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The American pokeweed plant, Phytolacca americana, is recognized for synthesizing
pokeweed antiviral protein (PAP), a ribosome inactivating protein (RIP) that inhibits
the replication of several plant and animal viruses. The plant is also a heavy metal
accumulator with applications in soil remediation. However, little is known about
pokeweed stress responses, as large-scale sequencing projects have not been
performed for this species. Here, we sequenced the mRNA transcriptome of pokeweed
in the presence and absence of jasmonic acid (JA), a hormone mediating plant defense.
Trinity-based de novo assembly of mRNA from leaf tissue and BLASTx homology
searches against public sequence databases resulted in the annotation of 59 096
transcripts. Differential expression analysis identified JA-responsive genes that may
be involved in defense against pathogen infection and herbivory. We confirmed the
existence of several PAP isoforms and cloned a potentially novel isoform of PAP.
Expression analysis indicated that PAP isoforms are differentially responsive to JA,
perhaps indicating specialized roles within the plant. Finally, we identified 52 305 natural
antisense transcript pairs, four of which comprised PAP isoforms, suggesting a novel
form of RIP gene regulation. This transcriptome-wide study of a Phytolaccaceae family
member provides a source of new genes that may be involved in stress tolerance in this
plant. The sequences generated in our study have been deposited in the SRA database
under project # SRP069141.

Keywords: Phytolacca americana, pokeweed, RNA-seq, transcriptome, jasmonic acid, ribosome inactivating
protein, pokeweed antiviral protein, natural antisense transcript

INTRODUCTION

The pokeweed plant, Phytolacca americana, is a member of the Phytolaccaceae family of flowering
plants that includes 65 species of herbs, shrubs, and trees. Pokeweed is native to eastern North
America and has become naturalized in Europe, the West Indies and Asia. This species is of interest
because it synthesizes PAP, a RIP with RNA N-glycosidase activity. Several isoforms of PAP are
reported to exist in pokeweed, exhibiting different temporal (PAP-I, PAP-II, PAP-III) and spatial
(PAP-S, PAP-R, PAP-alpha) expression patterns (Irvin, 1975; Irvin et al., 1980; Barbieri et al., 1982;
Bolognesi et al., 1990; Kataoka et al., 1992; Rajamohan et al., 1999). RIPs are present in less than

Abbreviations: E, ethanol; FC, fold change; FDR, false discovery rate; FPKM, fragments per kilobase per transcript per
million mapped reads; GO, gene ontology; JA, jasmonic acid; NAT, natural antisense transcript; ORF, open reading frame;
PAP, pokeweed antiviral protein; RIP, ribosome inactivating protein; TMM, trimmed mean of m-values.
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20% of angiosperm taxonomic orders and phylogenetic analysis
indicates a complex evolutionary history (Di Maro et al., 2014).
They are potent defense proteins effective against a range of
viruses, fungi, and less commonly, insects (Stirpe, 2013).

Pokeweed has broad applications in agriculture and medicine.
PAP inhibits the replication of several plant and animal
viruses, either through ribosome inactivation which limits viral
proliferation or by direct depurination of the viral genome (Lodge
et al., 1993; Rajamohan et al., 1999; He et al., 2008; Karran and
Hudak, 2008; Mansouri et al., 2009). Interestingly, recent work
demonstrates that pokeweed accumulates high levels of heavy
metals, especially cadmium and manganese, with promising
applications in soil detoxification (Dou et al., 2009; Zhao et al.,
2011, 2012). Nevertheless, little is known about pokeweed, as the
genes involved in stress response have not been identified.

Here, we have sequenced the pokeweed mRNA transcriptome
in the presence and absence of JA treatment. JA is a
plant hormone that mediates defense against herbivores and
necrotrophic pathogens. As herbivores are often viral vectors,
the JA pathway also has important implications for virus
resistance. We showed recently that PAP mRNA and protein
levels increase in the presence of JA (Klenov et al., 2015). A link
between jasmonate and other plant RIPs has previously been
established. For example, PIP2 from Phytolacca insularis, ME1
from Mirabilis expansa and JIP60 from barley are induced by JA
or its methyl jasmonate derivative (Dunaeva et al., 1999; Song
et al., 2000; Vepachedu et al., 2003). Furthermore, expression
of the insecticidal maize RIP2 is increased 100-fold at the RNA
level upon caterpillar feeding, demonstrating the relevance of
RIPs in anti-herbivory (Chuang et al., 2014). By sequencing the
transcriptome of pokeweed treated with JA, we will gain novel
information about the regulation of specific PAP isoforms and
how these proteins are integrated within the larger network
of pokeweed pathogen response. This work lays the important
foundation to understand the resiliency of pokeweed to biotic and
abiotic factors.

We report the de novo assembly and annotation of the
pokeweed mRNA transcriptome from leaf tissue. Through a
combination of differential expression and GO analysis, we
identified JA-responsive genes and enriched GO terms involved
in stress and defense. We confirmed the existence of several
published PAP isoforms, reported their distinct responses to JA
and cloned a potentially novel PAP isoform. Finally, we report
the discovery of PAP NATs that are also JA-responsive, which may
represent a novel form of RIP gene regulation.

MATERIALS AND METHODS

Pokeweed Growth Conditions and
Jasmonic Acid Treatment
Pokeweed seeds were treated with 37% sulfuric acid for 5 min
and submerged in water for 4 days at room temperature. Seeds
were germinated in soil (Promix BX) and maintained in a growth
chamber (AC60, Biochambers, Winnipeg, MB, Canada) under
fluorescent and incandescent lights at 180 µE m−2 s−1 with
periods of 16 h day and 8 h night. Fertilizer was provided once

every 2 weeks with N:P:K 20:20:20. For experimental treatment,
plants were sprayed with 5 mL of 5 mM JA dissolved in 0.5%
ethanol (to improve the solubility of JA). Negative control plants
were sprayed with 0.5% ethanol. Following treatment, plants were
returned to the chamber and leaf tissue was harvested 24 h later.
All plants used in this study were at the 4-leaf stage of growth.

