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Effector proteins are mostly secretory proteins that stimulate plant infection by
manipulating the host response. Identifying fungal effector proteins and understanding
their function is of great importance in efforts to curb losses to plant diseases. Recent
advances in high-throughput sequencing technologies have facilitated the availability of
several fungal genomes and 1000s of transcriptomes. As a result, the growing amount
of genomic information has provided great opportunities to identify putative effector
proteins in different fungal species. There is little consensus over the annotation and
functionality of effector proteins, and mostly small secretory proteins are considered as
effector proteins, a concept that tends to overestimate the number of proteins involved
in a plant–pathogen interaction. With the characterization of Avr genes, criteria for
computational prediction of effector proteins are becoming more efficient. There are
100s of tools available for the identification of conserved motifs, signature sequences
and structural features in the proteins. Many pipelines and online servers, which combine
several tools, are made available to perform genome-wide identification of effector
proteins. In this review, available tools and pipelines, their strength and limitations for
effective identification of fungal effector proteins are discussed. We also present an
exhaustive list of classically secreted proteins along with their key conserved motifs
found in 12 common plant pathogens (11 fungi and one oomycete) through an analytical
pipeline.

Keywords: computational tool and servers, classification and prediction, effector proteins, fungal secretome,
host–pathogen interaction

INTRODUCTION

The importance of fungi as plant pathogens has spurred scientists to study their biology. Fungal
pathogens cause enormous yield losses in agricultural crops and post-harvest products (Dean et al.,
2012). Generally, the losses caused by pests and diseases are considered to be 20–40% of the total
production, and the resulting consequences on human health, the world economy, environmental
and ecological losses are significant factors to be considered (Savary et al., 2012; Balint-Kurti and
Holland, 2015). To prevent such losses, the use of resistance genes and the application of fungicides
are the two major options available for the farmers (Delourme et al., 2006; Dean et al., 2012; Sonah
et al., 2012). In the latter case, fungal pathogens are known to quickly develop resistance to most
chemicals and the use of fungicides is generally perceived as negative for human health and the
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environment (Van de Wouw et al., 2014; Balint-Kurti and
Holland, 2015). For this reason, genetic approaches are
considered safer and more durable, and considerable efforts are
deployed toward the identification and introgression of resistance
genes into plant material (Channamallikarjuna et al., 2010;
Raman et al., 2012; Singh et al., 2012; Saha et al., 2014). However,
the use of a single source of resistance also brings tremendous
selection pressure on the pathogen, and the resistance often
breaks down quite rapidly (Kutcher et al., 2013; Van de Wouw
et al., 2014). For instance, resistance breakdown to the blackleg
disease in canola crops has been reported recently in Australia
(Van de Wouw et al., 2014). To achieve more durable resistance
against a wide range of fungal pathogen races, a thorough
understanding of the virulence factors released by the pathogen
and the resulting plant immune responses is a prerequisite.

Fungi have adopted diverse strategies to interact with host
plants and to overcome a complex network of plant defense
mechanisms. The first line of defense involves recognition of
the pathogen based on conserved molecular features generally
known as pathogen-associated molecular patterns (PAMPs; Silva-
Gomesa et al., 2014). The PAMPs, like chitin or glucan residues
of fungi, are recognized by plant receptors known as pattern
recognition receptors (PRRs). PRRs recognize PAMPs and
induce PAMP triggered immunity (PTI) through the secretion
of antifungal compounds, production of reactive oxygen
species (ROS), phytoalexins, protease inhibitors, chitinases and
glucanases. In turn, to overcome PRR responses, pathogens
secrete effector molecules, which can lead to plant effector-
triggered immunity (ETI; Giraldo and Valent, 2013). The
functional and structural alterations in plants caused by effector
molecules either facilitate infection by the pathogen through
release of virulence factors and toxins, or trigger defense
responses based on recognition of avirulence factors and
elicitors, or both (Jones and Dangl, 2006; Kamoun, 2006;
Morgan and Kamoun, 2007). The effectors are recognized
by the specific resistance gene(s) mostly coding for proteins
having interactive domains, such as the NB-LRR protein that
induces the ETI in plants. Natural selection of pathogens against
the resistance pressure applied by ETI involves diversifying
unrecognizable effectors (Jones and Dangl, 2006). Such co-
evolution of genes involved in plant–pathogen interactions
has been previously described by Jones and Dangl (2006)
in the form of the simplified and understandable “Zigzag
model.” The zigzag model can be summarized with four
stages: in the first stage, PRRs recognize PAMPs; in the
second stage, to overcome PRR responses, pathogens secrete
effectors to interfere with PTI; in the third stage, NB-
LRRs recognize effectors; and finally in the fourth stage,
diversification and loss or gain of effectors lead to co-
evolution.

The genes coding for effectors are mostly known as Avr genes
and the complementary trigger-coded responses by the host are
denoted as R genes. The ETI involves the hypersensitive response
(HR) that restricts pathogen growth. Evolutionary changes in
effector (Avr) genes make them unrecognizable by the host R
genes resulting in a compatible interaction, or disease. Since
Avr genes evolve quickly, they can overcome the plant defense

mechanisms within a short period of time. Therefore, effectors
are important targets to consider in attempts to enhance plant
immunity against pathogens.

CHARACTERISTICS OF EFFECTOR
PROTEINS

The definition of effector is constantly evolving with the
increased understanding of the molecular mechanisms involved
in pathogenicity. At times, plant pathologists will use the term
effector in a broader sense including all molecules, like proteins,
carbohydrates, and secondary metabolites, potentially involved
in the infection process. Based on a broader definition, PAMPs
can also be referred to as effectors (Kamoun, 2006; Nemri et al.,
2014).

