especially within their
N-terminal regions and cysteine motifs) from F. graminearum,
F. pseudograminearum, F. langsethiae, F. avenaceum,
F. oxysporum, F. verticillioides, and F. fujikuroi. The highest
similarity (47.8%) with a hypothetical protein FGSG_10784 from
F. graminearum strain PH-1 was found (Figure 10C).

FIGURE 7 | Histograms showing percentage chitinase activity relative
to control in root extracts obtained from tomato seedlings exposed to
protein fraction V (f.V), pathogenic F. oxysporum f. sp. lycopersici
strains F37 or Fot3 and in similar extracts from F37- or
Fot3-inoculated seedlings, which were exposed to f.V prior to contact
with pathogenic strains. The level of chitinase activity in extracts from roots
of non-treated and non-inoculated seedlings are referred to as control (Ctrl)
and taken as 100%. Presented data are means from one of two experiments,
both of them showed similar results. Bars represent SE.

Phylogenetic reconstruction based on amino acid
sequences of CS-20 and similar proteins deposited
in GenBank (Figure 11) demonstrated that CS-
20 represents a separate branch located between
F. graminearum/F. langsethiae cluster (bootstrap support
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FIGURE 8 | Histogram showing an enhanced PR-1 expression in
leaves of tomato seedlings in response to root treatment with the
protein fraction V isolated from CS-20 biomass (fr.V) and after
subsequent inoculation with the pathogen (fr.V + FOL) compared to
corresponding control treatments. Seedling roots were exposed to fr.V for
24 h. Roots of control seedlings were inoculated with FOL after 24 h of
incubation in sterile double distilled water (sddW).

96%) and F.avenaceum/F.oxysporum/F.fujikuroi/F.verticillioides
cluster (bootstrap support 73%).

DISCUSSION

In filamentous fungi, as well as in bacteria and oomycetes,
metabolites belonging to various chemical families are
characterized as general or specific elicitors of plant defense
responses, and some of most well characterized elicitors are
proteins produced by fungi (Bailey, 1995; Takenaka et al., 2003;
Hanson and Howell, 2004; Garcia-Brugger et al., 2006; Mishura
et al., 2009; Zhang et al., 2010; Peng et al., 2011; Chen et al.,
2012; Wang et al., 2012; Thakur and Sohal, 2013; Oomea et al.,
2014).

In our study, the search for CS-20 metabolites modulating
defense responses of tomato resulted in identification of a
new putative elicitor belonging to a family of small cysteine-
rich proteins. Proteins of this type are often involved in
relationships among plants and microorganisms, as well as
in interactions between plants and biocontrol fungi. Small
cysteine-rich proteins are well documented in contributing to
biocontrol by Trichoderma sp. For instance, Djonović et al.
(2006) isolated, identified and characterized a small protein1
(Sm1) that was secreted by Trichoderma virens strain Gv29-8 in
culture filtrates. Sm1 elicited local and systemic defense responses
in cotton cotyledons and protected them from colonization
by Colletotrichum sp., a foliar pathogen causing anthracnose.
Analysis of the deduced amino acid sequence of Sm1 revealed
the hydrophobic character of this protein, the presence of four
cysteine residues and several sites for possible post-translational
modifications (Djonović et al., 2006). The predicted molecular
mass of the mature protein was determined to be 12.55 kDa (pI
5.78). Elicitor activity was also found in two other hydrophobins
from a group of low-molecular weight, 4-cysteine-containing
fungal proteins, EPL1 (12.6 kDa, pI 5.5–5.7) and EPLT4
(homolog of EPL1), produced by T. atroviride and T. asperellum,
respectively (Seidl et al., 2006; Wang et al., 2013). Recently, a
novel hydrophobin and its encoding gene were obtained from

FIGURE 9 | RP-HPLC on an Aquapore C8 RP300 (4.6 mm × 100 mm)
column of fractions V (A), III (B), and IV (C) obtained by
SE-chromatography on Sephacryl S400 (see Figure 3). For experimental
details, see section ‘Materials and Methods.’ The 10.033-Da protein is shown
by an arrow.