Total RNA Isolation, Library
Construction, and Sequencing
Total RNA was extracted from leaf tissue of pokeweed plants
treated with 5 mM JA in 0.5% ethanol or 0.5% ethanol alone
using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA, USA). An
equal amount of total RNA from three independent plants was
pooled for each biological replicate. In total, six mRNA libraries
were generated (n = 3 per treatment, from 18 total plants).
Libraries were constructed with the TruSeq Stranded mRNA
Library Preparation Kit (RS-122-2101, Illumina). Sequencing was
performed on a single lane of an Illumina HiSeq 2500 machine
by The Centre for Applied Genomics (The Hospital for Sick
Children, Toronto, ON, Canada) to generate paired-end reads of
150 bases. Raw sequences are available at the SRA database under
project # SRP069141.

RNA-Seq Data Processing and De Novo
Transcriptome Assembly
Prior to assembly, adapters were clipped, low-quality bases were
trimmed (Q < 30, averaged over four bases) and synchronicity
of paired-end files was maintained using Trimmomatic
v. 0.32.1 (Bolger et al., 2014) as follows: PE -phred33
ILLUMINACLIP:TruSeq3-PE.fa:2:30:10 SLIDINGWINDOW:
4:30. The pokeweed transcriptome was assembled with
Trinity v. r2014-04-13p1 (Grabherr et al., 2011) using the
following command-line, which invoked paired-end, stranded
information: –seqType fq –JM 48G –left reads-1.fq –right
reads-2.fq –SS_lib_type RF –CPU 24.

Transcriptome Annotation and
Refinement
Trinotate v. 2.0.1 (Haas et al., 2013) was used for transcriptome
annotation. BLAST (Altschul et al., 1997) searches were
conducted against both the SwissProt (Bairoch and Boeckmann,
1991) and UniRef90 (Suzek et al., 2007) databases (current as
of January, 2015). Owing to strand-specific sequencing, only
the plus strand of the transcriptome was queried with BLASTx.
Transdecoder-predicted and translated ORFs were queried with
BLASTp. The E-value threshold was set to 0.001 and only the
top-scoring hit was retained. HMMER v. 3.1b2 (Finn et al., 2011)
was used to search for conserved protein domains in predicted
ORFs against the pfam-A (Finn et al., 2014) database (current as
of January, 2015). BLAST homologies and Pfam domain entries
were loaded into the pre-formatted Trinotate SQLite database
which contained UniProt-associated annotation information.

The complete, Trinity-assembled transcriptome (Raw
assembly) was filtered to retain only transcripts expressed at
an abundance of 1 FPKM (Filtered assembly) or only BLASTx-
annotated transcripts (BLASTx assembly). Assembly statistics
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were calculated and transcript coverage of each top-scoring
unique hit was determined with custom scripts that came
bundled with Trinity software. A local installation of the Galaxy
platform (Giardine et al., 2005; Blankenberg et al., 2010; Goecks
et al., 2010) was used for manipulation of large datasets.

Transcript Abundance and Differential
Expression Analysis
Transcript-level rather than unigene-level expression was
investigated in order to retain isoform-specific information.
Reads from individual libraries were aligned to the reference
transcriptome with bowtie v. 1.1.1. (Langmead et al., 2009) and
quantified by RSEM v. 1.2.18 (Li and Dewey, 2011). A table of
TMM-normalized FPKM expression values and a separate table
of raw fragment counts were generated with custom scripts.

Differentially expressed transcripts were identified from raw
counts with the Bioconductor package EdgeR v. 3.1 (Robinson
et al., 2010) in the statistical program R (R Development Core
Team, 2011). Three biological replicates for each condition
were provided. A subset of differentially expressed transcripts
(FDR < 0.001 and FC ≥ 4) was extracted and used to generate
a heatmap of hierarchically clustered, log2-transformed and
median-centered FPKM values. All scripts came bundled with
Trinity software and default parameters were used, supplemented
with the strand-specific parameter −SS_lib_type RF when
applicable.

Gene Ontology Analysis
Blast2GO v. 3.0 (Conesa et al., 2005) was used to map GO terms to
parent plant GOSlim terms in order to obtain a broad overview
of the transcriptome. To identify enriched terms, a Fisher’s test
was conducted in Blast2GO with FDR < 0.001. For NAT GO
term enrichment, any NAT pair with at least one protein-coding
transcript, as annotated by BLASTx, was included in the test set.
For enrichment of JA-responsive NAT pairs, in addition to the
above protein-coding requirement, only pairs with differentially
expressed sense and antisense transcripts were included in the
test set. The raw, Trinity-assembled pokeweed transcriptome
served as the reference set for all Fisher’s tests conducted in this
study.

Identification of PAP Isoforms and
Natural Antisense Transcripts
Following transcriptome annotation, any transcript that matched
a published PAP sequence as its top BLASTx hit and contained
a predicted RIP protein domain was considered to be a PAP
isoform. To identify NATs, a BLASTn search was conducted
whereby the plus strand of the complete transcriptome was
aligned to a local database containing the reverse complement of
all transcripts. The BLASTn E-value threshold was set to 0.001.