Effector proteins are mostly secretory proteins that alter
host cells to suppress host defense mechanisms, and facilitate
infection by the pathogen so it can derive nutrients from
the host. Effectors may also activate defense strategies in
resistant plant genotypes. Criteria to fit the definition of
candidate secreted effector proteins (CSEPs) include: fungal
proteins with a signal peptide for secretion, no trans-membrane
domains, no similarity with other obvious protein domains,
fairly small size and mostly species-specific (Jones and Dangl,
2006; Stergiopoulos and de Wit, 2009; Djamei et al., 2011; Lo
Presti et al., 2015). In general, effector proteins are modular
proteins. Expression of effector proteins follows contact with
the host tissue and it is very specific with different stages of
disease development. Fungal pathogens have evolved the capacity
to deliver effector proteins inside the host cell through diverse
mechanisms (Figure 1). They can secrete effector proteins inside
the host cytoplasm as well as in the extracellular space, and are
subsequently classified as cytoplasmic and apoplastic effectors,
respectively. The standard protein organization of apoplastic
effectors contains a signal peptide within the initial 60 amino
acids (AA) at the N terminus followed by multiple domains
toward the C terminus. These types of effectors are comparatively
small, and rich in cysteine residues like most of the serine
or cysteine protease inhibitor proteins. For instance, known
effectors of the tomato fungal pathogen Cladosporium fulvum
such as Avr2, Avr9, Avr4, and ECP2, are small cysteine-rich
proteins that are thought to function exclusively in the apoplast
(Thomma et al., 2005). The apoplastic effectors of C. fulvum,
and other fungal and oomycete pathogens have the ability
to inhibit and protect against plant hydrolytic enzymes, such
as proteases, glucanases, and chitinases (reviewed by Misas-
Villamil and van der Hoorn, 2008). Another example is effector
protein SnTox1 identified in the fungal pathogen Stagonospora
nodorum, which consists of 117 amino acids with the first
17 predicted as a signal peptide and 16 of the remaining
100 amino acids being cysteine residues (Liu et al., 2012).
Similarly, cytoplasmic effectors have a secretion signal at the
N terminus, and multi-domain toward the C terminus. In
addition, conserved amino acid motifs specific to effectors have
been reported, namely in oomycetes (Morgan and Kamoun,
2007; Jiang et al., 2008; Ye et al., 2015). The most common
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FIGURE 1 | Schematic representation of effector proteins (A) secreted by fungi/oomycetes in the cytoplasmic and apoplastic region of the plant cell;
(B) typical protein organization of apoplastic and cytoplasmic effectors with signal peptide, cleavage site and conserved domain present toward the
N-terminus.

motif, RxLR (arginine, any AA, leucine, arginine), has been
identified in over 700 CSEPs predicted in two Phytophthora
species, P. sojae and P. ramorum (Jiang et al., 2008). The majority
of RxLR carrying effectors also possess a second conserved
motif termed dEER (aspartate, glutamate, glutamate, arginine),
which is present toward the C-terminus. Similarly, with the
increased number of predicted CSEPs, more conserved features
may be discovered. A comparative analysis of Phytophthora
CSEPs has identified three more conserved motifs denoted
as W, Y and L toward the C-terminus (Jiang et al., 2008;
Win et al., 2012; Wirthmueller et al., 2013). These domains
form an alpha-helical fold termed WY fold that is supposed
to provide a structure flexibility leading toward the surface
diversification of RxLR effectors (Win et al., 2012; Wirthmueller
et al., 2013).

The effector protein family encompassing the RxLR motif is
found to be the largest among oomycete CSEPs. Even with such a
common conservedmotif, this CSEP family is very diversemostly
because of high positive selection pressure. Recently, secondary
structure analyses of the RxLR effectors have identified abundant

short alpha-helices at the C-terminus in the majority of proteins
(Ye et al., 2015). Similarly, de Guillen et al. (2015) have observed
common 3-dimensional structures despite a lack of sequence
similarity among the AVR1-CO39 and AVR-Pia effectors of
Magnaporthe oryzae. Structural similarity searches have also
succeeded to identify twomore effectors, one each fromM. oryzae
(AvrPiz-t), and Pyrenophora tritici-repentis (ToxB; de Guillen
et al., 2015). The identification of similar secondary or tertiary
structures may represent another promising approach to identify
functional effectors. The abundant short alpha-helices have also
been confirmed in the previously characterized RxLR effectors
including PcAvr3a4, PcAvr3a11, PsAvh5, PexRD2, HaATR1, and
HaATR13, and also observed in effectors lacking RxLR (Boutemy
et al., 2011; Chou et al., 2011; Yaeno et al., 2011; Sun et al., 2013;
Ye et al., 2015). The RxLR motif is found to be more common
in oomycetes particularly in Phytophthora species but is also
found, albeit in reduced numbers, in other oomycetes and even
in fungal species (Morgan and Kamoun, 2007; Jiang et al., 2008;
Ye et al., 2015). This suggests that fungi might contain other
functionally important motifs like RxLR, but with a relatively
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FIGURE 2 | Flowchart of analytical tools that can be used for the prediction of secretome and candidate secretory effector proteins (CSEPs) in fungi.

lower frequency, which makes it difficult to identify based on
the degree of conservation. For instance, a highly conserved
pattern of seven amino acids “RSIDELD” at the C-terminus
(named DELD) has been identified in 25 CSEPs of Piriformospora
indica (root endophyte; Zuccaro et al., 2011). A total of 107,
178, and 57 CSEPs have been identified in powdery mildew of
barley, stem rust, and leaf rust of wheat, respectively, with a
conserved motif of three AA in which the first AA is aromatic
like tyrosine, phenylalanine or tryptophan, and the last is always
a cysteine (Y/F/WxC; Godfrey et al., 2010; Pedersen et al., 2012).
This finding suggests that the Y/F/WxC motif containing CSEPs
constitutes a new class of effectors that could denote specificity to
haustoria-producing pathogenic fungi.

