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Photosystem II (PSII), which catalyzes photosynthetic water oxidation, is composed of
more than 20 subunits, including membrane-intrinsic and -extrinsic proteins. The PSII
extrinsic proteins shield the catalytic Mn4CaO5 cluster from the outside bulk solution and
enhance binding of inorganic cofactors, such as Ca2+ and Cl−, in the oxygen-evolving
center (OEC) of PSII. Among PSII extrinsic proteins, PsbO is commonly found in all
oxygenic organisms, while PsbP and PsbQ are specific to higher plants and green algae,
and PsbU, PsbV, CyanoQ, and CyanoP exist in cyanobacteria. In addition, red algae
and diatoms have unique PSII extrinsic proteins, such as PsbQ′ and Psb31, suggesting
functional divergence during evolution. Recent studies with reconstitution experiments
combined with Fourier transform infrared spectroscopy have revealed how the individual
PSII extrinsic proteins affect the structure and function of the OEC in different organisms.
In this review, we summarize our recent results and discuss changes that have occurred
in the structural coupling of extrinsic proteins with the OEC during evolutionary history.
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INTRODUCTION

Photosystem II (PSII) is a key protein complex involved in light-energy conversion reactions
in photosynthesis. PSII converts light energy into the electrochemical potential energy required
to split water into H+, electrons, and molecular oxygen (Debus, 1992). The PSII complex is
composed of more than 20 subunits, with CP47, CP43, D1, D2, Cyt b559 α- and β-subunits,
and PsbI comprising the reaction center complex (Satoh, 2008). In addition, a number of small
peripheral subunits stabilize the PSII core (Pagliano et al., 2013). Recent X-ray structural analysis
of the cyanobacterial PSII complex has revealed the location of most subunits, pigments, and redox
cofactors (Ferreira et al., 2004; Guskov et al., 2009; Umena et al., 2011; Suga et al., 2015). In PSII,
light excitation of the primary donor P680, comprising a special pair of chlorophyll (Chl) a, results
in electron transfer to a nearby pheophytin, followed by electron transfer to the acceptor quinones
(QA and QB). The resulting cation radical of P680+ receives electrons via a redox-active tyrosine of
D1, YZ, from the Mn4CaO5 cluster. The Mn4CaO5 cluster converts two water molecules into one
molecular oxygen and four protons through a light-driven cycle consisting of five intermediates
called Si states (i = 0–4; McEvoy and Brudvig, 2006). Among them, the S1 state is the most dark-
stable, and flash illumination advances each Si state (i = 0–3) to the next Si+1 state. Molecular
oxygen is released during the S3–S4–S0 transition after the transient S4 state (Vinyard et al., 2013).
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The mechanism of water oxidation and the subunit structure
of the PSII core are highly conserved across oxygenic
photosynthetic organisms ranging from cyanobacteria to
flowering plants, while the composition of the extrinsic
subunits of PSII surrounding the catalytic Mn4CaO5 cluster
has undergone a large evolutionary change (Bricker et al., 2012;
Ifuku, 2015; Figure 1). Green eukaryotes including higher
plants and green algae have a set of three extrinsic proteins —
PsbO, PsbP, and PsbQ — that bind to the lumenal surface
of PSII. In cyanobacterial PSII, PsbV, and PsbU are present
instead of PsbP and PsbQ (Shen and Inoue, 1993). Furthermore,
cyanobacteria have PsbP and PsbQ homologs (CyanoP and
CyanoQ, respectively; Kashino et al., 2002; Thornton et al.,
2004), but these proteins are not yet included in the current
crystal structures. Furthermore, there are multiple homologs of
PsbP and PsbQ in the chloroplast thylakoid lumen and some
of them play important roles in the assembly and stability of
various thylakoid membrane complexes including PSII, PSI,
and the chloroplast NADH dehydrogenase-like complex (Ifuku
et al., 2008, 2010, 2011a; Bricker et al., 2013; Ifuku, 2014). These
facts suggest that PsbP and PsbQ proteins in green plants have
evolved from their cyanobacterial homologs, where considerable
genetic and functional modifications have occurred to generate
the present eukaryotic forms.