Cloning of Novel PAP Isoform and PAP
Natural Antisense Transcript
All primer sequences used in this study are available in
Supplementary Data Sheet 1. Reverse transcription was
performed on 500 ng of total pokeweed RNA in a 20 µL reaction

volume containing 5 mM DTT, 1 µM reverse primer, 1X First
Strand Buffer (50 mM Tris-HCl pH 8.3, 75 mM KCl, 3 mM
MgCl2), 0.5 mM dNTPs, 20 units Murine RNase Inhibitor (NEB)
and 25 units Superscript III reverse transcriptase (Thermo
Fisher). The reaction was incubated at 42◦C for 1 h and heat
inactivated at 70◦C for 20 min.

Following cDNA synthesis, a PCR reaction was conducted,
containing 1X Q5 buffer (NEB), 0.5 µM forward primer, 0.5 µM
reverse primer, 200 mM dNTPs, 2 µL cDNA and 1 unit Q5
DNA polymerase (NEB) in a total volume of 50 µL. The PCR
program included an initial denaturation of 95◦C for 30 s, 30
cycles of 95◦C for 30 s, 58◦C for 30 s, 72◦C for 120 s and
finished with an extension at 72◦C for 180 s. PCR products were
separated on low-melt agarose and the correct size band excised
and purified with EZ-10 Spin columns (Biobasic). The purified
product was digested with BamHI and SalI, ligated into pBS-KSII
and sequenced.

qRT-PCR Validations
For qRT-PCR, the reverse transcription step was performed in
the same manner as cloning except that 2 µg of total pokeweed
RNA from either control or JA treated plants was used with
reverse primers corresponding to a specific transcript or 28S
rRNA as the internal control. The qPCR reaction contained 5 µL
of cDNA, 0.7 µM forward primer, 0.7 µM reverse primer and
1X SYBR Green Mastermix (Clontech). Each reaction was split
into three technical replicates and analyzed in a Qiagen Rotor-
gene-Q real time PCR cycler. Ct-values were calculated with the
11Ct relative quantification method. Three biological replicates
were conducted for each transcript. For statistical analysis, a one-
tailed, unpaired Student’s t-test was conducted using GraphPad
Prism v.5.01.

RESULTS

Assembly and Annotation of the
Pokeweed mRNA Transcriptome
An overview of the entire study is provided in Supplementary
Figure S1. A total of 406,995,054 high-quality reads from
control and JA-treated pokeweed plants were combined and
the mRNA transcriptome was assembled with Trinity software.
Assembly statistics are provided in Table 1. The complete
pokeweed transcriptome (Raw) contained 216,891 transcripts
belonging to 177,709 unigenes. To identify contigs expressed
at a reasonable threshold, the Raw assembly was filtered to
retain only those having a minimum abundance of 1 FPKM;
this reduced the number of transcripts and unigenes to 89,682
and 77,731, respectively (Filtered). The Raw assembly was also
filtered on the basis of BLASTx annotation, which resulted
in 59,096 and 38,291 annotated transcripts and unigenes,
respectively (BLASTx). Furthermore, 16,245 unique proteins
were represented by transcripts with at least 70% BLASTx
alignment coverage, indicating a high-quality transcriptome
assembly (Supplementary Data Sheet 2). The Trinotate report
for BLASTx-annotated transcripts is available in Supplementary
Data Sheet 3. Interestingly, only 38% of transcripts in the
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TABLE 1 | Assembly statistics for pokeweed mRNA transcriptomes.

Parameter Raw Filtered BLASTx

# of Transcripts 216,891 89,682 59,096

# of Genes 177,709 77,731 38,291

Transcriptome size (Mb) 157 74 85

N50 (bp) 1,168 1,617 2,102

Average length (bp) 724 821 1,439

Median length (bp) 406 373 1,159

Minimum length (bp) 201 201 201

Maximum length (bp) 15,776 15,776 15,776

# of Transcripts ≥ 1 Kb 42,541 24,436 32,746

Raw: the complete, Trinity-assembled transcriptome; Filtered: only transcripts ≥
1 FPKM were retained; BLASTx: only BLASTx-annotated transcripts from the
UniRef90 and SwissProt databases were retained.

Filtered assembly were also BLASTx annotated, suggesting that
the majority of pokeweed-expressed transcripts are not shared
with those from available plants.

To assess the contiguity of our different assemblies, we
also determined their N50 values (Table 1). The N50 statistic
is a weighted median such that 50% of the assembly is
contained in contigs equal to or larger than this value. N50
values for the Raw, Filtered, and BLASTx assemblies were
1,168, 1,617, and 2,102 bp, respectively. These values indicated
that expressed and annotated transcripts tended to be longer
in length, which was confirmed from the assembly length
distributions (Figure 1). Notably, the Raw assembly had a
majority of transcripts between 200 and 600 bp in length,
while this size class accounted for a smaller proportion of
the Filtered and BLASTx assemblies. These short transcripts
could represent partial transcripts, microRNA precursors and/or
assembly artifacts.

Functional annotation of the complete, assembled pokeweed
transcriptome was carried out with the Trinotate pipeline and GO
analysis was conducted using Blast2GO software. GO terms were
mapped to corresponding plant GOSlim terms in order to obtain
a summary of the transcriptome (Supplementary Figure S2).

FIGURE 1 | Length distributions of pokeweed mRNA transcriptomes.

GOSlims are cut-down versions of the ontology with reduced
detail of lower-level terms; they are useful for providing a
general overview of the transcriptome. In total, 36,423 transcripts
were annotated with 238,251 GO terms, distributed amongst
the categories of Biological Process, Molecular Function, and
Cellular Component. Within the Biological Process category,
the most abundant terms included response to stress (5,471
transcripts; 15.0% of all transcripts), transport (5,365; 14.7%), and
cellular protein modification process (5,200; 14.3%). Nucleotide
binding (8,403; 23.1%), DNA binding (4,415; 12.1%), and
kinase activity (3,219; 8.8%) comprised the majority of terms
in the Molecular Function category. Finally, the Cellular
Component distribution indicated that most annotated proteins
localized to the plasma membrane (4,974; 13.7%), plastid (3,559;
9.8%), or cytosol (2,887; 7.9%). Taken together, GO analysis
indicates that the majority of pokeweed transcripts can be
grouped into a small number of broad yet distinct functional
categories.