COMPUTATIONAL TOOLS AND
PIPELINES AVAILABLE FOR
PREDICTION OF CANDIDATE
SECRETORY EFFECTOR PROTEINS

Many studies employing computational prediction of CSEPs
followed by identification of conserved motifs lack experimental
validation of the results (Godfrey et al., 2010; Zuccaro et al., 2011;
Ye et al., 2015). Nevertheless, computational prediction serves
as an excellent starting point to screen CSEPs for functional
analysis and also helps to understand the evolution, distribution
and characterisation of effectors.

Several computational tools and web servers are available for
the characterization of proteins using the AA sequence as an
input. In the case of CSEP prediction, computational tools have
been used to systematically sort the list based on some basic
pre-established criteria (Figure 2).

Signal Peptide
Commonly, the first step of the CSEP prediction is to look
for the extracellular secretion signals. Eukaryotic as well as

prokaryotic proteins usually contain a signal peptide that guides
their translocation across the membranes. As a general rule,
signal peptides are 20–30 AA in length and they have a positively
charged N-terminus, followed by a hydrophobic region, and
cleavage site at the C-terminus. In spite of these unique
properties, there is limited sequence homology or similarity
among signal peptides. Therefore, routine BLAST search alone
is not useful for signal peptide prediction and it requires
complex analytical algorithms like neural networks, machine
learning systems, and Hidden Markov model (HMM). There are
several computational tools available that use a combination of
different sophisticated algorithms and generally have a very high
sensitivity and accuracy for predicting signal peptides (Table 1).

Transmembrane Domains
Distinguishing a secretory protein from a transmembrane (TM)
protein is difficult since both have hydrophobic segments. In
the case of TM proteins, the hydrophobic segment is usually
longer than in the secretory proteins. Therefore, to avoid
false positive prediction of secretory proteins, it is always
necessary to identify TM domains in candidate proteins. As with
signal prediction tools, TM domain prediction tools also use
complex algorithms. There are several online tools and web-
servers available for the purpose of predicting TM-domains
(Table 2). To make prediction of secretory proteins, more
sophisticated tools like ProtComp, Phobius, and SPOCTOPUS
hosts combine algorithms for TM-domain and signal peptide
prediction. Proteins having signal peptides for secretion are not
systematically secreted, since some of them may be anchored in
the endoplasmic reticulum due to the hydrophobic signal at the C
terminus, or the presence of one or more TM domains. Similarly,
proteins with glycosylphosphatidylinositol (GPI) anchors stay
inserted in the membrane since they have glycolipids attached
to the C-terminus (Petersen et al., 2011). Therefore, during
secretome analysis, it is always better to predict features like
signal-anchors, GPI-anchors, and transit peptides of plastids
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TABLE 1 | Features of important tools available for the identification of secretory proteins in fungi and other eukaryotes.

Tool
(specification)

Important features Reference/website

SignalP server Predicts signal peptide cleavage sites in proteins from different organisms including eukaryotes.
Prediction is based on a combination of several artificial neural networks

Petersen et al., 2011
www.cbs.dtu.dk/services/SignalP

Philius server Predicts topology and signal peptides using dynamic Bayesian networks Reynolds et al., 2008
http://www.yeastrc.org/philius

SPOCTOPUS
server

Combines prediction of signal peptides and membrane protein topology, suitable for genome-scale
studies

Viklund et al., 2008
http://octopus.cbr.su.se/

SPSCAN Predicts secretory signal peptides in protein sequences. For each sequence, provides secretory
signal peptides sorted according to score

http://www.csd.hku.hk/bruhk/gcgdoc/
spscan.html

Phobius web server Combines transmembrane (TM) topology and signal peptide predictions and provides optimal
choice between TM segments and signal peptides

Käll et al., 2007
http://phobius.binf.ku.dk

ProtComp Uses neural networks-based prediction; direct comparison with known homologous proteins;
comparisons of pentamer distributions calculated for query and DB sequences; prediction of signal
peptides, signal-anchors, GPI-anchors, transit peptides of mitochondria, and TM segments

http://linux1.softberry.com

PrediSi (PREDIction
of SIgnal peptides)

Uses position weight matrix approach that is improved by a frequency correction that considers
amino acid bias present in proteins. The tool is also trained using a large number of sequences from
SwissProt database

Hiller et al., 2004
http://www.predisi.de/home.html

Signal-CF Uses automated methods that first predict secretory or non-secretory proteins and further identify
the cleavage site of the signal peptide

Chou and Shen, 2007
http://chou.med.harvard.edu/bioinf/
Signal-CF/

Signal-3L Consists of three prediction engines for identification of secretory or non-secretory proteins by
OET-KNN and PseAA; predicts signal peptide cleavage sites by a subsite-coupled discrimination
algorithm; and determines the final cleavage site by fusing the global sequence alignment outcome

Shen and Chou, 2007
http://chou.med.harvard.edu/bioinf/
Signal-3L/

WoLF PSORT Converts protein amino acid sequences into numerical localization features; based on sorting
signals, amino acid composition and functional motifs to predict protein subcellular location

Horton et al., 2007
www.wolfpsort.org

along with signal peptides and TM-domains for an effective
characterisation of CSEPs.

