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Cytochrome b559 (Cyt b559) is one of the essential components of the Photosystem II
reaction center (PSII). Despite recent accomplishments in understanding the structure
and function of PSII, the exact physiological function of Cyt b559 remains unclear. Cyt
b559 is not involved in the primary electron transfer pathway in PSII but may participate
in secondary electron transfer pathways that protect PSII against photoinhibition. Site-
directed mutagenesis studies combined with spectroscopic and functional analysis
have been used to characterize Cyt b559 mutant strains and their mutant PSII
complex in higher plants, green algae, and cyanobacteria. These integrated studies
have provided important in vivo evidence for possible physiological roles of Cyt b559

in the assembly and stability of PSII, protecting PSII against photoinhibition, and
modulating photosynthetic light harvesting. This mini-review presents an overview
of recent important progress in site-directed mutagenesis studies of Cyt b559 and
implications for revealing the physiological functions of Cyt b559 in PSII.

Keywords: photosynthesis, photosystem II, cytochrome b559, site-directed mutagenesis, photoprotection,
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INTRODUCTION

Cytochrome b559 is one of the essential components of Photosystem II in all oxygenic
photosynthetic organisms (Whitmarsh and Pakrasi, 1996; Stewart and Brudvig, 1998; Guskov
et al., 2009; Umena et al., 2011). Cyt b559 is a heme-bridged heterodimer protein comprising
one α- and one β- subunit (encoded by the psbE and psbF genes) of 9 and 4 kDa, respectively
(see Figure 1). Each subunit provides a His ligand (His-22 residue of the α- or β-subunit of
Cyt b559 in Synechocystis sp. PCC 6803, corresponding to His-23 residue of α- or His-24 residue
of the β-subunit of Cyt b559 in Thermosynechococcus elongatus) for the non-covalently bound
heme, which is located near the stromal side of PSII. In addition, Cyt b559 has different redox
potential forms depending on the type of PSII preparations and treatments: a HP form with a
midpoint redox potential of about +400 mV, an IP form of about +200 mV, and a LP form with
a midpoint redox potential of about 0–80 mV (Stewart and Brudvig, 1998; Roncel et al., 2001 and
references therein). In intact PSII preparations, Cyt b559 is mostly in the reduced HP form under

Abbreviations: APC, allophycocyanin; Car, β-carotene; Cyt b559, cytochrome b559; HP, high potential; IP, intermediate
potential; LP, low potential; NPQ, non-photochemical fluorescences quenching; PQ, plastoquinone; PQH2, plastoquinol;
PSII, Photosystem II; QA, primary quinone electron acceptor in PSII; QB, the secondary quinone electron acceptor in PSII;
QC, the third plastoquinone-binding site in PSII.
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FIGURE 1 | Structural model of the cytochrome b559 in Photosystem II. Amino acid residues of cytochrome b559 targeted by recent site-directed mutagenesis
work are labeled by using amino acid sequences of cytochrome b559 from Thermosynechococcus elongatus. The figure was created using PyMol and the PDB file
4UB8.

ambient conditions. In inactive or less intact PSII preparations,
Cyt b559 is typically in the LP or IP form and mostly oxidized
(presumably by molecular oxygen) under ambient conditions
(Barber and De Las Rivas, 1993; Poulson et al., 1995; Pospíšil
et al., 2006).

Several studies have proposed that Cyt b559 participates in
secondary electron transfer pathways that protect PSII against
photoinhibition (see Figure 2; Heber et al., 1979; Falkowski
et al., 1986; Thompson and Brudvig, 1988; Barber and De
Las Rivas, 1993; Poulson et al., 1995; Magnuson et al., 1999;
Faller et al., 2001; Tracewell and Brudvig, 2008 and references
therein). In these models, the HP form of Cyt b559 is thought
to donate its electron, via a β-carotene molecule (CarD2),
to reduce highly oxidized chlorophyll radicals in PSII under
donor-side photoinhibitory conditions (e.g., the oxygen-evolving
complex is impaired or under assembly). Oxidized Cyt b559
may accept an electron from the acceptor side of PSII (QB