Identification of Jasmonic
Acid-Responsive Genes
Following transcriptome annotation, our next goal was to
identify JA-responsive genes through differential expression
analysis. Briefly, reads from each library were individually
aligned back to the complete reference transcriptome and
the abundance of each transcript was determined; differential
expression analysis was then conducted based on normalized
read counts. The most abundant, BLASTx-annotated transcripts
from control and JA-treated plants are summarized in Table 2
and abundances of all transcripts are available in Supplementary
Data Sheet 4. Control plants had high expression of several
genes encoding photosynthetic proteins, including RuBisCO
and photosystem-associated components. Conversely, JA-treated
plants had high abundance of transcripts encoding defense
proteins, including two defensin-like proteins, two isoforms of
PAP and a proteinase, in addition to constitutive plant metabolic
proteins.

A total of 8,264 transcripts were differentially expressed
between control and JA-treated plants (FDR < 0.05;
Supplementary Figure S3). A subset of 2,770 (FDR < 0.001,
FC ≥ 4) was defined for downstream analysis (Figure 2A). Of
these, the majority of transcripts increased with JA treatment
(2067; 75%). Furthermore, as shown in Figure 2B, most of
the transcripts were expressed in both control and JA-treated
plants (2192; 79%); interestingly, a considerable number was
detected only in JA-treated plants (434; 16%). Of these JA
treatment-specific transcripts, 165 encoded known proteins as
annotated by BLASTx (Supplementary Data sheet 5). Many
have well-established roles in defense, including a pathogenesis-
related protein, and several chitinases, proteinases, peroxidases,
and terpenoid biosynthesis enzymes. JA-induced transcription
factor families such as ERF, MYB, and TIFY were identified,
as well as two enzymes involved in JA biosynthesis, jasmonate
O-methyltransferase and 4-coumarate-CoA ligase-like 5.
Interestingly, among the most abundant, JA-specific transcripts
was a putatively novel isoform of PAP, c115037_g1_i1.

Frontiers in Plant Science | www.frontiersin.org 4 March 2016 | Volume 7 | Article 283

http://www.frontiersin.org/Plant_Science/
http://www.frontiersin.org/
http://www.frontiersin.org/Plant_Science/archive


fpls-07-00283 March 14, 2016 Time: 19:47 # 5

Neller et al. Jasmonic Acid Control of Pokeweed Transcriptome

TABLE 2 | Most abundant, BLASTx-annotated transcripts expressed in pokeweed under control (E) and JA treatments.

Transcript ID Top BLASTx Hit Gene Name log2FPKM

E

c58232_g7_i1 RBS1_MESCR Ribulose bisphosphate carboxylase small chain 1, chloroplastic 14.74

c58494_g1_i1 CB2A_SPIOL Chlorophyll a–b binding protein, chloroplastic 14.73

c111935_g1_i1 PSBR_SOLTU Photosystem II 10 kDa polypeptide, chloroplastic 14.00

c58232_g6_i1 RBS2_MESCR Ribulose bisphosphate carboxylase small chain 2, chloroplastic 13.83

c111786_g1_i1 GL33_ARATH Germin-like protein subfamily 3 member 3 13.09

c47181_g1_i1 GRP1_DAUCA Glycine-rich RNA-binding protein 12.64

c16825_g1_i2 CAHC_SPIOL Carbonic anhydrase, chloroplastic 12.58

c111825_g1_i1 CB23_TOBAC Chlorophyll a–b binding protein 36, chloroplastic 12.57

c60753_g1_i1 CB12_PETHY Chlorophyll a–b binding protein, chloroplastic 12.27

c111752_g1_i1 PSAK_ARATH Photosystem I reaction center subunit psaK, chloroplastic 12.18

JA

c112185_g1_i1 DEF_NELNU Defensin-like protein 16.54

c51788_g1_i1 DF322_SOLTU Defensin-like protein P322 15.30

c58494_g1_i1 CB2A_SPIOL Chlorophyll a–b binding protein, chloroplastic 14.68

c58232_g7_i1 RBS1_MESCR Ribulose bisphosphate carboxylase small chain 1, chloroplastic 14.37

c3137_g1_i1 RIP1_PHYAM Antiviral protein I 14.35

c111935_g1_i1 PSBR_SOLTU Photosystem II 10 kDa polypeptide, chloroplastic 14.01

c58232_g6_i1 RBS2_MESCR Ribulose bisphosphate carboxylase small chain 2, chloroplastic 13.80

c60978_g1_i1 XCP1_ARATH Xylem cysteine proteinase 1 13.49

c3192_g1_i1 RIP2_PHYAM Antiviral protein 2 13.18

c47181_g1_i1 GRP1_DAUCA Glycine-rich RNA-binding protein 12.70

Transcripts are listed in order of decreasing abundance.

The top JA-responsive, BLASTx-annotated transcripts are
summarized in Table 3 and the complete list of differential
expression results is provided in Supplementary Data Sheet
6. As expected, many of these transcripts encoded proteins
involved in JA metabolism (Supplementary Figure S4).
Additionally, several defense genes were among those most
differentially expressed; these included intracellular ribonuclease
LX, nerolidol synthases, antiviral protein alpha, and defensin-
like protein. To obtain insight into the functional roles of
JA-responsive transcripts in pokeweed, we conducted GO
term enrichment analysis (Table 4). Up- and down-regulated
transcripts were investigated separately in order to determine
their independent contributions within the plant. Up-regulated
transcripts were highly enriched in terms related to stress
and defense responses, indicating marked transcriptional
reprogramming in JA-treated plants. Down-regulated transcripts
were not enriched in any well-defined stress responses and
the enriched terms did not appear to represent any common
themes.