Secretome
The entire secretome is expectedly not confined to disease-related
proteins, and therefore, it needs to be sorted using features
that are more specific to CSEPs. To apply different CSEP-
specific criteria, several tools need to be applied in a systematic
manner. The sequential use of different computation tools to
obtain the desired outcome is known as an analytical pipeline.
The literature offers a number of analytical pipelines for the
identification of CSEPs. Notably, a pipeline based on HMM
analyses followed by unsupervised protein clustering has been
developed and implemented for the identification of 2830 CSEPs
in the cereal pathogen Fusarium graminearum (Sperschneider
et al., 2013). This pipeline has successfully identified CSEPs,
conserved patterns and fungal motifs related to pathogenesis.
Similarly, a pipeline developed by Saunders et al. (2012) proposes
general basic features expected for the effective identification
of CSEPs in rust fungi. The pipeline incorporates six major
steps including secretome prediction, grouping of secreted and
non-secreted proteins based on Markov clustering, functional
annotation based on homology searches, searches for conserved
motifs, effector features annotation, and finally hierarchical tribe
clustering to rank and classify CSEPs (Saunders et al., 2012).
The final ranking based on the fulfillment of different criteria
is very helpful for the prioritization of candidates for functional

characterization. In addition, understanding of the secondary and
tertiary structure organization of effectors and their counterpart
R genes will definitely improve the efficiency of computational
tools to identify effectors more precisely (de Guillen et al., 2015;
Maqbool et al., 2015; Ye et al., 2015).

DIFFERENT CONSERVED MOTIFS
IDENTIFIED IN FUNGAL GENOMES WITH
COMPUTATIONAL MINING

Amino acid sequences of functionally important motifs in
CSEPs appear to be conserved across the fungal/omycete species.
Therefore to understand the function of a given protein, analysis
of such conserved motifs is required. Several reports have
identified conserved motifs in effectors, namely in oomycetes,
and validated their functionality (Morgan and Kamoun, 2007;
Jiang et al., 2008; Godfrey et al., 2010; Zuccaro et al., 2011).
The conserved motifs are found to play an important role in
delivering effector proteins more efficiently during pathogenesis
(Kale and Tyler, 2011; Petre and Kamoun, 2014). Natural variants
of motif sequences, or variants created using mutagenesis, have
been routinely evaluatedwith different approaches to confirm the
functional role of the motifs. Plant transient-expression systems,
in which candidate effectors are expressed in the plant and the
translated protein observed for its secretion and re-entry into the
plant cell, are commonly used to demonstrate the functional role
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TABLE 2 | Features of the most common computational tools available for the prediction of trans-membrane (TM) domains.

Tools Important features Website/reference

TMHMM Server v. 2.0 Predicts trans-membrane (TM) domains; a common mistake by the
program consists in reversing the direction of proteins with one TM segment

www.cbs.dtu.dk/services/TMHMM/

TMpred Predicts TM regions and orientation
The TMpred program makes a prediction of membrane-spanning regions
and their orientation

www.ch.embnet.org
Hofman, 1993

TMbase Offers a good database of TM proteins and their helical membrane-
spanning domains; TMbase was originally meant as a tool for analyzing the
properties of TM proteins

www.ch.embnet.org
Hofman, 1993

HMMTOP Serves as automatic server for predicting TM helices and topology of
proteins

Tusnady and Simon, 2001
www.enzim.hu/hmmtop/

PredictProtein Predicts secondary structures Rost et al., 2004
www.predictprotein.org/

SOSUI Classifies and predicts secondary structures of membrane proteins http://harrier.nagahama-i-bio.ac.jp/sosui/

TopPred 1.10 Predicts topology of membrane proteins http://mobyle.pasteur.fr/cgi-bin/portal.py?#forms::
toppred

DAS-TMfilter server Filters false positive TM protein predictions http://mendel.imp.ac.at/sat/DAS/DAS.html

CCTOP (Consensus
Constrained TOPology
prediction)

Performs TM topology predictions http://cctop.enzim.ttk.mta.hu/

MetaTM Predicts TM topologies through a consensus method Klammer et al., 2009
http://metatm.sbc.su.se/

MINNOU Predicts membrane proteins with and without explicit use of hydropathy
profiles and alignments

http://minnou.cchmc.org/

PHDhtm Predicts the location of helical TM segments in integral membrane proteins
through a neural network system

https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page
=/NPSA/npsa_htm.html

Phobius Combines TM topology and signal peptide predictions Käll et al., 2007
http://phobius.sbc.su.se/poly.html

PRED-TMR Refines a standard hydrophobicity with a detection of potential edges Pasquier et al., 1999
http://athina.biol.uoa.gr/

SCAMPI Uses position-specific amino acid contributions to the free energy of
membrane insertion and also uses the current best statistics-based
topology predictors

Bernsel et al., 2008
http://scampi.cbr.su.se/

SOMRuler Offers an interpretable TM helices predictor Yu et al., 2011
www.csbio.sjtu.edu.cn/bioinf/SOMRuler/

ConPred Predicts TM topology based on a consensus approach by combining the
results of several methods

Arai et al., 2004
http://bioinfo.si.hirosaki-u.ac.jp/~ConPred2/

TMBB-DB Compiles the predictions made by the Freeman–Wimley algorithm http://beta-barrel.tulane.edu/

TMalphaDB Quantifies the structural distortion induced by a sequence motif in alpha TM
segments

http://lmc.uab.cat/TMalphaDB/

TMexpo Predicts rotational preferences of TM helices to facilitate structural
modeling. TMexpo calculates rotational angles of TMHs based on the
predicted relative accessible surface area

http://bio-cluster.iis.sinica.edu.tw/TMexpo/

TMMOD Uses an improved hidden Markov model for the identification and topology
prediction of TM proteins

http://liao.cis.udel.edu/website/servers/TMMOD/
scripts/frame.php?p=submit

Asymmetric Ez Assesses the energy and positions of protein sequences or structures in
and on the membrane through a knowledge-based potential

http://ez.degradolab.org/ez/

of a motif and/or an effector (Kale and Tyler, 2011). Another
approach consists in the application of purified effector proteins
to leaf or root segments, where the entry of proteins into the cell
is observed with the help of fluorescent peptide tags or by the use
of antibodies (Kale and Tyler, 2011; Tanaka et al., 2015).