In red algae and diatoms, PsbQ′, a 20-kDa homolog of
CyanoQ, is bound to PSII as an extrinsic subunit in addition
to PsbO, PsbU, and PsbV (Ohta et al., 2003). Diatoms possess
an additional specific extrinsic subunit, Psb31 (Okumura et al.,
2008), and recent structural analysis suggests that Psb31 might be
a homolog of PsbQ (Nagao et al., 2013). Although high-resolution

FIGURE 1 | Differences in subunit composition of the extrinsic proteins
of photosystem II (PSII). Only PsbO (O) has remained in all photosynthetic
organisms. In higher plants, PsbV (V) and PsbU (U) were lost, while PsbP (P)
and PsbQ (Q) have been derived from CyanoP (cP) and CyanoQ (cQ),
respectively. Green algal PSII is basically similar to that in higher plants,
whereas green-algal PsbQ is more similar to PsbQ′ (not shown). CyanoP has
been excluded from the model, because its stable association with PSII is still
unclear. In red algae and diatoms, PsbQ′ (Q′) has developed from CyanoQ; in
addition, Psb31 (31) is found in diatoms. These models do not show the exact
location and interaction of the PSII extrinsic subunits.

structures of individual PSII extrinsic subunits have been
reported for eukaryotes (Calderone et al., 2003; Ifuku et al.,
2004; Balsera et al., 2005; Kopecky et al., 2012; Cao et al., 2015),
their binding sites and topologies have not been determined
because crystallographic information derived from prokaryotic
cyanobacterial PSII cannot be fully applied to eukaryotic PSII.

A number of reviews have been published about function,
structure, and evolution of PSII extrinsic proteins in various
photosynthetic organisms (Roose et al., 2007b; Enami et al., 2008;
Ifuku et al., 2008, 2011b; Bricker and Frankel, 2011; Bricker
et al., 2012; Ifuku, 2014, 2015). In this review, we focus on the
structural coupling of extrinsic proteins with the oxygen-evolving
center (OEC) in different photosynthetic organisms, which
has been investigated by reconstitution experiments combined
with light-induced Fourier transform infrared (FTIR) difference
spectroscopy (Tomita et al., 2009; Ido et al., 2012; Uno et al.,
2013; Nishimura et al., 2014; Nagao et al., 2015). This technique
can detect the structural changes in the OEC in the S-state
transitions, including the changes in the secondary structures of
polypeptide main chains, amino acid side chains, and hydrogen
bond networks of proteins and water molecules (Noguchi, 2007,
2015; Debus, 2015). The results of FTIR are evaluated in light
of the current knowledge on the subunit interactions in PSII
and also discussed in terms of the changes that occurred during
evolution.

HIGHER PLANTS

Functions of Extrinsic Proteins in PSII,
Briefly
The molecular functions of the extrinsic proteins in higher
plants have been intensively analyzed by release-reconstitution
experiments using PSII-enriched membrane preparations (BBY
membranes; Berthold et al., 1981). Briefly, PsbO is most strongly
bound to PSII and stabilizes the Mn cluster (Kuwabara et al.,
1985). PsbP is involved in Ca2+ and Cl− retention in PSII
(Ghanotakis et al., 1984a), and PsbQ participates primarily in
Cl− retention (Akabori et al., 1984; Miyao and Murata, 1985). In
addition, PsbP and PsbQ have a role in protecting the Mn cluster
from reductants in the bulk solution (Ghanotakis et al., 1984b). It
is reasonable that PsbO, commonly found in PSII in all oxygenic
photosynthetic organisms, is essential for the accumulation and
assembly of PSII in planta (Murakami et al., 2002; Yi et al.,
2005). In addition, genetic studies using knockdown or knockout
plants have suggested that PsbP, but not PsbQ, is essential for
the oxygen-evolving activity of PSII in vivo (Ifuku et al., 2005b;
Yi et al., 2007), suggesting that the development of the PsbP
protein as an extrinsic subunit would be the crucial event for PSII
function during evolution (Ido et al., 2009; Ifuku et al., 2011b).
PsbQ is reported to be required for PSII stability under prolonged
low-light conditions (Yi et al., 2006).

