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Cyanobacteria and chloroplasts perform oxygenic photosynthesis, and share a common
origin. Galactolipids are present in the photosynthetic membranes of both cyanobacteria
and chloroplasts, but the biosynthetic pathways of the galactolipids are significantly
different in the two systems. In this minireview, we explain the history of the discovery of
the cyanobacterial pathway, and present a probable scenario of the evolution of the two
pathways.
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INTRODUCTION

Cyanobacteria perform oxygenic photosynthesis like chloroplasts of land plants and algae. The
initial reactions of photosynthesis such as photochemical reactions, electron transport reactions,
and ATP synthesis are performed in the thylakoid membranes, namely, flattened sac-like
membranes specialized for photosynthesis. Thylakoid membranes are built up with galactolipids
and acidic lipids. There are two major classes of galactolipids, monogalactosyl diacylglycerol
(MGDG) and digalactosyl diacylglycerol (DGDG), which are both major components of all
thylakoid membranes, in other words, typical of photosynthetic organisms. MGDG was shown to
be required for normal development of chloroplasts (Kobayashi et al., 2007, 2013). The universality
of galactolipids in photosynthetic membranes has been understood in terms of endosymbiotic
theory, namely, that chloroplasts originated from cyanobacteria (see for example, Sato, 2001, 2006;
Petroutsos et al., 2014).

Biosynthesis of these galactolipids is, however, quite different in cyanobacteria and chloroplasts
(Figure 1). In the chloroplasts of land plants, MGDG is synthesized by galactosylation of
diacylglycerol (DAG), and DGDG is synthesized by the second galactosylation of MGDG
(Shimojima and Ohta, 2011; Dörmann, 2013). In contrast, cyanobacteria have monoglucosyl
diacylglycerol (GlcDG; Feige et al., 1980), which serves as a precursor to MGDG (Sato and Murata,
1982a). The conversion of GlcDG to MGDG was presumed to be epimerization, namely, the
isomerization at the C-4 of the glucose moiety (Sato and Murata, 1982a). The glucosyltransferase
activity was subsequently demonstrated (Sato and Murata, 1982b), while the enzymatic activity
of the epimerase has never been detected in vitro. This was the reason why the epimerization
hypothesis remained elusive until the identification of the responsible gene (Awai et al., 2014).
Plant galactosyltransferases for the synthesis of MGDG and DGDG have been identified in the late
1990s and named MGD1 (Shimojima et al., 1997) and DGD1 (Dörmann et al., 1999), respectively,
and homologs MGD2/3 and DGD2 were found later. In contrast, the enzymes involved in the
synthesis of galactolipids in cyanobacteria have been uncharacterized until quite recently.
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IDENTIFICATION OF THE
ENZYMES/GENES FOR THE SYNTHESIS
OF GALACTOLIPIDS

Identification of Glycosyltransferases (GT)
Awai et al. (2006) identified the gene mgdA encoding the
glucosyltransferase for the synthesis of GlcDG in Synechocystis sp.
PCC 6803. The enzyme MgdA belongs to the glycosyltransferase
(GT) family 2, and its domain structure was quite different
from the plant galactosyltransferases MGD1/2/3, which
belong to the GT 28, according to the CAZy database
(Lombard et al., 2014). They also contain different InterPro
domains (Mitchell et al., 2015). Homologs of MGD1 were
found in green non-sulfur (GNS) bacteria (Yuzawa et al.,
2012; Supplementary Figure S1; see Cluster 2103 of dataset
Gclust2012_42 in comparative genomic database Gclust: Sato,
2009, available at http://gclust.c.u-tokyo.ac.jp/), but they are
different from MgdA. Distant homologs of MgdA are found in
α-proteobacteria (Supplementary Figure S2; see Gclust Cluster
2866).