Several conserved motifs observed in oomycetes have also
been found in different fungal genomes (Table 3). A systematic
similarity search performed in secretomes of 11 fungi and one
oomycete species, representing some of the most devastating
plant pathogens, has shown the presence of different conserved
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TABLE 3 | Number of proteins, classically and small secreted proteins, and proteins bearing known conserved motifs identified in the genomes of 11
fungal and oomycete pathogens of crop plants.

S.No. Species† Total
proteins

Classically
secreted
proteins#

Small
secreted
proteins∗

Known conserved motif§

RXLR DEER RXLX
[EDQ]

[KRHQSA]
[DENQ]EL

[Y/W]XC RSIVEQD

1 Leptosphaeria maculans 12469 552 263 12 3 16 8 22 14

2 Magnaporthe oryzae 12755 983 528 43 2 22 16 43 27

3 Ustilago maydis 6522 358 142 21 0 13 13 5 10

4 Puccinia graminis f. sp. tritici 15979 886 612 17 2 13 14 43 14

5 Cladosporium fulvum 14127 711 296 17 3 17 17 20 19

6 Fusarium oxysporum 17696 824 361 17 3 19 17 44 30

7 Mycosphaerella graminicola 10933 518 235 14 1 6 8 22 20

8 Colletotrichum graminicola 12020 829 352 19 2 20 20 39 20

9 Blumeria graminis 6470 247 143 5 0 3 6 7 2

10 Alternaria brassicicola 10688 508 228 11 3 12 19 23 7

11 Pyrenophora tritici-repentis 12169 669 328 12 6 10 18 33 17

12 Phytophthora_infestans (Oomycete) 18140 671 343 74 22 16 10 18 11

†Details of protein sequences retrieved from different databases are provided in Supplementary Table S1; #The analytical pipeline (Supplementary Figure S1) was used
for the identification of classically secreted proteins (Cortázar et al., 2014); ∗Classically secreted proteins having less than 300 amino acid length; §Previously known Motif
was used as query to perform similarity based motif-search using FIMO software tool implemented in MEME suite (Grant et al., 2011), To claim a significant match, an
E-value cut-off at 0.0001 was used.

motifs (Table 3, Supplementary Table S1, Supplementary
Figure S1). Most of the conserved motifs identified to date,
such as RxLR and DEER are small in length. Consequently,
there are more chances to identify false positives of such motifs
when using a similarity-based search. For example when we
performed a similarity search using the FEMO software tool with
an E-value cut-off at 0.001 (Grant et al., 2011), we found four
times more CSEPs with a RxLR motif in Magnaporthe grisea
than we did by using a more stringent cut-off at 0.0001 (Table 3,
Supplementary Table S2). By using similar stringent conditions,
we still observed the presence of the RxLR motif in all fungal
secretomes studied, although with a considerably lower number
than in Phytophthora infestans. The presence of a functional
RxLR motif in a fungal genome has been debated since it is
not as abundant as in the oomycetes. However, effector re-entry
assays performed with Avr2 (Fusarium oxysporum) and AvrLm6
(Leptosphaeria maculans) have shown loss of functionality when
mutations were made in RxLR-like motifs (Kale et al., 2010; Kale
and Tyler, 2011). This suggests that RxLR-like motifs, in spite of
their low occurrence, have a functional role in fungal effectors,
and similar findings are expected for other motifs like DEER,
[KRHQSA][DENQ]EL, [Y/W]xC, and RSIVEQD. Interestingly,
unlike RxLR, we found that the motif RxLx[EDQ] occurred with
a similar frequency in both fungal and oomycete secretomes
(Table 3).

SECRETORY PROTEINS AND
CANDIDATE SECRETORY EFFECTOR
PROTEIN (CSEP) DATABASES

Numerous accessible online databases have been developed
to provide a catalog of well-characterized predicted secretory
proteins and publically available CSEPs (Table 4). For instance,

the Fungal Secretome Database (FSD) comprises predicted
secretory proteins from 158 fungal/oomycete genomes. FSD
relies on nine different prediction programs to build its inventory,
namely SignalP 3.0, SigCleave, SigPred, RPSP, TMHMM 2.0c,
TargetP 1.1b, PSort II, SecretomeP 1.0, and predictNLS (Choi
et al., 2010). This secretome resource is very useful to identify
and characterize species-specific conserved motifs. For instance,
734 putative RxLR effectors have been identified from three
Phytophthora species, data that are well-correlated with those
previously reported by Jiang et al. (2008) in the same species.
Interestingly, the RxLR motif was observed with a very low
frequency (0.04%) in the other 153 fungal genomes (Choi et al.,
2010). This finding is surprising sincemanymore fungal genomes
have been observed to have a much higher number of RxLR
and RxLR-like effectors (Table 3). While there is no doubt that
the RxLR motif is more abundant and conserved in oomycetes,
andmore particularly in Phytophthora species, these observations
raise interesting questions about the evolution, transfer specificity
and functionality of RxLR effectors.

Another useful database for CSEPs is FunSecKB, which hosts
fungal secretomes identified using six different prediction tools
(Lum and Min, 2011). The improved version of FunSecKB
comprises about two million proteins covering over 200 fungal
species (Meinken et al., 2014). This massive data has enabled
to answer several questions regarding the frequency and
distribution of secretory proteins in fungi. For instance, Meinken
et al. (2014) have observed that fungi with a biphasic lifestyle,
such as the hemibiotroph M. grisea, have a larger proportion
of secreted proteins compared to strict biotrophs or facultative
parasites. In general, the size of the secretome is highly correlated
with the total size of the proteome.