It was suggested that PsbP and PsbQ also play an important
role in stabilizing the architecture of the PSII-light-harvesting
complex (LHC) II supercomplexes in higher plants (Ifuku
et al., 2011b). PsbP knockdown by RNAi caused a severe
decrease in the levels of PSII-LHCII supercomplexes, whereas
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the amounts of unattached LHCII trimers and minor LHCs
were significantly increased (Ido et al., 2009). Similarly, the
abundance of PSII-LHCII supercomplexes decreased in mutants
lacking PsbQ and/or PsbR (Allahverdiyeva et al., 2013). PsbR
is another subunit, mostly extrinsic and specifically found in
green plants, which stabilizes the binding of PsbP (Suorsa et al.,
2006; Allahverdiyeva et al., 2007; Liu et al., 2009). Furthermore,
depletion of PsbQ and/or PsbR affects short-term regulatory
mechanisms such as state transitions and non-photochemical
quenching (Allahverdiyeva et al., 2013). These observations
are relevant to the chemical-crosslinking study showing the
interaction of PsbP and PsbQwith a minor antenna protein CP26
and the inner core antenna CP43 (Ido et al., 2014).

Structural Coupling with the OEC
The importance of PsbP in structural coupling with the OEC
has been suggested by in vitro reconstitution studies combined
with FTIR measurements (Tomita et al., 2009). PSII membranes
depleted of PsbP and PsbQ by NaCl washing showed clear
changes in amide I bands (1700-1600 cm−1; C=O stretches
of backbone amides), which reflect structural changes in
polypeptide main chains, in S2-minus-S1 FTIR difference spectra
(Figure 2), whereas no appreciable changes were observed in
the bands of carboxylate and imidazole groups, which arise from
ligands or the immediate surroundings of the Mn4CaO5 cluster.
Further depletion of PsbO by CaCl2 washing did not induce
further changes (Figure 2). The original amide I features were
recovered by reconstitution of the NaCl-washed PSII membranes
with a recombinant PsbP heterologously expressed in Escherichia
coli, and the same recovery was observed with 13C-labeled
PsbP (Tomita et al., 2009). These results indicate that the PsbP
protein, but not PsbQ or PsbO, affects the protein conformation
around the Mn4CaO5 cluster in the intrinsic proteins without
changing the immediate interactions of the Mn4CaO5 cluster in
the OEC.

It should be noted that controversial data have recently been
reported stating that the removal of PsbP and PsbQ from the PSII
core preparations of spinach showed no significant effect on the
S2-minus-S1 spectrum (Offenbacher et al., 2013). However, the
control spectrum in this report showed an amide I feature typical
of PsbP-depleted PSII: lower and higher intensities at the 1668
and 1686 cm−1 peaks, respectively (Figure 2). We thus speculate
that the control PSII sample was actually depleted of PsbP and
PsbQ during FTIR measurement, possibly by the presence of
potassium ferricyanide in addition to 20 mM CaCl2.

The structural coupling of PsbP with the OEC has been
studied by truncation and site-directed mutagenesis. Table 1
summarizes the results of our reconstitution-FTIR experiments,
while Figure 3 shows the amide I region of the FTIR double
difference (untreated-minus-treated) spectra. The positions of
mutated amino-acid residues are indicated in the cartoon model
of the spinach PsbP structure reported recently (Cao et al., 2015;
(Figure 4). Overall, the abilities of mutated PsbPs to restore
the structural changes around the OEC correlate well with the
oxygen-evolving activity reconstituted by each PsbP species. This
strongly suggests the tight structural coupling of PsbP with the
OEC in higher plant PSII.

FIGURE 2 | (A) Amide I region of the S2-minus-S1 FTIR difference spectra
(red lines) of NaCl-washed (a), CaCl2-washed (b), and NaCl-washed,
PsbP-reconstituted (c) PSII membranes in comparison with the spectrum of
untreated PSII membranes (blue lines). A green line in (c) is the spectrum of
PSII reconstituted with 13C-labeled PsbP. (B) Double-difference spectra
between the S2-minus-S1 spectra of treated and untreated PSII samples. (a)
untreated-minus-NaCl-washed PSII; (b) untreated-minus-CaCl2-washed PSII;
(c) untreated-minus-NaCl-washed, PsbP-reconstituted PSII. Reproduced from
Tomita et al. (2009).

TABLE 1 | Effects of various PsbP mutations on structural coupling with
the oxygen-evolving center (OEC).

PsbP aO2

activity

bBinding
to PSII

cFTIR Reference

Wild-type (spinach) ++++ ++++ © Tomita et al., 2009

�9

�15

�19

++

–

–

+++

–

–

n.d.

×

n.d.

