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WRKY, an important transcription factor family, is widely distributed in the plant kingdom.

Many reports focused on analysis of phylogenetic relationship and biological function of

WRKY protein at the whole genome level in different plant species. However, little is

known about WRKY proteins in the genome of Arachis species and their response to

salicylic acid (SA) and jasmonic acid (JA) treatment. In this study, we identified 77 and

75 WRKY proteins from the two wild ancestral diploid genomes of cultivated tetraploid

peanut, Arachis duranensis and Arachis ipaënsis, using bioinformatics approaches.

Most peanut WRKY coding genes were located on A. duranensis chromosome A6 and

A. ipaënsis chromosome B3, while the least number of WRKY genes was found in

chromosome 9. The WRKY orthologous gene pairs in A. duranensis and A. ipaënsis

chromosomes were highly syntenic. Our analysis indicated that segmental duplication

events played amajor role in AdWRKY and AiWRKY genes, and strong purifying selection

was observed in gene duplication pairs. Furthermore, we translate the knowledge gained

from the genome-wide analysis result of wild ancestral peanut to cultivated peanut to

reveal that gene activities of specific cultivated peanut WRKY gene were changed due

to SA and JA treatment. PeanutWRKY7, 8 and 13 genes were down-regulated, whereas

WRKY1 and 12 genes were up-regulated with SA and JA treatment. These results could

provide valuable information for peanut improvement.

Keywords: Arachis, disease resistant, gene duplication, phylogenetic relationship, WRKY

INTRODUCTION

WRKY transcription factors, a large family of regulatory proteins, are widely distributed in plant
and non-plant species (Eulgem et al., 2000; Riechmann et al., 2000; Zhang andWang, 2005; Rushton
et al., 2010; Rinerson et al., 2015). WRKY proteins are characterized by the WRKY domain, which
includes about 60 amino acids with a conserved WRKYGQK heptapeptide (Eulgem et al., 2000;
Rushton et al., 2010). WRKY proteins contain one or two WRKY domains and either one of two
types of zinc finger motif at C-terminal (Eulgem et al., 2000; Rushton et al., 2010). WRKY proteins
could be classified into three groups (I, II, and III) based on the number of WRKY domains and
the type of the zinc finger motifs. Group I WRKY proteins include two WRKY domains and a
zinc-finger motif (Eulgem et al., 2000; Rushton et al., 2010). Each group II and III WRKY proteins
contain a single WRKY domain, and a CX4−5CX22−23HXH and CX7CX23HXC zinc-finger motifs
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in C-terminal region, respectively (Eulgem et al., 2000; Rushton
et al., 2010). Group II is further subdivided into five subgroups
(IIa-IIe) based on phylogenetic relationship (Eulgem et al., 2000).

By binding to W-box cis-element (C/TTGACT/C) in target
gene promoter, WRKY proteins are involved in a variety of
biological functions, including different plant developmental
programs, as well as diverse abiotic and biotic stress response
(Eulgem et al., 2000; Rushton et al., 2010). WRKY proteins were
implicated to modulate plant development, such as, trichome
morphogenesis (Johnson et al., 2002), flowering (Luo et al.,
2013), seed development (Luo et al., 2005), dormancy and
germination (Zhang et al., 2004; Zentella et al., 2007; Zou
et al., 2008), and senescence (Robatzek and Somssich, 2002).
Recent studies revealed that WRKY proteins were involved
in response to abiotic stresses (Rushton et al., 2012), such
as salt (Wu et al., 2009), drought (Ren et al., 2010; Jiang
et al., 2012), cold (Zou et al., 2010), and wounding (Cheong
et al., 2002). For instance, expression of AtWRKY46 gene could
significantly induced by drought, H2O2 and salt stress, and
wrky46 mutant in Arabidopsis was more sensitive to salt and
osmotic stress compared to control (Ding et al., 2014). Expression
of TaWRKY44 gene in tobacco could improve drought, salt and
osmotic stress tolerance (Wang et al., 2015). Previous studies
indicated that WRKY proteins play crucial roles in pathogen
defense (Eulgem and Somssich, 2007; Rushton et al., 2010)
and insect (Grunewald et al., 2008; Skibbe et al., 2008). Xu
et al. (2006) found that expression of AtWRKY18 increased
resistance to Pseudomonas syringae, but its co-expression with
AtWRKY40 or AtWRKY60 made plants more susceptible to
both P. syringae and Botrytis cinerea. Furthermore, increasing
studies documented thatWRKY proteins are involved in defense-
relative hormone signal transduction, salicilic acid (SA) and
jasmonic acid (JA)-mediated defenses, where SA triggered
defenses against biotrophic pathogens and JA participates
in the response to necrotrophic pathogens (Li et al., 2004;
Schluttenhofer et al., 2014). For example, in Arabidopsis,
AtWRKY50 and AtWRKY51 promoted SA biosynthesis (Gao
et al., 2011); AtWRKY17 and AtWRKY33 genes were induced
after JA treatment (Journot-Catalino et al., 2006). Overexpression
of AtWRKY28 and AtWRKY46 genes could promote the
expression of ICS1 and PBS3 genes through SA signaling pathway
(van Verk et al., 2011). Additionally, recent study showed
that the expression of 12 WRKY genes from Catharanthus
roseus responded to JA (Schluttenhofer et al., 2014), and that
the expression of 49 Salvia miltiorrhiza WRKY genes was
signification up- or down-regulated by JA treatment (Li et al.,
2015).