The accuracy of computation prediction always depends upon
functionally validated data used for the training of prediction
tools. The mere use of a larger number of tools is not
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sufficient to achieve higher sensitivity and accuracy. In this
context, manual curation and the continuous use of the growing
number of experimentally validated protein database should
lead to more accurate predictions. In an effort to develop a
library of fungal stress response database (FSRD), about 2000
publications, sorted systematically from the PubMed entries,
have been used to obtain and define over 2000 stress-related
proteins in fungi (Karányi et al., 2013). For the FSRD, care
has been taken to avoid including proteins labeled as putative
(identified based strictly with computational tools) and to include
only genuine proteins characterized experimentally. In spite of
this screening procedure, a homology-based search led to the
identification of over 29,000 orthologs in 28 fungal/oomycete
species (Karányi et al., 2013). Similarly, in silico identification of
small secretory proteins with several tools, followed by manual
curation and homology-based search has identified 1184 and
1066 CSEPs respectively in Melampsora larici-populina and
Puccinia graminis (Duplessis et al., 2011). Considering that, in
well-studied fungi such as Ustilago maydis, functional studies
through gene knockout have identified less than 100 CSEPs
(Kämper et al., 2006), it appears that the strategy of identification
of homologs using manually verified list of CSEPs, where over
1000 CSEPs per species are predicted, greatly overestimates the
number of bona fide CSEPs. Therefore, to avoid the identification
of false positives, more computational filters should be applied.
In this context, a pathogen–host interaction database (PHI-base)
has been developed based on functionally characterized proteins
involved in disease and initiation of host responses (Winnenburg
et al., 2008). The PHI-base initially comprised 405 experimentally
verified proteins related to pathogenicity, virulence, and effectors
belonging to 54 fungal and oomycete pathogens (Winnenburg
et al., 2008). The current version of PHI-base (v 3.6) now

comprises about 3000 genes from 4000 interactions, and 160
species including 103 plant pathogens, along with information
extracted from 1243 high quality publications (Urban et al.,
2014). Such manual curation process and use of experimental
studies should be considered along with computational tools to
improve the prediction of functional effector proteins.

GENOME-WIDE IDENTIFICATION OF
CANDIDATE SECRETORY PROTEINS
(CSEPS)

Recent advances in computational tools have made it easier
to perform genome-wide identification of CSEPs. However,
this approach can often be overlooked considering that several
databases hosting predicted secretomes in 100s of fungal and
oomycete species are now easily accessible. An obvious drawback
to relying on this information is that most of the databases
only offer a listing of the secreted proteins with no further
characterization of their function or possible role as CSEPs
(Table 4). Moreover, genome-wide studies provide a better
understanding of the distribution and organization of CSEPs
within a given species. The characterization of CSEPs in
U. maydis represents a very good example of the importance of
genome-wide analysis. Following whole genome sequencing of
U. maydis, 426 secretory proteins were identified, 70% of which
were annotated with unknown function (based on homology
search; Kämper et al., 2006). Of particular importance, most of
the U. maydis secreted proteins were found to be present in
clusters with 3–26 genes per cluster. Knockout of specific genes
or clusters allowed a precise identification of about 50 secreted
proteins that were involved in pathogenesis (Kämper et al., 2006).

TABLE 4 | Features of databases available for effectors, secreted proteins and virulence factors identified in fungal genomes.

Database (specificity) Important features Reference/website

DFVF
(Database of fungal virulence factors)

Comprises host fungal virulence factors, including 2058 pathogenic genes
produced by 228 fungal strains from 85 genera

http://sysbio.unl.edu/DFVF/
Lu et al., 2012

FSD
(Integrated platform for annotation of
fungal secretomes)

Comprises putative secretory proteins in 158 fungal/oomycete genomes
(208,883 proteins) identified using a three-layer hierarchical identification rule
based on nine prediction programs

http://fsd.snu.ac.kr/
Choi et al., 2010

FSRD
(Fungal stress response database)

Incorporates 1985 fungal stress response proteins with verified physiological
function(s) and their orthologs identified and annotated in 28 species including
human and plant pathogens, as well as important industrial fungi

http://internal.med.unideb.hu/
fsrd
Karányi et al., 2013

PHI-base
(Pathogen–host interaction database)

Provides catalogs of experimentally verified pathogenicity, virulence, and
effector genes from bacterial, fungal, and oomycete pathogens, which infect
human, animal, plant, insect, fish, and fungal hosts

http://www.phi-base.org/
Winnenburg et al., 2008

FunSecKB
(The Fungal Secretome
KnowledgeBase)

Provides secretory proteins identified from all available fungal protein data in the
NCBI RefSeq database
The secreted proteins were identified using several computational tools

Lum and Min, 2011
http://proteomics.ysu.edu/
secretomes/fungi.php

FunSecKB2
(Fungal protein subcellular location
knowledgebase)

Provides an improved and updated version of the fungal secretome and
subcellular proteome, i.e., protein subcellular location, knowledgebase