Miyao et al., 1988;
Ifuku et al., 2008
Ifuku et al., 2005a;
Tomita et al., 2009;
Kakiuchi et al., 2012
Ifuku and Sato, 2002

K160A
K143A
R48A
K143A/R48A
K143A/K160A/R48A
K11A
K13A

++
++
++
+
–
++++
++++

+++
+++
+++
+
–
+++
+++

×
×
�
n.d.
n.d.
n.d.
n.d.

Nishimura et al.,
2014

H144A
D165V
E177V
H144A/D165V

+
++++
++++
++++

++++
++++
++++
++++

×
©
n.d.
©

Ido et al., 2012

aO2-evolving activities were measured in buffer depleted of Ca2+ and Cl−. The
activity restored by binding of mutant PsbP is indicated by the number of plus
signs (+). A minus sign (−) indicates no recovery. bBinding to PSII was estimated
by imaging SDS-PAGE gels. The binding affinity of mutant PsbP to PSII is indicated
by the number of plus signs (+). A minus sign (−) indicates no binding to PSII.
cRecovery of the amide I bands in the S2-minus-S1 FTIR difference spectra, which
were measured in the presence of Ca2+ and Cl−. ©, full recovery; �, partial
recovery;×, no recovery; n.d., not determined.

Noticeably, reconstitution with �15-PsbP, in which the 15
N-terminal residues were truncated, did not restore the amide I
bands, indicating that the interaction of the N-terminal region
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FIGURE 3 | Amide I region of untreated-minus-treated double
difference spectra of the S2QA

−-minus-S1QA FTIR spectra of PSII
membranes from spinach. PSII membranes were NaCl-washed (a) and
then reconstituted with WT- (b), �15- (c), K160A- (d), K142A- (e), R48A- (f),
H144A- (g), D165V- (h), and H144A/D165V- (i) PsbP. Reproduced from Ido
et al. (2012), Kakiuchi et al. (2012), and Nishimura et al. (2014).

would be responsible for inducing the conformational changes
around the OEC (Tomita et al., 2009). In fact, �15-PsbP did not
restore the Ca2+ and Cl− retention ability upon rebinding to
PSII (Ifuku and Sato, 2002). It was found that additional binding
of PsbQ partly restores the ability of �15-PsbP to induce the
proper conformational changes and activate oxygen evolution
in the OEC (Kakiuchi et al., 2012). These facts suggest that
the N-terminal region of PsbP is not essential but may have a
function in recruiting PsbP to the proper binding site to induce
the conformational changes. PsbQ would have an auxiliary role
in supporting PsbP binding and function in higher plants.

The central αβα structure of PsbP in its C-terminal domain
is also important for the interaction with PSII to induce the
conformational change in the OEC. The PsbP surface has a
basic region consisting of conserved Arg48, Lys143, and Lys160,
and the mutations of R48A, K143A, and K160A result in lower
binding affinity with PSII, and double and triple mutation
of those residues severely diminishes their binding to PSII
(Nishimura et al., 2014). Even when a saturating amount of
protein is used for the reconstitution, the R48A, K143A, and

K160A proteins cannot restore the rate of oxygen evolution
fully at low chloride concentrations. The results of FTIR were
consistent with the above finding, showing that these mutated
proteins are not able to induce the normal conformational change
around the Mn cluster during the S1-to-S2 transition. The above
observations suggest that the basic surface of PsbP is involved
in the electrostatic interaction with the PSII complex. This
binding topology of PsbP is further supported by a recent study
using synchrotron radiolysis of water to further define buried
surface regions by modification with OH· (Mummadisetti et al.,
2014).