−,
or reduced PQH2 from the pool), thus forming a cyclic
pathway of electron transfer within PSII. On the other hand,
when the electron transfer on the acceptor side of PSII is
inhibited (e.g., under high-light conditions), the oxidized Cyt
b559 might accept an electron from the acceptor side of PSII
to prevent the formation of damaging singlet oxygen species
(Nedbal et al., 1992; Vass et al., 1992; Barber and De Las Rivas,
1993; Bondarava et al., 2010). In addition, several different
enzymatic functions of Cyt b559 have been proposed, such as
superoxide dismutase (Ananyev et al., 1994) and PQH2 oxidase
in intact PSII (Kruk and Strzałka, 1999, Kruk and Strzalka,

2001; Bondarava et al., 2003, 2010) and superoxide oxidase
and reductase in tris-washed PSII (Tiwari and Pospísil, 2009;
Pospíšil, 2011). Moreover, a novel quinone-binding site (QC)
was identified close (about 15 Å) to the heme of Cyt b559 in
the 2.9-Å PSII crystal structure from T. elongatus (Guskov et al.,
2009). The occupancy of this QC site with PQ (or PQH2) has
been proposed to modulate the redox equilibration between Cyt
b559 and the PQ pool (Kaminskaya et al., 2006, 2007; Kaminskaya
and Shuvalov, 2013) or be involved in the exchange of PQ on
the QB site from the pool (Guskov et al., 2009). However, the
QC site was not detected in the more recent 1.9-Å PSII crystal
structure (Umena et al., 2011). Despite the recent remarkable
progress in understanding the structure and function of PSII, the
exact function of Cyt b559 in PSII remains unclear.

This mini-review gives an overview of important progress
in recent site-directed mutagenesis studies performed to reveal
the physiological function(s) of Cyt b559 in PSII. More
comprehensive reviews on the structure and functions of Cyt b559
are available (Whitmarsh and Pakrasi, 1996; Stewart and Brudvig,
1998; Faller et al., 2005; Pospíšil, 2011; Shinopoulos and Brudvig,
2012).

FUNCTION IN ASSEMBLY AND
STABILITY OF PSII REACTION CENTERS

Prior mutagenesis studies with Synechocystis sp. PCC 6803,
Chlamydomonas reinhardtii or Nicotiana tabacum showed no
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FIGURE 2 | A simplified scheme for electron transfer pathways within Photosystem II reaction centers. Primary electron transfer pathway (bold solid lines
with arrows) and possible secondary electron transfer pathways involving cytochrome b559 (dotted line with arrows) are shown. The scheme is modified from
Whitmarsh and Pakrasi (1996).

stable PSII reaction centers assembled in the absence of either Cyt
b559 subunit (Pakrasi et al., 1988, 1989, 1990; Morais et al., 1998;
Swiatek et al., 2003; Suorsa et al., 2004). Several authors proposed
that Cyt b559 plays an important structural role, such as being a
nucleating factor, during the early stage of PSII assembly (Pakrasi
et al., 1988; Morais et al., 1998; Komenda et al., 2004).

In addition, mutagenesis studies with Synechocystis sp. PCC
6803 showed that substituting either of the heme axial ligands
(His22 of the α-subunit or His22 of the β-subunit of Cyt b559
in Synechocystis sp. PCC 6803) with Leu, Met, Glu, Gln, Tyr,
Lys, Arg, or Cys abolished the photoautotrophic growth and
severely diminished the assembly or stability of PSII in the
mutant cells, except for H22Kα mutant cells, which were able to
grow photoautotrophically and accumulated stable PSII reaction
centers (∼81% as compared with wild-type cells; Pakrasi et al.,
1991; Hung et al., 2007, 2010). Electron paramagnetic resonance
results indicated the displacement of one of the two axial ligands
to the heme of Cyt b559 in H22Kα mutant reaction centers, at
least in isolated reaction centers (Hung et al., 2010). In addition,
H22Kα and Y18Sα (corresponding to Y19Sα in T. elongatus)

in mutant PSII core complexes contained predominately the
LP form of Cyt b559. The findings support the concept that
the redox properties of Cyt b559 are strongly influenced by the
hydrophobicity and ligation environment of the heme (Krishtalik
et al., 1993; Gadjieva et al., 1999; Roncel et al., 2001; Pospíšil and
Tiwari, 2010).