Meinken et al., 2014
http://proteomics.ysu.edu

Secretool Secretool comprises a group of web tools that enable secretome predictions Cortázar et al., 2014
http://genomics.cicbiogune.es/
SECRETOOL
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In a comparative analysis with other pathogenic Ustilaginales
and Pseudozyma flocculosa, a non-pathogenic Ustilaginale with
biocontrol properties, whole-genome-sequencing revealed a
higher conservation of virulent secreted proteins in the three
pathogens and a near complete loss in P. flocculosa (Lefebvre
et al., 2013). In depth analysis of P. flocculosa genome revealed
that predicted secreted proteins were nearly the same in both
P. flocculosa and U. maydis genome and that the total number
of clusters and gene organization of secreted proteins were also
quite similar. This approach was thus extremely useful in not
only corroborating the secreted proteins involved in virulence
in U. maydis but also in identifying potential factors involved
in the biocontrol properties of P. flocculosa. For instance, the
presence of two NPP1-containing proteins in the secretome of
P. flocculosa, absent in all pathogenic Ustilaginales, offers good
targets to understand its elusive mode of action. Other striking
features, such as introns per gene, have been observed to vary
considerably between the two groups (Lefebvre et al., 2013). The
role of intron frequency in the structural and functional attributes
of genomes has already been suggested in several fungal and plant
genomes (Torriani et al., 2011; Deshmukh et al., 2015). Similarly,
in addition to the presence of effectors, many other genomic
features like GC content, codon bias, gene gain-loss, and in-depth
analysis of gene families can be addressed with genome-wide
analyses.

OVERVIEW OF CANDIDATE SECRETORY
EFFECTOR PROTEINS IN BIOTROPHS
AND HEMIBIOTROPHS

The biotrophic fungus U. maydis is arguably one of the best
model pathogens for the study of host–pathogen interactions
and molecular mechanisms involved in pathogenesis (Kämper
et al., 2006). Its well-annotated genome, and advanced tools
for transformation and genome manipulation make it suitable
for functional characterization of putative effectors (Kämper
et al., 2006; Schuster et al., 2015). In fact, the effector Pep1
is one of the best studied virulence-related proteins for its
role in the U. maydis-maize interaction. Pep1 inhibits plant
peroxidases and suppresses the primary immune response by
preventing the oxidative burst. The initial colonization of
biotrophs requires a suppression of the immune response
in order to interface with its host and acquire nutrients.
It has been observed, with confocal microscopy, global
expression profiling and metabolic profiling, that U. maydis
will initially up-regulate defense-response related genes, but,
after penetration, will down-regulate the early response genes
and also induce genes associated with suppression of cell
death (Doehlemann et al., 2008). In mutant U. maydis strains
with pep1 gene deletion, no down-regulation of the early
response genes was observed (Doehlemann et al., 2009).
U. maydis was also found to induce genes involved in the
synthesis of jasmonic acid but to repress salicylic acid synthesis,
a typical response generally observed with biotrophs. Such
response was not observed in U. maydis Pep1 deletion strain
(Doehlemann et al., 2009). Recently, Hemetsberger et al. (2015)

identified Pep1 orthologs in genomes of related smut species
and performed functional characterization of orthologs by
heterologous expression in U. hordei and Hordeum vulgare.
Heterologous expression of Pep1 in U. hordei conferred
a higher virulence to the mutant strain compared to the
wild type. Conversely, heterologous expression of Pep1 in
H. vulgare was found to increase its susceptibility against the
powdery mildew fungus Blumeria graminis f. sp. hordei, a
completely different pathosystem than the maize-U. maydis. This
suggests the functional conservation of the Pep1 effector across
and against different monocots. The high level of sequence
conservation suggests the pivotal role of Pep1-like effectors in
the pathogenicity of biotrophic fungi. The functional redundancy
of Pep1-like effectors has also been observed in pathogens of
diverse hosts, both monocots and dicots (Hemetsberger et al.,
2015).

Because of their combined biotrophic and necrotrophic
lifestyles, hemibiotrophs also produce effectors to suppress early
defense responses andmaintain their host alive by preventing cell
death. At later stages of infection, hemibiotrophs are reported to
produce necrotrophic effectors that kill the host. For instance,
P. infestans secretes AVR3a from its haustoria during the early
biotrophic infection stages that suppress cell-death (Whisson
et al., 2007). Later in the necrotrophic stages, AVR3a is found
to be down-regulated, while INF1 and Nep1-like effectors are
secreted, which helps the pathogen to switch from a biotrophic
to a necrotrophic stage (Kanneganti et al., 2006).

EFFECTORS IN BACTERIA,
NEMATODES, AND INSECTS

Compared to fungi and oomycetes, bacteria have received
considerably more attention with respect to understanding the
role of effectors in pathogenicity. Progress has been achieved
mostly with the characterization of effectors in gram-negative
bacteria that deliver effectors into the host cell by type III
(T3SS) or type IV secretion systems (Angot et al., 2007). The
whole genome sequencing of 1000s of bacterial isolates and
identification of effectors have been used to develop effective
computational tools for their prediction (Table 5). As a matter
of fact, the tools for bacterial effector identification seem more
accurate compared to those for fungal effectors. Recently, Teper
et al. (2015) used a machine learning algorithm based on
79 features differentiating effector proteins from non-effector
proteins to identify novel effectors. The features used for the
development of the machine learning approach include several
characteristics such as genomic proximity to other effectors, GC
content, differential conservation among phytopathogens that
do or do not encode a T3S system, amino acid composition
at the N-terminus and in the entire protein, T3S-dependent
regulation, homology to known T3S effectors of animal- and
plant–pathogenic bacteria and similarity to host proteins. After
validation of candidate effectors identified in the first round
of machine learning, new information is incorporated for the
second round of analysis (Teper et al., 2015). Such self-evolving
computational approach would also be helpful to identify CSEPs
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TABLE 5 | Features of databases and tools available for the effectors, secreted proteins, and virulence factors identified in bacterial genomes.