We also investigated the role of the structure around His-
144 and Asp-165 in the C-terminal domain of PsbP, which is
suggested to be a metal binding site in PsbP (Ido et al., 2012).
PsbP with an H144A mutation shows a reduced ability to retain
Cl− anions in PSII, whereas the D165V mutation does not affect
PsbP function. In FTIR, PsbP-H144A could not restore proper
interaction with PSII inducing the conformational change around
the Mn cluster during the S1-to-S2 transition. Consistently,
mutations of K166A and K170A near His144 are suggested to
affect the PsbP binding to PSII (Tohri et al., 2004). Unexpectedly,
the H144A/D165V double mutation suppresses the defect caused
by H144A mutation. Presumably, His-144 and Asp-165 form a
salt bridge and H144A mutation would disrupt this bridge and
liberate Asp-165, inhibiting the proper PsbP-PSII interaction.
These residues therefore have a role other than metal binding.
The recently observed crystal structure of spinach PsbP suggests
an additional binding site for Mn2+ coordinated by Asp-98 (Cao
et al., 2015). The authors speculated that Mn-binding in this
site may induce conformational change of PsbP during the PSII
damage–repair cycle. However, PsbPs of some plant species, such
as Arabidopsis and cucumber, have Ala-98 instead of Asp-98.
To discuss the physiological importance of the metal binding
site observed in the crystal structures, it is necessary to evaluate
the exact metal binding constant for each binding site. Further
characterization of mutated PsbP proteins in vivo will provide
conclusive results.

Interaction within the PSII Supercomplex
The historical model of the organization of the extrinsic
subunits in higher plants is that PsbO binds directly to the
PSII core, followed by PsbP binding to PsbO, and then
PsbQ binding to PsbP or PsbO. However, recent studies
using chemical cross-linking combined with mass spectrometry
suggest the direct interactions of PsbP and PsbQ with
membrane-intrinsic PSII subunits. Using the zero-length cross-
linker 1-ethyl-3-(3-diethylaminopropyl) carbodiimide (EDC),
interactions between PsbP and PsbE and between PsbP and
PsbR were detected (Ido et al., 2012, 2014). In addition, PsbP
and PsbQ were further linked to the CP26 and CP43 light-
harvesting proteins. Furthermore, the cross-linked sites between
PsbP:Ala-1 and PsbE:Glu-57, PsbP:Lys-27 and PsbR:Asp-22, and
PsbP:Lys-174 and CP26:Glu-96 were identified by tandem mass
spectrometry. The above information allows us to evaluate the
binding manner of extrinsic proteins in the PSII supercomplex
in higher plants (Ido et al., 2014) in light of the FTIR
studies.
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FIGURE 4 | The proposed interaction surface of the extrinsic PsbP protein with the PSII core. The basic amino-acid residues important for the structural
coupling with the OEC are labeled and shown as blue sphere models in a spinach PsbP crystal structure (PDB ID: 4RTI, Cao et al., 2015). Asp-165 and His-144,
shown as red and cyan spheres, make a salt bridge required for the proper interaction with PSII (Ido et al., 2012). Lys-27 and Lys-174, shown as gray spheres, are
suggested to interact with PsbR and CP26, respectively (Ido et al., 2014). A black arrow indicates the N-terminal sequence of PsbP extended to interact with PsbE.
Interactions around CP26 and PsbR are also schematically indicated. See text for detail.

The possible candidates for the polypeptide chains affected by
PsbP during the S1 to S2 transition are those interacting with the
Mn4CaO5 cluster and Cl− ions via ligation or direct hydrogen
bonding. In the cyanobacterial PSII core complex, the Mn4CaO5
cluster and one Cl− ion interact with a number of residues in the
C-terminal region of the D1 protein, as well as the Glu-354 and
Arg-357 of the CP43 proteins (Umena et al., 2011). In addition,
another Cl− ion is coordinated by Lys-317 on the D2 protein
(Kawakami et al., 2009). These two Cl− bindings are suggested
to be important for the coordination structure of the Mn4CaO5
cluster and/or for proposed proton channels, thereby keeping
the OEC fully active (Pokhrel et al., 2013; Suzuki et al., 2013).
Our cross-linking study suggested that PsbP may change the
structure of CP43 to induce structural changes around the OEC
(Ido et al., 2014). Alternatively, interaction of the N-terminal
region of PsbP with PsbE and PsbR, and possibly PsbJ, may affect
the structure of D2 by inducing changes around the Cl− binding
site. This binding manner of PsbP may be similar to that of PsbV
in cyanobacterial systems, as has been suggested in recent reviews
(Bricker et al., 2015; Ifuku, 2015).