No homolog of DGD1 had been detected in the sequenced
cyanobacterial genomes or in the genome of Cyanidioschyzon
merolae, which was the only red alga that was sequenced
in the early 2000s. Cyanobacterial galactosyltransferase that
catalyzes the synthesis of DGDG was identified by exploiting
comparative genomics (Sato et al., 2005; Sato, 2009), which
identified a GT that was conserved in cyanobacteria and
C. merolae (Awai et al., 2007; Sakurai et al., 2007). The
enzyme named DgdA has two InterPro domains, N-terminal
Glycosyltransf_like_4 and C-terminal Glycosyltransf_1, whereas
DGD1/2 has a single Glycosyltransf_1 domain. Both DgdA
and DGD1//2 belong to the CAZy GT4 family. DGD1/2
has homologs in only plants and algae (Gluster 2454 in
Gclust). It is interesting to note that DgdA is a close
relative of SqdX/SQD2, an enzyme catalyzing the transfer of
sulfoquinovose (Figure 1). This enzyme has a dual GT domain
similar to that in DgdA. Phylogenetic analysis suggests that
plant SQD2 originates from cyanobacterial SqdX, which is
also found in various bacteria such as α-proteobacteria and
GNS bacteria (Supplementary Figure S3). This points to a
possibility that the gene dgdA originated from an sqdX-like
gene before the emergence of cyanobacteria. Based on these
considerations, it is likely that mgdA and dgdA originated from
α-proteobacteria and GNS bacteria, respectively (Figure 2).
Curiously, the SQDG synthesis pathway has been lost in
Gloeobacter violaceus, which is the most deeply branching species
in cyanobacteria.

Identification of GlcDG Epimerase
The epimerase remained unidentified for a long time
despite considerable efforts of many researchers. The use of
Gclust, however, gave the clue again. Important additional
information was given by the chromatophore genome
of Paulinella chromatophora. The chromatophore of this
microorganism looks like a chloroplast, but the sequencing of
the chromatophore genome suggested that it originated from

FIGURE 1 | Pathways of synthesis of glycolipids in cyanobacteria
and chloroplasts. The pathways and the genes involved in the
processes are shown. DAG, diacylglycerol; GlcDG, monoglucosyl
diacylglycerol; MGDG, monogalactosyl diacylglycerol; DGDG, digalactosyl
diacylglycerol; SQDG, sulfoquinovosyl diacylglycerol. Gene names are
explained in the text. mgdX is a hypothetical alternative gene encoding
the epimerase. Solid arrows indicate glycosyltransferases (GT), while the
gray arrow indicates an epimerase.

Prochlorococcus-like cyanobacteria (Nowack et al., 2008), but
does not belong to the lineage of known chloroplasts, which
are all monophyletic and originated from the deep root of
cyanobacteria (Shih et al., 2013). The chromatophore genome
encodes mgdA, dgdA, and sqdX. It was quite possible that an
unknown GlcDG epimerase is also encoded in the genome.
Comparative genomic analysis using Gclust indeed revealed
that a putative membrane-bound oxidoreductase is conserved
in most cyanobacteria and the chromatophore (Awai et al.,
2014). Expression in Escherichia coli of the corresponding gene
sll1376 in Synechocystis sp. PCC 6803 demonstrated that it
encodes an enzyme converting GlcDG to MGDG. Disruption
of the gene in Synechocystis resulted in the cells in which all
MGDG and DGDG were replaced by GlcDG. The gene was
named mgdE. The enzyme MgdE consisted of an N-terminal
hydrophobic domain assigned as the ‘fatty acid hydroxylase
domain’ and a C-terminal oxidoreductase domain known as the
‘Rossmann-fold’ (Rao and Rossmann, 1973), thus considered
as having a reasonable structure as a membrane-bound
epimerase.

Role of MgdE in Epimerization
The enzyme MgdE was conserved in many cyanobacteria,
but curiously, not in all cyanobacteria. The gene mgdE was
not detected in at least G. violaceus, Thermosynechococcus
elongatus, and Acariochloris marina. In addition, the enzyme in
various strains of Prochlorococcus marinus, marine Synechococcus
species as well as P. chromatophora lacked the N-terminal
domain. This raised again a fundamental question regarding
the pathway of galactolipid synthesis in cyanobacteria, namely,
if all cyanobacteria contain GlcDG as a precursor to MGDG.
The detection of GlcDG has been especially difficult because it
is a very minor component in many cyanobacteria. Even in a
recently published review [Figure 1 and Supplementary Table S1
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FIGURE 2 | Probable evolutionary scenario of glycolipid biosynthesis enzymes. For details, see text. Cyan, genes identified in cyanobacteria; green,
originated from green non-sulfur (GNS) bacteria; pink, unknown eukaryotic origin.

in Petroutsos et al. (2014)], GlcDG was described as undetected
in many cyanobacteria such as Synechocystis sp. PCC 6803 and
G. violaceus.