T. longibrachiatum strain MK1 (Ruocco et al., 2015). It was
termed HYTLO1 (originally designated as protein HYTRA1
isolated from T. harzianum T22). Along with direct inhibition of
some microbes and plant growth promotion activity, HYTLO1
is a strong elicitor of plant defense responses. Infiltration of
HYTLO1/HYTRA1 in tomato leaves resulted in development
of local and systemic resistance against Botrytis cinerea via a
hypersensitive reaction, a generation of an oxidative burst in
plant cells, and enhanced transcription or activity of PR-proteins.
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FIGURE 10 | A representative result of electrophoretic analysis of PCR-products amplified by two-step 3′ RACE (A); nucleotide and deduced amino
acid sequences of the elicitor protein from F. oxysporum CS-20 – CS20EP (B); as well as the alignment of predicted CS20EP amino acid sequence
with related sequences deposited in GenBank (C). (A) The arrow indicates the target PCR-product of an estimated size (320 bp) that was amplified after the
second 3′RACE round with AdLo-CS20F1 primer pair at different annealing temperatures. Lane 1, 60◦C; line 2, 52◦C; M, GeneRulerTM 1 kb DNA ladder plus.
(B) The predicted amino acid sequence of the CS-20 elicitor protein (CS20EP) is shown below the nucleotide sequence (GenBank accession number KR028481).
The fifty-five amino acid residues corresponding to those determined by N-terminal sequencing of the protein are marked in italic. Cysteine residues in the amino
acid sequence are marked in bold. The cysteine motif is presented under the sequence. (C) Identical amino acid residues in sequences are highlighted by dark-gray
boxes. The CS20EP N-terminal sequence determined by Edman’s degradation is underlined.

FIGURE 11 | Phylogenetic tree reconstructed for sequences of CS20EP and its homologs from different Fusarium species. Only bootstrap values
greater than 70% are indicated.

HYTLO1 was predicted to be 7.2 kDa cysteine-rich protein with
eight cysteine residues arranged in a strictly conserved motif
(Ruocco et al., 2015).

During colonization of plant tissues, plant pathogenic fungi
secrete an arsenal of enzymes and effector proteins (Doehlemann
and Hemetsberger, 2013), which are considered pathogenicity
factors (Houterman et al., 2008; Dodds et al., 2009). At the same

time, these enzymes can elicit plant defense responses (Rotblat
et al., 2002), and many proteinaceous effectors are recognized
by plants as avirulence gene products inducing host resistance
(Rooney et al., 2005; Lorang et al., 2007; Dodds et al., 2009;
Stergiopoulos and deWit, 2009; Oliva et al., 2010). Small cysteine-
rich proteins are well known as fungal effectors. The resistance
of tomato against Cladosporium fulvum is highly correlated with
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secretion by the fungus of low-molecular weight cysteine-rich
proteins, which are recognized by corresponding resistance genes
in the plant (De Wit and Joosten, 1999; De Wit et al., 2002).

Interrelationships between pathogenic FOL and tomato are
also regulated by small effector proteins enriched with cysteine.
One such protein, named SIX1, was the first avirulence factor
reported for FOL and other root-invading pathogens (Rep et al.,
2004). After maturation of a 32 kDa a precursor, a central part
of SIX1, the 12 kDa protein containing six cysteine residues is
secreted in xylem sap of infected plants and induces defense
responses in tomato lines with the I-3 resistance gene (Rep et al.,
2004). At least eleven small cysteine-rich proteins of the SIX
type were identified in F. oxysporum, and some of them were
shown to play a role of avirulence factors required for I gene-
dependent tomato resistance against pathogenic FOL (Rep et al.,
2004; Houterman et al., 2007, 2009; Takken and Rep, 2010).

Inmany plant-microbe interactions, the presence of an elicitor
in the secretome of a biocontrol fungus is regarded as being
crucial for induction of defense responses and protection. Since
in this study we isolated CS20EP from fungal biomass and did
not analyze the culture liquid, we cannot determine whether the
isolated protein is a secreted elicitor, although bioinformatics
analysis of its sequence using ESLPred2 method (Garg and
Raghava, 2008) suggested that CS20EP might be an extracellular
protein. Another secretion criteria could be the presence of
a signal peptide and no predicted transmembrane helices in
CS20EP precursor by both neural network and HMM prediction
methods (Stassen et al., 2012). As 3′-RACE were used for
sequencing of cDNA fragment for mature protein, we did not
obtain the full-length cDNA and did not examine as yet whether
CS20EP precursor contains a signal peptide. However, all the
similar and phylogenetically related proteins from the analyzed
Fusarium strains, including PH-1 and the biocontrol strain Fo47
(Figures 10 and 11), contain a conserved signal peptide of 23
amino acid residues (see Supplementary Figure S1) and hence,
are secreted proteins. In addition, some molecular properties
of CS20EP are similar to those of known secreted cysteine-rich
effectors (e.g., Bolton et al., 2008; Stergiopoulos et al., 2012;
Ökmen et al., 2013). As was mentioned above, many of them
are less than 150 amino acids long, hydrophobic polypeptides
with molecular mass ranging from several to twenty-thirty kDa
and a cysteine content higher than 3%. Intramolecular disulfide
bridges are supposed to stabilize protein tertiary structure in the
harsh environment such as the plant apoplast (Djonović et al.,
2006; Stergiopoulos and de Wit, 2009; Takken and Rep, 2010).
CS20EP was also found to be small, hydrophobic, extremely
enriched in cysteine residues (11%) with cysteine motif almost
the same as in the related proteins (Figure 10C). While further
research is needed to determine whether this protein is secreted,
the properties discovered so far together with bioinformatics data
suggest that it is probably secreted by CS-20.