Spectroscopic and functional characterizations of the
cyanobacterium Synechocystis sp. PCC 6803 with mutation of
charged residues on the cytoplasmic side of Cyt b559 in PSII
have been reported (Chiu et al., 2013). All mutant cells grew
photoautotrophically and assembled stable PSII. However,
R7Eα, R17Eα, and R17Lβ mutant cells grew significantly slower
and were more susceptible to photoinhibition as compared
with wild-type cells. In addition, the PSII core complexes
from R7Eα and R17Lβ cells contained predominantly the LP
form of Cyt b559. Electron paramagnetic resonance results
indicated the displacement of one of the two axial ligands
to the heme of Cyt b559 in the reaction centers of the R7Eα

and R17Lβ mutants. In recent PSII crystal structural models
(Guskov et al., 2009; Umena et al., 2011), the side chains of
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these Arg residues of Cyt b559 (corresponding to Arg8 and
Arg18 residues of the α-subunit and Arg19 residue of the
β-subunit of Cyt b559 in T. elongatus) are in close contact with
the heme propionates of Cyt b559 (see Figure 1). Thus, the
electrostatic interactions between these Arg residues and the
heme propionates of Cyt b559 may affect the ligation structure
and redox properties of the heme in Cyt b559 (Chiu et al.,
2013).

Furthermore, mutagenesis studies of C. reinhardtii showed
that the H23Yα, H23Mα, and H23Cα mutant cells were unable
to grow photoautotrophically, were sensitive to photoinhibition,
accumulated 10–20% of the PSII (compared to wild-type cells),
and contained a disrupted heme pocket while still retaining
significant O2 evolution activity (Morais et al., 2001; Hamilton
et al., 2014). Thus, the heme of Cyt b559 was not required
for photosynthetic water oxidation by PSII (Morais et al.,
2001). A recent study also presented evidence to ascribe the
photoinhibition phenotype of H23Cαmutant cells to a faster rate
of photodamage and an impaired PSII repair cycle (Hamilton
et al., 2014). Hence, Cyt b559 may play important roles in
the assembly, repair and maintenance of the PSII complex
in vivo.

In the other recent mutant study of T. elongatus that took
advantage of the robustness of the PSII variant with PsbA3
as the D1 subunit, the four constructed Cyt b559 mutants
(H23Aα, H23Mα, Y19Fα, and T26Pα) grew photoautotrophically
(T. elongatus is an obligate photoautotroph; Sugiura et al.,
2015). Although the H23Aα and H23Mα mutants assembled
only an apo-Cyt b559, the steady-state level of active PSII
was comparable to that in the wild-type control. The results
suggest that the heme has no structural role in the assembly
of PSII in the presence of α- and β-subunits of Cyt b559.
This finding is in strong contrast to the Synechocystis sp. PCC
6803 mutant showing that proper coordination of the heme
cofactor in Cyt b559 is important to the assembly or stability
of PSII (Pakrasi et al., 1991; Hung et al., 2007). In addition,
Cyt b559 mutant cells of T. elongatus showed no correlation
between the rate of photoinhibition and the redox potential
of the heme. However, the recovery of the oxygen-evolving
activity of PSII after photoinhibition was significantly slower
in these mutant cells. PsbA3 is the D1 isoform expressed in
T. elongatus under high-light conditions (Nakamura et al., 2002;
Kós et al., 2008). The high-light D1 isoform in cyanobacteria has
a Glu instead of a Gln residue (for the low-light D1 isoform)
at position 130 in the D1 protein sequence (for a review, see
Mulo et al., 2009) and this Glu residue forms hydrogen-bonding
interactions with pheophytinD1 (Dorlet et al., 2001; Shibuya
et al., 2010). Cyanobacterial PSIIs with the high-light D1 isoform
showed increased photo-tolerance and accelerated non-radiative
charge recombination (Tichy et al., 2003). This phototolerant
property has been attributed to a photoprotection mechanism
involving the redox potential of pheophytinD1, which enhances
the probability for non-radiative recombination of the singlet
radical pair and prevents the formation of potentially damaging
3P680 and singlet oxygen species (Vass and Cser, 2009; Sugiura
et al., 2014). Further investigation could determine whether
PsbA3 may compensate the photoprotective function of Cyt b559

in the assembly and stability of PSII in these Cyt b559 mutant
cells.