To validate RNA-seq results, the expression of eight randomly
selected transcripts and two selected transcripts (discussed
below) from our defined subset was assessed by qRT-PCR from
control and JA-treated plants (Figure 3). An R2 correlation value
of 0.917 was obtained, indicating high correspondence between
the two methods of transcript quantitation.

Identification and Analysis of PAP Isoforms
Following transcriptome annotation, we were able to identify
assembled PAP isoforms on the basis of homology with published
sequences. Six transcripts were annotated as RIPs through

BLASTx and contained predicted RIP domains within their
translated ORFs; their annotation information is summarized

FIGURE 2 | Identification of JA-responsive genes in pokeweed.
(A) Heat map of expression values (log2FPKM, median-centered) of the top
differentially expressed transcripts (FDR < 0.001, FC ≥ 4). (B) Venn diagram
depicting treatment-specific expression patterns of transcripts in (A).
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TABLE 3 | Top JA-responsive, BLASTx-annotated genes in pokeweed.

Transcript ID Top BLASTx Hit Gene name log2FC log2FPKM E log2FPKM JA FDR

c112223_g1_i1 LOX21_SOLTU Linoleate 13S-lipoxygenase 2-1, chloroplastic 13.97 − 4.63 9.58 1.51E–182

c53706_g1_i2 TRPB_CAMAC Tryptophan synthase beta chain 2, chloroplastic 13.36 − 4.18 9.32 5.28E–157

c20579_g1_i1 RNLX_SOLLC Intracellular ribonuclease LX 13.84 − 2.93 11.08 3.64E–148

c112209_g1_i1 NATT3_THANI Natterin-3 8.67 1.72 10.51 8.82E–144

c3273_g2_i1 NES2_FRAAN (3S,6E)-nerolidol synthase 2, chloroplastic/mitochondrial 10.63 − 2.41 8.34 8.92E–137

c61047_g1_i1 BSPA_POPDE Bark storage protein A 13.10 − 4.08 9.16 2.85E–135

c3273_g1_i1 NES1_FRAAN (3S,6E)-nerolidol synthase 1 13.30 − 6.42 7.29 6.16E–135

c50513_g1_i1 ZOG_PHALU Zeatin O-glucosyltransferase 13.77 − 7.38 7.00 3.57E–125

c60944_g1_i1 RIPA_PHYAM Antiviral protein alpha 12.99 − 1.58 11.68 9.32E–120

c112185_g1_i1 DEF_NELNU Defensin-like protein 13.19 3.30 16.54 3.77E–119

Transcripts are listed in order of decreasing significance.

TABLE 4 | Top enriched GO terms amongst JA-responsive genes in pokeweed (FDR < 0.001).

Down-regulated transcripts (703) Up-regulated transcripts (2067)

GO Term FDR GO Term FDR

Extracellular region 5.96E–04 Response to wounding 1.28E–26

Hydrolase activity, hydrolyzing O-glycosyl compounds 2.88E–03 Response to endogenous stimulus 1.82E–16

Heme binding 2.88E–03 Response to jasmonic acid 5.82E–16

Methylammonium transmembrane transporter activity 2.88E–03 Response to chitin 3.90E–15

Cell wall 3.91E–03 Defense response 1.54E–14

Storage vacuole 3.91E–03 Regulation of systemic acquired resistance 2.60E–10

Nitrate reductase (NADH) activity 1.31E–02 Cytoplasm 2.60E–10

Nucleus 1.73E–02 Cellular component organization or biogenesis 6.27E–10

Molybdopterin cofactor binding 1.98E–02 Heme binding 7.75E–10

Oxidation–reduction process 2.02E–02 Nutrient reservoir activity 1.19E–09

The number in brackets indicates the number of down- or up-regulated transcripts within the test set.

in Table 5. Two isoforms, PAP-I and PAP-II, had perfectly
assembled ORFs. Partial transcripts of PAP-alpha and PAP-
S were also identified, with 73 and 39% coverage and nearly
100% sequence identity with their respective hits. Interestingly,
transcript c18776_g1_i1 had only 40% identity with PAP-
alpha, its top BLASTx hit, and 86% coverage. Furthermore,
the E-value of its identified RIP domain was more significant
than that of PAP-II, which was correctly assembled. We
cloned and sequenced the predicted ORF of c18776_g1_i1 from
pokeweed total RNA, confirming expression of the transcript
in the plant. Taken together, we hypothesize that transcript
c18776_g1_i1 represents a novel PAP isoform. Transcript
c115037_g1_i1, with 81% identity to PAP-I, may be another
novel isoform; however, with only 38% coverage, we could not
rule out the possibility that this transcript was an assembly
artifact.