Based on results reported here, it is possible to speculate that
the plant-mediated mode of action of biocontrol by F. oxysporum
strain CS-20 could be partially underlain by its ability to
synthesize elicitors of systemic resistance, and CS20EP could be
one of them. We identified the primary structure of CS20EP
and determined nucleotide sequence encoding this protein.

As far as we are aware, CS20EP is the first small cysteine-
rich protein from biocontrol F. oxysporum strains putatively
acting as an elicitor of defense responses in tomato against
pathogenic FOL. In contrast to hydrophobins and cysteine-
rich proteins from FOL, it is a basic protein. Interestingly,
no homolog of SIX1 was present in the genome sequence
of F. graminearum (Rep et al., 2004), while the instance of
relatively high similarity was revealed just between CS20EP
and a nucleotide sequence encoding a hypothetical protein
FGSG_10784 from F. graminearum.

Since the fungus produced CS20EP in amounts insufficient
for biological assays, we tested it in the composition of
the active fraction. Thus, currently only indirect evidence
of the protective activity of this protein is available. First,
MALDI-TOF MS analysis allowed us to identify several
components in active and inactive fractions, with the 10-
kDa polypeptide being present exclusively in the active
fraction displaying elicitation of defense responses, while other
components occurred both in active and inactive fractions,
and we did not observe any elicitation of host defense
response or wilt severity-reducing activity in these CS20EP-
free fractions in our experiments. Secondly, the addition
of fractions III and IV to fraction V did not increase its
anti-wilt effect (data not shown). Thirdly, the UV spectrum
of the pathogenic FOL strain F37 elutate portion, which
corresponded to fraction V from CS-20 but did not reduce
wilt on tomato seedlings, was atypical for proteins, and
no polypeptides were detected in its composition by MS.
Collectively, these findings support the hypothesis that CS20EP
likely contributes to or is responsible for the elicitor and
protective activities of fraction V. Since some elicitors have
been reported to be perceived by cells even in trace amounts
(Mueller et al., 2012), additional research is needed to
determine if some other fungal products are involved in
the observed protective activity and elicitation of defense
responses.

Determination of the CS20EP-encoding nucleotide sequence
reported here will facilitate the use of other approaches, such as
development of super-producers of this elicitor or heterologous
expression in order to obtain the protein at preparative
amounts necessary for plant treatment and other biological
assays. Experiments with individual CS20EP are also needed to
investigate modes of action and elucidate role of this protein in
the producer strain as well as its involvement in CS-20 biocontrol
effect. Production of mutants with knockouts for CS20EP gene
or fungal clones transformed for the protein will also be helpful
for study its function and confirming its elicitor properties in
our further studies. This research on CS20EP identification will
enable a more targeted implementation of above approaches.

Our research showed pre-inoculation treatment of plants with
the CS20EP-containing fraction resulted in a local increase of
chitinase activity and systemic up-regulation of PR-1 expression
in response to the pathogen challenge. These mechanisms, along
with evident activation and priming of other defense genes, were
previously demonstrated for endophytic F. oxysporum strains
V5w2 (Paparu et al., 2007) and Fo47 (Veloso and Diaz, 2012;
Aime et al., 2013), which protect tomato and pepper (Fo47)
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as well as banana (V5w2) by induction of the resistance to FOL,
Verticillium dahliae, Phytophthora capsici (Fo47) and nematode
Rodopholus similis (V5w2). It is noteworthy that among three
defense genes up-regulated by Fo47 in roots of pepper plants,
only PR-1 expression was also enhanced systemically (Veloso
and Diaz, 2012). This makes it possible to surmise that similar
responses are involved in the protective effect of CS-20, where
CS20EP is one of the ‘molecular tools’ triggering plant defense
mechanisms resulting in systemic acquired resistance. Elicitation
of reversible ion exchange in tomato cells by fraction V allows
making an assumption that CS20EP initiated early defense events
through plant receptor-mediated recognition. Given the ability
of strain CS-20 to produce CS20EP, which stimulates PR-1
expression in tomato leaves, and the fact that the protein PR-1 is
a marker of SA-dependent defense pathways, generally working
most effectively against biotrophs, future research is planned to
determine the protection potential of this biocontrol agent and
also CS20EP, as an elicitor of systemic resistance, against foliar
biotrophic pathogens of tomato.

Mention of a trademark or proprietary product does not
constitute a guarantee or warranty of the product by the United
States Department of Agriculture and does not imply its approval
to the exclusion of other products that may be suitable.
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