Database (specificity) Important features Reference/website

AtlasT4SS
[Database for type IV secretion system
(T4SS) related proteins]

Describes a large number of proteins related to the type IV secretion system
reported in Gram-negative, Gram-positive bacteria, and Archaea

Souza et al., 2012
http://www.t4ss.lncc.br/

DBSecSys
(Database of Burkholderia
malleiSecretion Systems)

Provides a database for computationally predicted bacterial secretion system
proteins and their host factors

Memi et al., 2014

LAB-Secretome
[Database for the extracellular and
surface-associated proteins of Lactic
Acid Bacteria (LAB)]

Provides a database comparison of the secretomes from 26 sequenced LAB
genomes

Zhou et al., 2010
www.cmbi.ru.nl/lab_secretome/

Mycosec
(A database for signal peptide bearing
genes of mycobacterium)

Provides computationally predicted signal peptides in the 21 different strains of
Mycobacterium genome

Sen, 2011
www.bicnbu.in/mycosec/

SecReT4 Provides a web-based bacterial type IV secretion system resource. T4SSs are
versatile assemblages that promote genetic exchange and/or effector
translocation with consequent impacts on pathogenesis and genome plasticity

Bi et al., 2012
http://db-mml.sjtu.edu.cn/
SecReT4/

BEAN
(Bacterial effector analyzer)

Provides an integrated web resource to predict, analyze, and store type III
secreted effectors (T3SEs)

Dong et al., 2013
http://protein.cau.edu.cn:8080/
bean/.

BPBAac
(Bacterial type III secreted protein
identifier)

Provides a tool that was developed and trained using Support Vector Machine
(SVM) based on the Aac feature extracted using a Bi-profile Bayes model.
BPBAac classifies T3S and non-T3S proteins very effectively

Wang et al., 2011
http://biocomputer.bio.cuhk.edu.
hk/softwares/BPBAac.

SIEVE Server
(Web tool for prediction of type III
secreted effectors)

Provides computational prediction of type III and IV secreted effectors in
gram-negative bacteria

Samudrala et al., 2009
http://www.sysbep.org/sieve/

T3SEdb
[Database for effectors of Type III
secretion system (T3SS)]

Provides keyword as well as sequence searches. More than 171 clusters of
T3SEs have been detected based on sequence identity comparisons

Tay et al., 2010
http://effectors.bic.nus.edu.sg/
T3SEdb/index.php

T3SS effector prediction tool Presents a signal prediction method together with comprehensive survey of
potential type III secretion system effectors extracted from 918 published
bacterial genomes

Lower and Schneider, 2009
http://www.modlab.org/

in fungal genomes leading to the identification of more realistic
and manageable numbers.

Plant pathogenic nematodes are mostly obligate parasites and
depend on living host cells for nutrition. The plant response
to nematode presence is genetically similar to the one observed
with fungal and bacterial pathogens. Gene for gene evolution is
well-documented in the case of nematode resistance and several
Avr genes and corresponding R genes are known (Woo et al.,
2014; Kadam et al., 2015; Vuong et al., 2015). Nematodes release
degrading enzymes and peptides that mimic plant hormones into
the apoplast to make feeding sites by modifying the host cells.
The nematode proteins are secreted from specific glands and
those are key for the pathogenesis process, in a manner very
similar to that observed with the bacterial and fungal effector
systems (Mitchum et al., 2013). As a matter of fact, nematode
effectors may have evolved after horizontal transfer from bacteria
and fungi (Haegeman et al., 2011). Presently very little is known
about the specific characteristics of nematode effectors, and as
a result, reliable computational tools are more limited for CSEP
prediction.

Plant–insect interactions are also being investigated in view
of the current understanding of effectors in bacterial and

fungal organisms (Stuart, 2015). There are several Avr and R
genes known to dictate plant–insect interactions, and most of
these fit well in the gene for gene concept. This suggests the
likelihood of molecular mechanisms similar to those found in
fungal/bacterial effectors. As with nematodes, horizontal gene
transfer from bacteria and fungi has been observed in insects,
thereby suggesting a similar process of effector acquisition
(Husnik et al., 2013). Plants recognize insects by herbivore-
associated molecular patterns (HAMP), similar to PAMPs, which
induce an immune response. Insect elicitors are secreted through
the saliva at the host–insect interface and induce JA, ethylene and
SA biosynthesis, as well as the reactive oxygen burst (Wu and
Baldwin, 2010). Such insect recognition and plant response has
been observed in Arabidopsis in response to proteins present in
the green-peach aphid saliva (De Vos and Jander, 2009).

CONCLUDING REMARKS

The rapidly increasing availability of fungal genomes and
functionally validated effectors has provided opportunities to
improve CSEP identification in many fungal pathogens.
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In turn, this has led to the development of a large number of
computational tools and pipelines to study CSEPs. Given that
each tool or pipeline has its own advantages and limitations,
the analytical path proposed in this review (Figure 2) offers
a good balance between computational prediction and effector
functionality.

Our review also highlights the need to increase the prediction
efficiency of functional secreted proteins by continuously
fine-tuning tools with every newly characterized effector.
In this context, approaches based on machine learning
that can integrate all the information generated through
phenotypic and genomic data in a very systematic manner
will be helpful in improving identification of effectors. In
addition, considering that effectors evolve rapidly through
gene-for-gene interactions, comparative genome sequencing
data analysis can provide useful insights with respect to
CSEP identification, origin, functionality, and important
structural features. For instance, secondary and tertiary
structure information, gene expression data, and information
about gene and genomic organization are likely to increase
the accuracy with which effectors are identified in fungi
and other organisms. Most of the available pipelines and
automated servers do not currently integrate such data.
Combining available pipelines with the ever increasing
structural, genomic and transcriptomic data will lead to a
better prioritization strategy where the most promising effectors

can be rapidly targeted for future analyses aimed at a better
understanding of pathogenesis processes in plant–pathogen
interactions.
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