Differential expression results of the six identified PAP
isoforms are provided in Table 6. With the exception of
c18776_g1_i1, the hypothesized novel isoform, all other
transcripts showed a significant increase in abundance upon
JA treatment (FDR < 0.05). PAP-S had the most significant
result, with a log2 FC of 12.07, a remarkable 4,300-fold
increase. Transcript c115037_g1_i1, the other putative novel
isoform, showed the highest log2 FC of 13.17. The expression
patterns of c18776_g1_i1 and c115037_g1_i1 are distinct

FIGURE 3 | Validation of RNA-seq differential expression results. The
correlation of JA-induced expression changes obtained from RNA-seq and
qRT-PCR is shown for 10 transcripts, eight of which were randomly selected.
Results for qRT-PCR are from three independent biological replicates for each
transcript.

from PAP-alpha and PAP-I, their respective top hits, further
supporting the hypothesis that they are novel isoforms.
We validated the expression of c18776_g1_i1 by qRT-PCR.
Although its reduction with JA treatment was not significant
by RNA-seq (FDR < 0.05), qRT-PCR indicated a log2 FC
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of –1.04 (0.49 fold), which was significant (Student’s t-test,
p < 0.05; Figure 3). The fully assembled PAP-I and PAP-
II isoforms showed the lowest log2 FC of 3.83 and 3.11,
respectively; interestingly, they were also the most abundant.
Taken together, these results indicate that PAP isoforms
respond differently to JA treatment, in terms of FC and
abundance.

Discovery of Natural Antisense
Transcripts in Pokeweed
Owing to strand-specific sequencing of the pokeweed mRNA
transcriptome, we were able to identify putative NATs. This
involved performing a BLASTn search of the assembled
transcriptome against its reverse complement to find transcript
pairs having significant sequence complementarity (E < 0.001).
In total, 52,305 NAT pairs were detected, although this
number is an under-representation because only the best-
matching partner for each transcript was retained in our
analysis.

We conducted GO enrichment analysis to investigate
the potential functional roles of NATs in pokeweed. As
shown in Figure 4, NATs were enriched in 24 GO terms
relative to all pokeweed transcripts from the raw assembly
(FDR < 0.001). Of these, “chloroplast stroma” was most
significant and three other chloroplast-related terms were
also enriched: “chloroplast thylakoid membrane,” “chlorophyll
biosynthetic process,” and “chloroplast thylakoid lumen.”
From the 52,305 pairs of NATs, 2,502 transcripts were
differentially expressed (FDR < 0.001, FC ≥ 4). Of the
differentially expressed NATs, 88 pairs involved both
partners, suggesting co-regulation in response to JA. The
88 pairs were enriched in three GO terms relative to
all pokeweed transcripts: “nitrate assimilation,” “nitrate
reductase (NADH) activity,” and “molybdopterin cofactor
binding” (FDR < 0.001). The transcripts relating to
these terms were annotated as NRT1/PTR FAMILY
members and nitrate reductases. Therefore, it appears
that in pokeweed, NATs in general are important in the
chloroplast, while JA-responsive NATs may regulate nitrate
metabolism.

As shown in Table 7, four PAP isoforms had significant
NAT counterparts (PAP-I, PAP-II, and the two potentially novel
isoforms). Each NAT showed perfect alignment identity and
nearly full-length coverage with its respective PAP isoform.
Interestingly, the expression of PAP isoforms and their
corresponding NATs showed a strong positive correlation, with
an R2 value of 0.909 (Figure 5). We cloned and sequenced
the PAP-I NAT (c61645_g1_i1) from pokeweed total RNA
to validate its expression. Furthermore, qRT-PCR of PAP-I
NAT from JA-treated plants indicated a significant increase
of 6.68 fold (log2FC of 2.74; Student’s t-test, p < 0.05;
Figure 3). These results confirm the expression of a JA-responsive
transcript that is antisense to the PAP-I sequence. In addition,
they suggest that certain PAP isoforms may be regulated by
NATs, which would constitute a novel form of PAP gene
regulation.
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TABLE 6 | Differential expression of PAP isoforms.

Transcript ID Top BLASTx Hit log2FC log2FPKM E log2FPKM JA FDR

c16017_g1_i1 RIPS_PHYAM 12.07 −1.79 10.55 1.87E–96

c115037_g1_i1 RIP1_PHYAM 13.17 −3.32 7.16 1.37E–75

c30332_g1_i2 RIPA_PHYAM 7.77 −2.20 5.62 2.12E–42

c3137_g1_i1 RIP1_PHYAM 3.83 10.41 14.35 1.76E–39

c3192_g1_i1 RIP2_PHYAM 3.11 9.97 13.18 3.95E–26

c18776_g1_i1 RIPA_PHYAM −0.90 7.69 6.88 6.81E–02

Transcripts are listed in order of decreasing significance. Putative novel isoforms are indicated in bold.

FIGURE 4 | Functional analysis of NATs in pokeweed. GO enrichment analysis was conducted on all NATs (Test Set) against the raw pokeweed transcriptome
assembly (Reference Set). Enriched terms (FDR < 0.001) are listed in order of increasing significance (bottom to top).

DISCUSSION

Through transcriptome assembly, annotation and differential
expression analysis, we identified genes that are significantly
affected by JA and could mediate defense against pathogens
and herbivores in P. americana. We validated the existence of
several previously reported PAP isoforms and characterized
their differential expression patterns. This work also
led to the discovery of a potentially novel PAP isoform
and identification of NATs that may regulate PAP gene
expression.