It should be noted that a later study using a cross-linker
bis-sulfosuccinimidyl suberate (BS3), which has a spacer length
of 11.4 Å, has proposed another binding model of PsbP and
PsbQ in higher plants’ PSII (Mummadisetti et al., 2014). Cross-
linking by BS3 failed to detect an interaction between extrinsic
and intrinsic PSII proteins, while it indicated that the N-terminal
15-amino-acid residue domain of PsbP was in close proximity
(≤11.4 Å) to the C-terminal region of PsbP. Assuming that PsbP
and PsbQ are located near the interface between CP43 and CP26,
the N-terminal sequence of PsbP should extend toward PsbE

(Ido et al., 2012, 2014); however, this model was unsupported
by BS3 crosslinking experiments. Attempts to reconcile this
discrepancy have been made in the recent reviews by Ifuku
(2015). High-resolution structural analysis is required to reveal
the detailed extrinsic lumenal relationships in the PSII-LHCII
supercomplex.

OTHER EUKARYOTIC ALGAE

Red Algae
Red algae have PsbV, PsbU, and PsbQ′ in addition to the
common PsbO. Enami et al. (1998) performed reconstitution
of the PSII core complexes of Cyanidium caldarium with these
extrinsic proteins in various combinations. PsbO and PsbQ′
were independently bound to PSII, whereas PsbV and PsbU
required binding of PsbO and could fully bind only in the
presence of both PsbO and PsbQ′. The O2-evolution activity
was recovered step by step in the course of reconstitution
(Figure 5B, blue bars). Uno et al. (2013) examined the effect
of rebinding the extrinsic proteins to the core complexes of
C. caldarium on the OEC protein conformation by S2-minus-
S1 FTIR measurements. The vibrations of carboxylate groups
were virtually unchanged even by removal of all extrinsic
proteins, indicating that the interactions of the Mn4CaO5 cluster
were not affected by extrinsic proteins. By contrast, amide I
and II bands, reflecting changes in polypeptide main chains,
were significantly altered by the removal and rebinding of
extrinsic proteins (Figure 5A). The extent of the recovery of the
amide I and II bands by reconstitution with extrinsic proteins

Frontiers in Plant Science | www.frontiersin.org 5 February 2016 | Volume 7 | Article 84

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


Ifuku and Noguchi Extrinsic Subunits of Photosystem II

FIGURE 5 | (A) Recovery of amide I and II bands in FTIR spectra upon reconstitution of PSII core complexes of Cyanidium caldarium with extrinsic proteins. Double
difference spectra between the S2-minus-S1 FTIR difference spectra of reconstituted and untreated PSII samples are shown. The samples involved 10 mM CaCl2.
(B) Comparison of the recovery of the FTIR amide I and II bands (red bars) with that of O2 evolution (blue bars: taken from Enami et al., 1998) upon reconstitution
with extrinsic proteins. The amounts of reconstituted extrinsic proteins are indicated as figures in parentheses. O2 evolution was measured in the presence of 50 mM
CaCl2 (Enami et al., 1998). Reproduced from Uno et al. (2013).

(Figure 5B, red bars) correlated well with that of O2-evolution
activity (blue bars), revealing a direct relationship of the protein
conformation of the OEC with its activity. It was shown that
PsbV binding mainly contributed to the restoration of the protein
conformation of the OEC, resembling the function of PsbP
in higher plants. PsbU seemed to support the proper binding
of PsbV, which is analogous to PsbQ in higher plants. These
facts support a model proposed by Ido et al. (2014), in which
PsbP in higher plant PSII occupies a position roughly similar
to that occupied by PsbV in the cyanobacterial crystal structure
(Ifuku, 2015). Crystallization and preliminary X-ray diffraction
analysis have already been reported (Adachi et al., 2009), so
that the structure of red algal PSII will be available in the near
future.

Diatoms
Diatom PSII contains a fifth extrinsic protein, Psb31, in addition
to the four red algal-type extrinsic proteins. Psb31 is suggested
to have originated via a secondary endosymbiosis event (Nagao
et al., 2013). Reconstitution experiments using proteins from
a centric diatom, Chaetoceros gracilis, have suggested that
Psb31 binds directly to PSII intrinsic proteins. Noticeably, PSII
reconstituted with Psb31 alone can partially restore oxygen-
evolving activity in the absence of PsbO, suggesting that Psb31
has a novel and specific function in diatom PSII. Analysis
of the crystal structure of Psb31 has revealed a four-helix
bundled structure showing partial structural similarity with
PsbQ family proteins (Nagao et al., 2013). Thus, two copies
of PsbQ-like proteins with different binding and functional
properties seem to be present as extrinsic subunits in the diatom
PSII. A further study using FTIR is required to elucidate the

structural coupling of those extrinsic proteins with the OEC
in diatoms. Crystallization and preliminary X-ray diffraction
analysis of the diatom PSII complex have not yet been
reported.