This situation made it important to re-analyze GlcDG in the
cyanobacteria in which mgdE was not detected or truncated.
Sato (2015b) isolated and identified GlcDG in G. violaceus,
T. elongatus, A. marius as well as in P. marinus. In addition,
the conversion of GlcDG to MGDG was demonstrated by
radiolabeling experiments in G. violaceus and P. marinus.
Comparison of the composition of molecular species of GlcDG
and MGDG also suggested that GlcDG can be considered as
a precursor to MGDG in all the cyanobacteria analyzed, on
the assumption that the molecular species containing saturated
fatty acids are synthesized first and then the acyl groups are
desaturated on the intact glycolipids while keeping the overall
structure of lipids (Sato et al., 1986). This raised a question as to
the universality of the role ofmgdE in the epimerization of GlcDG
in cyanobacteria. Is there another GlcDG epimerase in some
cyanobacteria? In that case, how was the pathway of galactolipid
synthesis acquired in the cyanobacteria?

MgdE belongs to a large family of bifunctional sterol
desaturases/short-chain dehydrogenases (Kramm et al., 2012),
including various enzymes related to lipid metabolism such
as FabG, 3-oxoacyl-ACP reductase, involved in fatty acid
biosynthesis [Supplementary Figure S4 in Sato (2015b)]. In
this respect, other members of this family could act as
GlcDG epimerase (encoded by a hypothetical gene mgdX in
Figure 1). This will be a new perspective of MGDG synthesis in
cyanobacteria.

EVOLUTION OF GALACTOLIPID
BIOSYNTHESIS

Phylogenetic Distribution of the
Cyanobacterial Pathway in Algae
As described above, the pathway of galactolipid biosynthesis is
significantly different in cyanobacteria and chloroplasts of land
plants. An immediate question arises as to what the situation is
in algae. The chloroplasts of Archaeplastida (green plants, red
algae, and glaucophytes) are monophyletic and are believed to
originate from a single endosymbiotic event (Sato, 2001, 2006;
Nowack et al., 2008; Shih et al., 2013). A survey of the Gclust
database shows that the green algae, such as Chlamydomonas
reinhardtii and Ostreococcus tauri, have a pathway consisting
of MGD1 and DGD1, like land plants. The situation in red
algae is complicated. Cyanidioschyzon merolae has a plastid-
encoded dgdA, but has a copy of MGD1. Curiously, an mgdA
homolog is also encoded in the C. merolae genome, although
no GlcDG was detected by careful analysis (Sato and Moriyama,
2007). The dgdA gene (also known as ycf82) is also found in
the plastid genomes of Cyanidiales algae, Galdieria sulphuraria
and Cyanidium caldarium. This is not the case in another red
alga Porphyridium purpureum, in which dgdA is not encoded in
the plastid genome (Tajima et al., 2014), but a putative DGD1 is
encoded in the nuclear genome (Bhattacharya et al., 2013). The
same is true for other red algae in Rhodophytina (Awai, 2015),
which are unicellular or macrophytic red algae belonging to
non-Cyanidiales clades. The glaucophyte Cyanophora paradoxa
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encodes MGD1 and dgdA (Awai, 2015). The heterokonts such
as diatoms are supposed to originate from a red algal secondary
endosymbiosis, but none of them encodes dgdA.

CONCLUDING REMARKS: PROBABLE
EVOLUTIONARY SCENARIOS

Comparative genomics clearly shows that all eukaryotes have
MGD1 whereas all cyanobacteria have MgdA. Although there
could be at least two different entities of GlcDG epimerase, all
cyanobacteria are likely to synthesize MGDG by epimerization
of GlcDG. In this respect, the replacement of MgdA–MgdE
system by green bacterial MGD1 accompanied the primary
endosymbiosis (Figure 2), which also accompanied drastic
changes in the transcriptional and genomic machineries (Sato,
2001): Namely, prokaryotic transcription factors and DNA-
binding proteins are not conserved in the chloroplasts, while the
sigma factors become encoded by the nucleus.

In contrast, the replacement of DgdA by DGD1 seemed to
occur at least two times, namely, during the evolution of green
algae on the one hand, and during the evolution of Rhodophytina
in the red algae on the other hand (Sato, 2015a), because all
red algae are monophyletic (Tajima et al., 2014). Another, more
plausible possibility implies that the dgdA gene and the DGD1
gene coexisted in a hypothetical primary endosymbiont, and one
of them was lost subsequently in different lineages (Figure 2).
This is more likely because all DGD1 in both green plants and

red algae are monophyletic (Supplementary Figure S3). A simple
question should be asked: what is the functional difference
between DgdA and DGD1, and why the two types of enzymes
are present? To answer the question, we will have to know the
enzymology and three-dimensional structure of the respective
enzymes. In addition, it is clear that a more extensive survey of
all algal phyla will be necessary to reveal the whole picture of the
distribution of the two pathways, and hence the evolution of the
DGDG biosynthesis.
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