Construction of a High-Quality
Pokeweed Reference Transcriptome
We generated a robust pokeweed mRNA transcriptome by
combining strand-specific, paired-end sequencing reads from
biological replicates of JA-treated and control plants. Over 400
million processed reads were leveraged for assembly, which is
considered very deep sequencing (Haas et al., 2013). Comparison
of our assembly with sugar beet, a well-studied plant from
the same taxonomic order as pokeweed, reveals important
similarities to help validate our results. For example, de novo
assembly of the sugar beet mRNA transcriptome yielded a total

of 225,385 transcripts from 165,742 unique loci, providing an
N50 value of 1,185 bp (Mutasa-Göttgens et al., 2012). These
statistics are comparable to our pokeweed Raw assembly, which
had 216,891 transcripts, 177,709 unigenes and an N50 value
of 1,168 bp. Furthermore, others reported that approximately
80% of sugar beet unigenes are between 200 and 500 bp in
length (Fugate et al., 2014), in agreement with the abundance of
short transcripts we detected in pokeweed. The enrichment of
short transcripts seems to be a general trend amongst de novo
assembled transcriptomes, perhaps due to the assembly algorithm
which relies on short overlapping sub-sequences known as
k-mers (Ranjan et al., 2014). Through BLASTx searches against
public sequence databases, we were able to annotate 59,096
transcripts. This is in line with other studies of non-model plants,
with examples of approximately 40–50,000 annotated transcripts
or unigenes (Farrell et al., 2014; Jin et al., 2014; Ranjan et al.,
2014). Taken together, reports from other plants support the
validity of our pokeweed assembly.

Discovery of Putative Defense Genes in
Pokeweed
We were interested in identifying JA-responsive genes in
pokeweed because this hormone mediates broad-spectrum
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TABLE 7 | Identification and expression of putative PAP natural antisense transcripts.

PAP isoform
transcript

NAT NAT
length (bp)

% ID % Coverage Aligned regions of
PAP (P) and NAT (N)

log2FC log2FPKM
E

log2FPKM
JA

FDR

c3137_g1_i1 c61645_g1_i1 1260 100 100.08 P:22–1259, N:1–1238 3.71 5.08 8.90 1.95E – 27

c3192_g1_i1 c37772_g1_i1 1180 99.92 84.23 P:85–1264, N:1–1180 3.05 3.64 6.80 1.16E–17

c18776_g1_i1 c24011_g1_i1 1319 100 89.18 P:43–1361, N:1–1319 –0.92 1.76 0.93 0.35936

c115037_g1_i1 c21462_g1_i2 551 100 99.82 P:2–552, N:1–551 7.18 –3.32 1.15 2.44E–06

defense. We reported 165 annotated transcripts specific to
JA treatment. Many of these transcripts encoded factors
involved in JA biosynthesis, JA signaling and JA-mediated
defense, which have been identified in other transcriptome-wide
studies involving transgenic plants deficient in JA biosynthesis
or signaling (Abuqamar et al., 2006; Ku et al., 2011; Yan
et al., 2014). Identification of these JA responses allows
us to integrate PAP within broader defense pathways of
pokeweed.

FIGURE 5 | Expression of PAP sense and antisense transcripts. The
correlation of JA-induced expression changes obtained by RNA-seq is shown
for each PAP isoform and its corresponding NAT.

We also sought to identify genes other than PAP that may
contribute to defense in this plant. One interesting candidate
was intracellular ribonuclease LX, which showed a 14,664-
fold increase with JA. Such changes are not uncommon in
plants responding to biotic and abiotic stresses (Liu et al.,
2013; Pierce and Rey, 2013; Li et al., 2014). This gene,
characterized in tomato, is involved in programmed cell death
responses including senescence and is thought to contribute
to nutrient recycling by mediating RNA turnover (Lehmann
et al., 2001; Lers et al., 2006). It is well-established that
jasmonate is associated with localized cell death as part of
the hypersensitive response in plants, providing a possible
explanation for the increased expression of this gene in JA-
treated plants. Future work will investigate if this enzyme has a
role in pokeweed defense, as pathogen-responsive RNases have
been reported in other plants (Galiana et al., 1997; Ayashi et al.,
2003).

Another markedly up-regulated gene in our study was
annotated as bark storage protein A and is involved in nitrogen
storage in senescing leaves (Wetzel et al., 1989; Coleman
et al., 1991). Storage proteins have previously been linked to

jasmonate-mediated responses, such as VSP2 in Arabidopsis,
an anti-insect acid phosphatase (Liu et al., 2005). A final
candidate is defensin-like protein, which, in addition to being
differentially expressed, was also the most abundant transcript
in JA-treated plants. In Arabidopsis, the defensin PDF1.2 is a
well-established marker of the ethylene and jasmonate signaling
pathway that mediates resistance to pathogens (Manners et al.,
1998; Penninckx et al., 1998). Identification of JA-responsive
genes in pokeweed will allow a broader characterization of factors
involved in defense in this plant. Furthermore, since only 38% of
expressed pokeweed transcripts were annotated, this non-model
plant transcriptome represents a source of new genes that could
have agricultural benefits.

Characterization of PAP Isoforms and
their Differential Expression Patterns
Through transcriptome annotation, we confirmed the presence
of the following isoforms in pokeweed leaf tissue from 4-
leaf plants: PAP-I, PAP-II, PAP-S, and PAP-alpha. Based on
previous reports, PAP-I is expressed in spring leaves (Irvin, 1975),
PAP-II in early summer leaves (Irvin et al., 1980), PAP-S in
seeds (Barbieri et al., 1982) and PAP-alpha in various tissues
(Kataoka et al., 1992). We also presented sequence and qRT-
PCR evidence to support the existence of a novel PAP isoform.
Our finding that PAP-I was the most abundant isoform in
young plants, followed by PAP-II, agrees with their documented
temporal profiles. Furthermore, the high abundance of the
isoforms corresponds with the report that PAP comprises up
to 0.5% of total soluble protein in leaves (Bonness et al., 1994).
Interestingly, we only found one annotated PAP-S isoform. This
disagrees with a previous finding that PAP-S is a mix of two seed
isoforms, PAP-S1 and PAP-S2, having 85% nucleotide sequence
identity (Honjo et al., 2002). Our result was not likely due to
the assembly algorithm, since Trinity is able to differentiate
between sequences that are up to 95% identical (Grabherr et al.,
2011). This does not preclude the possibility that two PAP-S
isoforms exist in seeds, as we only investigated leaf tissue.
Furthermore, we did not identify PAP-R or PAP-III isoforms,
which have been purified from root tissue and late summer
leaves, respectively (Bolognesi et al., 1990; Rajamohan et al.,
1999).