CYANOBACTERIA

Molecular Functions of Extrinsic
Proteins, Briefly
The crystal structure of PSII from Thermosynechococcus vulcanus
(Umena et al., 2011) shows the location and interaction of
cyanobacterial PSII extrinsic subunits PsbO, PsbU, and PsbV
on the lumenal surface of PSII. Each extrinsic protein has
multiple interactions with both membrane-intrinsic and -
extrinsic subunits of PSII, affecting the stabilization of the
complex as a whole. In brief, PsbO interacts with CP43, CP47,
D1, D2, and PsbU subunits, PsbU interacts with CP47, PsbO,
and PsbV, and PsbV interacts with CP43, D1, D2, and PsbU.
Detailed information about the amino acid residues involved
in these interactions have been summarized by Bricker et al.
(2012). Although none of these proteins provide a ligand to
the catalytic Mn4CaO5 cluster, they have critical roles: they
protect the metal cluster from reductants outside the PSII
complex and optimize the required ionic environments, such
as those of Ca2+ and Cl−, in the OEC. The functions of
each PSII extrinsic subunit have been intensively studied by
deletion mutagenesis of cyanobacterial cells (Seidler, 1996;
Bricker et al., 2012). It is of note that crystal structures and
theoretical calculations suggest another role of the extrinsic
proteins — namely, the maintenance of access channels for
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substrate water to the Mn4CaO5 cluster and exit channels for
the products (molecular oxygen and protons; Linke and Ho,
2014; Vogt et al., 2015). A number of amino acid residues in
the extrinsic proteins have been predicted to be associated with
these channels, but their actual roles still need to be investigated
experimentally.

Structural Coupling with the OEC
Nagao et al. (2015) recently reported the FTIR measurements
of S2-minus-S1 difference spectra using PSII core complexes
from T. elongatus reconstituted with its extrinsic proteins, PsbO,
PsbV, and PsbU. Under the condition of low-concentration
CaCl2 (5 mM), the spectral intensity was mostly lost when
all the extrinsic proteins were removed, whereas the intensity
in the carboxylate region was fully recovered by the binding
of PsbO, revealing the significant role of PsbO in stabilizing
the Mn4CaO5 cluster at a low CaCl2 concentration. Even
at a high CaCl2 concentration (100 mM), amide I bands
were significantly affected by removal of all the extrinsic
proteins, indicative of the protein conformational changes
in the OEC (Figure 6). The bands largely recovered when
PsbO was bound, and further stepwise recoveries were
observed by the binding of PsbV and then PsbU. Thus, in
cyanobacteria, the binding of PsbO seems mainly to determine
the conformation of the OEC. PsbV and PsbU induced the
recovery of specific amide I bands, and hence it was suggested
that these extrinsic proteins affected different regions of
polypeptide chains from those affected by PsbO. PsbO and
PsbV have multiple interactions with different membrane-
intrinsic subunits of PSII. This makes it difficult to assign the
exact polypeptide regions affected by PsbO and PsbV during
the S1-to-S2 transition. Nevertheless, the recoveries of the
OEC protein conformation were very consistent with those
of O2-evolution activity upon reconstitution with extrinsic
proteins reported by Shen and Inoue (1993), suggesting again
the correlation between the OEC activity and its protein
conformation.

CyanoP and CyanoQ
It has been known that cyanobacteria have ancestral homologs
of eukaryotic PsbP and PsbQ, CyanoP, and CyanoQ (De Las
Rivas et al., 2004). Their involvement in Ca2+ and Cl− retention
has been suggested (Thornton et al., 2004; Aoi et al., 2014),
however, they are not included in current crystal structures
of PSII from thermophilic cyanobacteria (Umena et al., 2011).
CyanoQ is reported to bind PSII tightly and to optimize
oxygen evolution (Roose et al., 2007a), and a recent study
using chemical cross-linking suggests that CyanoQ is closely
associated with PsbO and CP47 proteins in Synechocystis sp.
PCC 6803 (Liu et al., 2014). Furthermore, two molecules of
CyanoQ may interact at the interface of the PSII dimers,
indicating that CyanoQ, together with PsbO, is important for
PSII dimer stability (Liu et al., 2014). Binding of multiple
CyanoQ copies to the PSII assembly intermediates without
PsbU and PsbV was recently reported (Liu et al., 2015).
Similarly, interaction of CyanoP with the binding site in
PSII, which is occupied by the PsbO subunit in mature