FUNCTION IN PROTECTING PSII
AGAINST PHOTOINHIBITION

Numerous site-directed mutagenesis studies have investigated
the role of Cyt b559 in protecting PSII against photoinhibition
under high light. In the photoprotective models, oxidized Cyt
b559 may accept an electron from the acceptor side of PSII
(QB

−, QC, or reduced PQH2 from the pool). Previous mutant
studies of dark-adapted leaves of the F26Sβ Cyt b559 tobacco
mutant showed a greatly reduced PQ pool, conversion of
the redox-potential form of Cyt b559 to the LP form, and
photosynthetic activities sensitive to high light (Bondarava et al.,
2003, 2010). In addition, R7Eα and R17Lβ Cyt b559 mutant
cells of Synechocystis sp. PCC 6803 and R18Sα Cyt b559 mutant
cells of T. elongatus showed markedly reduced PQ pools, altered
redox-potential forms of Cyt b559, and high susceptibility to
light stress (Chiu et al., 2013; Guerrero et al., 2014). A defect
in PQH2 oxidase activity of Cyt b559 due to altered redox-
potential forms of Cyt b559 in these mutant strains could
explain their high susceptibility to strong light and greatly
reduced PQ pools. Therefore, Cyt b559 may function as a PQH2
oxidase to keep the PQ pool and the acceptor side of PSII
oxidized in the dark, thereby preventing PSII from acceptor-side
photoinhibition (Kruk and Strzałka, 1999, Kruk and Strzalka,
2001; Bondarava et al., 2003, 2010). However, one recent study
reported no defect in PQH2 oxidation in the dark in H23Cα

mutant cells of C. reinhardtii, even though H23Cα mutant
cells contained a disrupted heme-binding pocket of Cyt b559
and were sensitive to photoinhibition (Hamilton et al., 2014).
Further studies are required to clarify this discrepancy. In
addition, study of the 2.9-Å resolution PSII crystal structure
reported the binding of QC at a hydrophobic cavity near
Cyt b559 (Guskov et al., 2009). Several spectroscopic studies
have provided evidence that the occupancy of the QC site
by PQ (or PQH2) may modulate the redox potential of Cyt
b559 and mediate the redox equilibration between Cyt b559
and the PQ pool (Kaminskaya et al., 2006, 2007; Kaminskaya
and Shuvalov, 2013). A recent study provided evidence of a
possible one-electron oxidation of PQH2 by Cyt b559 at the QC
site involved in the formation of a superoxide anion radical
(Yadav et al., 2014). The above results are consistent with
Cyt b559 possibly accepting an electron from PQH2 via the
QC site in PSII. However, the QC site was not present in
the more recent 1.9-Å PSII crystal structure (Umena et al.,
2011). Further investigations are needed to solve this important
issue.

Spectroscopic and functional characterization of the H22Kα

and Y18Sα Cyt b559 mutant cells of Synechocystis sp. PCC 6803
showed that both mutants have functional PSII and exhibited
the normal period-four oscillation in oxygen yield (Hung
et al., 2010). However, both mutants were more susceptible to
photoinhibition than the wild type under high-light conditions.
In addition, PSII core complexes from the H22Kα and Y18Sα
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mutants predominantly contained the oxidized LP form of Cyt
b559 (∼79 and 86%, respectively). A defect in the photoprotective
function of Cyt b559 in H22Kα and Y18Sα mutants could explain
their high susceptibility to strong light. Furthermore, H22Kα and
Y18Sα Cyt b559 mutants in a D1-D170A genetic background that
prevented assembly of the Mn cluster showed almost completely
abolished accumulation of PSII even under normal-growth-light
conditions. The data support an important redox role of Cyt b559
in protecting PSII under donor-side photoinhibition conditions
(Hung et al., 2010).

Furthermore, under low light, the H23Cα Cyt b559 mutant
showed more rapid assembly of the Mn4CaO5 cluster than
the wild-type control in C. reinhardtii (Hamilton et al., 2014).
However, the photoactivation of oxygen-evolving PSII in the
H23Cα mutant was inhibited under high light. The results
suggest that reduction of P680+ via cyclic electron flow within
PSII (via Cyt b559 and CarD2, Figure 2) may compete with the
photoactivation process and provides important in vivo evidence
for a photoprotective role of Cyt b559 in photo-assembly of the
Mn4CaO5 cluster in PSII (Hamilton et al., 2014).