RNA-seq analysis allowed us to compare the expression
patterns of multiple PAP isoforms simultaneously. This level of
distinction in a single experiment has not yet been possible,
likely due to difficulties related to high sequence identity amongst
isoforms. With the exception of PAP-II, the nucleotide sequences
of isoforms are >70% identical. In the current study, we found
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that all isoforms other than c18776_g1_i1 were significantly
up-regulated with JA. PAP isoforms exhibited differences in
terms of abundance and FC. Such differences could indicate
that they have specialized roles in defense, or more generally
within the plant. For example, analysis of two RIP isoforms in
spinach revealed that one was highly expressed in embryos and
not responsive to salicylic acid, while the other showed weak
expression throughout the plant but was induced with salicylic
acid (Kawade and Masuda, 2009). Authors suggested that the
two RIPs may have different functions, one in embryogenesis
and the other in defense. In pokeweed, PAP isoforms differ in
their ability to depurinate eukaryotic and prokaryotic ribosomes
in vitro (Honjo et al., 2002). A comprehensive RNA-seq study that
includes different developmental stages and stresses would allow
further insight into the possible roles of PAP isoforms.

Natural Antisense Transcripts in
Pokeweed
Natural antisense transcripts are pairs of endogenous transcripts
with high sequence complementarity, capable of forming
double-stranded RNA and affecting gene expression in cis
or trans. Cis-NATs are transcribed from the same genomic
locus but opposite orientations and have perfect sequence
complementarity, while trans-NATs are derived from different
loci. Our sequence analysis identified over 52,000 NAT pairs
in pokeweed. A recent study identified 37,238 NAT pairs in
Arabidopsis and an astonishing 70% of annotated mRNAs
were associated with antisense transcripts (Wang et al., 2014).
Furthermore, 60% of NAT pairs were comprised of fully
overlapping transcripts. In pokeweed, we found perfectly
identical, fully overlapping antisense transcripts of PAP-I, PAP-
II, c18776_g1_i1, and c115037_g1_i1. The fact that each NAT
was perfectly complementary to its respective isoform suggests
that they act in cis. We also found that PAP NATs and
their corresponding sense transcripts had positively correlated
responses to JA, indicating that NATs may regulate PAP
expression. This agrees with studies in humans and other
mammals which report significant positive correlations between
sense and antisense transcription (Oeder et al., 2007; Ling
et al., 2013). Fewer genome-wide studies of NAT transcription
have been performed for plants. In Arabidopsis, a study of
light-responsive long non-coding NATs identified 626 positively
correlated and 766 negatively correlated pairs (Wang et al., 2014).
NATs have been proposed to modulate gene expression at various
levels, including transcription, post-transcriptional small RNA
interference, mRNA splicing and RNA stability (Pelechano and
Steinmetz, 2013; Zhang et al., 2013; Liu et al., 2015). Future work
will investigate mechanisms by which NATs may regulate PAP
expression.

Apart from PAP regulation, we conducted preliminary
investigations into the broader roles of NATs in pokeweed. As
a group, NATs were enriched in several GO terms relating to
the chloroplast. Although the implications of this are unknown,
it agrees with a previous report from Arabidopsis that the
chloroplast encodes a diverse group of antisense RNAs mapping
to protein-coding genes (Hotto et al., 2011). Approximately
2,500 NATs were JA-responsive and 88 pairs were considered

biologically relevant because both sense and antisense strands
were differentially expressed. These NAT pairs were enriched
in GO terms relating to nitrate metabolism and the involved
transcripts were annotated as NRT1/PTR FAMILY members and
nitrate reductases. These enzymes have well-established roles in
nitrate assimilation, which involves the reduction of nitrate to
nitrite, followed by ammonium, which is ultimately incorporated
into amino acids for plant growth (Dechorgnat et al., 2010).
Importantly, the reduction of nitrite to ammonium occurs
in chloroplasts, further supporting the connection between
NATs and this specific organelle. Furthermore, NRT1/PTR
FAMILY members capable of transporting jasmonoyl-isoleucine,
the bioactive form of jasmonate, were recently identified
(Chiba and Shimizu, 2015). Given that plant stress decouples
nitrate assimilation and photosynthesis, mediated by the
jasmonate/ethylene signaling pathway (Zhang et al., 2014), NATs
in pokeweed may be involved in regulating the trade-off between
stress response and plant growth.

SUMMARY AND RELEVANCE

Here, we have assembled and annotated the pokeweed leaf
mRNA transcriptome under JA treatment. In addition to the
identification of many differentially expressed transcripts, we
also characterized the expression of multiple PAP isoforms
through RNA-seq analysis, including a potentially novel isoform
of PAP. Finally, we present the first report of NATs in the
pokeweed plant and confirmed expression of a PAP-NAT,
which may indicate a novel form of RIP gene regulation.
The pokeweed transcriptome will enable further investigations
into the robust defense strategies of this species and other
Phytolaccaceae family members. Heterologous expression of PAP
has already been applied successfully to produce virus resistant
plants (Lodge et al., 1993; Zoubenko et al., 1997; Wang et al.,
1998; Dai et al., 2003). Pokeweed accumulates high levels of
metal from contaminated soils but little is known about the
genes mediating this tolerance (Dou et al., 2009; Zhao et al.,
2011, 2012). With a complete repository of pokeweed mRNA
sequences, we anticipate the discovery of beneficial genes in
this plant that could improve the resiliency of agricultural
crops.
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