FIGURE 6 | Amide I region of the untreated-minus-treated
double-difference spectra of the S2-minus-S1 difference spectra of
the PSII core complexes from cyanobacterium Thermosynechococcus
elongatus. PSII core complexes were depleted of all the extrinsic proteins (a)
and then reconstituted with PsbV (b), PsbO (c), PsbO/V (d), and PsbO/V/U
(e). The samples involved 100 mM CaCl2. Reproduced from Nagao et al.
(2015).

PSII complexes, was suggested (Cormann et al., 2014). These
facts suggest that localizations of CyanoP and CyanoQ in
cyanobacterial PSII would be largely different form those of
PsbP and PsbQ in higher plant PSII. It is likely that both
CyanoP and CyanoQ have auxiliary functions in regulating and
stabilizing the association of the extrinsic subunits with the PSII
core.

FUNCTIONAL CHANGES DURING
EVOLUTION

Cyanobacteria are thought to be an ancestor of chloroplasts
in both the red lineage involving red algae and diatoms and
the green lineage involving green algae and higher plants.
Reconstitution and FTIR studies mentioned above showed that
PsbO, PsbV, and PsbP are mainly responsible for determining the
protein conformation of the OEC in cyanobacteria (Nagao et al.,
2015), red algae (Uno et al., 2013), and higher plants (Tomita
et al., 2009), respectively. The FTIR results obtained so far are
summarized in a schematic diagram of the relationship between
the OEC conformation and the binding of the extrinsic proteins
(Figure 7). The protein conformation of the OEC detected
by FTIR amide I bands directly correlated with O2-evolution
activity in all the cases. It probably regulates the binding of
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FIGURE 7 | Schematic view of the effects of the extrinsic proteins on the protein conformation of the OEC in different photosynthetic organisms. (a)
Upon depletion of all the extrinsic proteins, the protein conformation of the OEC is significantly altered. (b) Binding of PsbO does not restore the structure of the OEC
in higher plants and red algae, but largely restores it in cyanobacteria. (c) Further binding of PsbP can restore the structure of the OEC mostly in higher plants, while
both PsbV and PsbU are required for full recovery in red algae and cyanobacteria. PsbQ and PsbQ′ function to stabilize the binding of PsbP and PsbV, respectively.

Ca2+ and Cl− ions in the OEC by changing the dissociation
constants and/or the energy barrier in releasing and binding
reactions.

It is interesting that although PsbO was conserved in all
oxyphototrophs, its function was not fully conserved and the
function of regulating the OEC conformation was transferred
to PsbV and PsbP in the red and green lineages, respectively,
during evolution. This suggests that PsbP and PsbQ did not
simply replace the functions of PsbV and PsbU, necessitating a
substantial reconsideration of historical concepts regarding the

evolution of the extrinsic subunits of PSII. PsbO undoubtedly
keeps the important function of stabilizing the Mn4CaO5 cluster
in all species. It is possible that PsbV or PsbP took over the
specific function of the regulation of protein conformations
from PsbO to realize a more delicate control over the O2-
evolving reaction without the destruction of the Mn4CaO5
cluster. By contrast, the function of PsbU in cyanobacteria
as supporting the binding of PsbV seems to remain in red
algae but be transferred to PsbQ, which stabilizes the binding
of PsbP, in higher plants (Kakiuchi et al., 2012). It has been
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reported that CyanoQ in cyanobacterial PSII also stabilizes the
PsbV binding to PSII, thereby contributing to the protection
of the catalytic Mn cluster of the OEC (Kashino et al., 2006).
Interestingly, PsbQ′ in red algal PSII is required for the stable
binding of PsbV (Enami et al., 1998). Presumably, the molecular
functions of CyanoQ, PsbQ′, and PsbQ are partly conserved
during evolution, while the interacting partner has changed from
PsbV to PsbP. Further studies will reveal how the variations
of PSII extrinsic proteins confer functional differences to PSII,
presumably by fine tuning of the light-induced charge separation
and the OEC reactivity, and how they affect the processes of the
assembly and repair of the entire PSII complex.
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