A recent mutant study involving T. elongatus showed that
the midpoint redox potential of the HP form of Cyt b559 was
significantly destabilized (converted to the IP form) in mutant
PSII core complexes of Cyt b559 mutant strains (I14Aα, I14Sα,
R18Sα, I27Aα, I27Tα, and F32Yβ; Guerrero et al., 2014). When
the oxygen-evolving complex was inactive, the yield of dark-
reduction of Cyt b559 was lower and the kinetics was slower in
the R18Sα mutant than in wild-type cells. The results support
the concept that the HP form of Cyt b559 may function as a
PQH2 oxidase to keep the PQ pool oxidized and also as an
electron reservoir for the cyclic electron flow within PSII when
the donor-side of PSII is impaired (Guerrero et al., 2014).

Moreover, a previous spectroscopic study showed that
different spectral forms of Car were oxidized in PSII samples
containing different redox forms of Cyt b559 (Tracewell and
Brudvig, 2008). The authors proposed that the quenching
properties of PSII may be controlled by the redox form of Cyt
b559 by modulating the different type of oxidized Car species
(radical cation or neutral radical) formed in PSII. Future study
could investigate the quenching properties of PSII in the wild type
versus Cyt b559 mutant strains of cyanobacteria with different
redox forms of Cyt b559 to validate this proposal.

EFFECTS ON PHOTOSYNTHETIC LIGHT
HARVESTING

Recent mutant studies revealed a novel role of Cyt b559 in
modulating photosynthetic light harvesting in PSII reaction
centers. A spontaneously generated mutant from Synechocystis
sp. PCC 6803 wild-type cells grown in BG-11 agar plates
containing 5 mM Glu and 10 μM DCMU carried an Arg7
to Leu mutation on the alpha-subunit of Cyt b559 in PSII
(Chiu et al., 2009). Results of 77-K fluorescence and room-
temperature chlorophyll a fluorescence spectra indicated that
the energy transfer from phycobilisomes to PSII reaction
centers was partially inhibited or uncoupled in this mutant. In

addition, the cytoplasmic side of Cyt b559 is located within the
predicted contact sites in PSII for the APC core complex of the
phycobilisome (Barber et al., 2003). The Arg7 to Leu mutation of
Cyt b559 may alter the interaction between the APC core complex
and PSII reaction centers, thereby reducing energy delivery from
the antenna to the reaction center and protecting mutant cells
against DCMU-induced photo-oxidative stress (Rutherford and
Krieger-Liszkay, 2001).

Many cyanobacteria including Synechocystis sp. PCC 6803
have a novel blue-green light-induced NPQ mechanism to
protect PSII reaction centers against photodamage under high-
light stress (Kirilovsky and Kerfeld, 2012). Under high-light
conditions, a soluble orange carotenoid protein is able to absorb
blue–green light and undergoes photo-conversion into the active
red form, which interacts with the APC core of the phycobilisome
and dissipates excess excitation energy from the phycobilisome
as heat. Interestingly, several Synechocystis sp. PCC 6803 mutant
cells (e.g., R7Lα and R17Lβ) with mutations on the cytoplasmic
side of Cyt b559 in PSII showed significant inhibition of the effects
of blue–green light-induced NPQ and apparent acceleration on
its recovery (Chiu et al., 2013). These results are consistent
with the proposal that the mutations on Cyt b559 may alter the
interaction between the phycobilisome and PSII reaction centers,
thereby affecting the regulation of photosynthetic light harvesting
in Synechocystis sp. PCC 6803.

CONCLUSION AND PERSPECTIVES

Site-directed mutagenesis studies combined with spectroscopic
and functional characterization have revealed multiple roles of
Cyt b559 in the assembly and photoprotection of PSII reaction
centers. The findings provide convincing evidence for the
physiological role(s) of Cyt b559 in a photoprotective secondary
electron transfer pathway within PSII reaction centers, as was
suggested from earlier studies of isolated PSII complexes (reviews
in Whitmarsh and Pakrasi, 1996; Stewart and Brudvig, 1998;
Shinopoulos and Brudvig, 2012). In the near future, site-directed
mutagenesis studies combined with advanced high-resolution
protein crystallography and spectroscopic and functional analysis
will provide further new insights (e.g., structure and function
relationships for different redox forms of Cyt b559) and possibly
the final proof of the molecular mechanisms of Cyt b559 in
PSII.
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