WRKY proteins were studied extensively in a variety of
plant species (Eulgem et al., 2000; Wu et al., 2005; Wei et al.,
2012a; Liu et al., 2014; Song and Nan, 2014; Song et al.,
2014, 2016). However, current basic knowledge of WRKY
proteins and the characterization of specific WRKY proteins
involved in disease resistance from species in genus Arachis
are still limited. Peanut (Arachis hypogaea L.) is an important
oil crop grown throughout the tropics and subtropics regions.
Especially in Asia, which accounts for 64% of the world yield,
peanut provides a similar amount of calories from soybean

(Bertioli et al., 2011). To date, 80 species in genus Arachis
were identified and classified into nine taxonomic sections
(Bertioli et al., 2011). Wild species are diploid, but cultivated
peanut is allotetraploid (AABB). The wild ancestral species
of cultivated peanut are generally considered to be Arachis
duranensis and Arachis ipaënsis, which contributed the A and
B sub-genomes, based on morphology, cytology, fertility of
the interspecific hybrid and molecular studies (Kochert et al.,
1996; Seijo et al., 2004, 2007; Ramos et al., 2006). Plant
diseases have been a major reason for peanut yield losses.
Interestingly, the disease resistant capacity of wild peanut was
proved much higher than that of cultivated peanut (Herbert
and Stalker, 1981; Pande and Narayana Rao, 2001; Simpson,
2001). Therefore, disease resistant genes from wild type species
could be valuable resources for cultivated peanut improvement.
Recently, the whole genome sequences of A. duranensis and
A. ipaënsis have been released (Bertioli et al., 2016), which
provided an important resource for genome wide analysis of the
disease resistant genes. To fill the knowledge gap, we identified
75 AdWRKY and 77 AiWRKY proteins from A. duranensis
(Aradu.V14167.a1.M1) and A. ipaënsis (Araip.K30076.a1.M1),
respectively, by bioinformatics approaches, and then we studied
the phylogenetic relationship, the genome-wide distribution
pattern, gene duplication event, and selection pressure ofWRKY
genes in the two species. Additionally, we deduced potential
disease-resistant ArachisWRKY proteins based on the functional
study of Arabidopsis WRKY (AtWRKY) proteins and then we
transferred the knowledge to cultivated peanut to determine the
expression pattern of WRKY genes by quantitative real-time
RT-PCR (qRT-PCR) in different tissues, and we monitored the
WRKY transcriptional changes with SA and JA treatment to
preliminarily validate the disease-resistant potential. Our results
provide a comprehensive genome-wide knowledge of WRKY
proteins in the two wild ancestral species of peanut and a
preliminary knowledge of specific WRKY proteins potentially
involved in disease resistance in peanut.

MATERIALS AND METHODS

WRKY Proteins in A. duranensis and A.
ipaënsis Genomes
The A. duranensis (Aradu.V14167.a1.M1) and A. ipaënsis
(Araip.K30076.a1.M1) genome sequences were downloaded
from http://peanutbase.org/ (Bertioli et al., 2016). The Hidden
Markov Model (HMM) profile of the WRKY domain (PF03106)
was downloaded from the pfam database (http://pfam.janelia.
org). It was used to match each WRKY protein in genomes
using HMMER program (Finn et al., 2011). To verify the
reliability of results, all protein sequences were checked in
the pfam database. The AtWRKY protein sequences were
downloaded from Arabidopsis Information Resource website
(TAIR, http://www.arabidopsis.org).WRKY sequences ofGlycine
max (GmWRKY), Lotus japonicus (LjWRKY) and Medicago
truncatula (MtWRKY) were obtained from previous studies (Yin
et al., 2013; Bencke-Malato et al., 2014; Song et al., 2014; Song and
Nan, 2014).
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Classification of A. duranensis and A.
ipaënsis WRKY Proteins
The AtWRKY, AdWRKY, and AiWRKY domains were extracted
based on pfam database. Multiple sequences alignment was
executed by MAFFT 7.0 program (Katoh and Standley, 2013).
AtWRKY domains were used as query to categorize the
AdWRKY and AiWRKY proteins based on the phylogenetic tree
described by previous study (Song et al., 2014). The phylogenetic
trees were constructed using MEGA 6.0 (Tamura et al., 2013)
using neighbor-joining model with 1000 replicates. Other
phylogenetic trees were inferred according to the parameters.

The Genome-Wide Distribution Pattern,
Gene Duplication Event and Selection
Pressure of WRKY Genes
The chromosomal location information of AdWRKY and
AiWRKY proteins was obtained from peanutbase website (http://
peanutbase.org/). The map was generated using MapInspect
software (http://mapinspect.software.informer.com/).

Different types of gene duplication existed in genome, while
we focused only on tandem and segmental duplication events
in this study. To identify gene duplication events in AdWRKY
and AiWRKY genes, duplicated GmWRKY genes were used as
query to construct phylogenetic trees of AdWRKY and AiWRKY
genes, respectively. Colinearity between Arachis and Glycine is
more conserved (Nagy et al., 2012). If GmWRKY and AdWRKY
or AiWRKY genes were clustered in pairs in phylogenetic tree,
the gene pairs were considered as orthologous genes (Dutilh
et al., 2007; Altenhoff and Dessimoz, 2012). We classified gene
duplication events of AdWRKY and AiWRKY based on the
information from the duplicated GmWRKY (Yin et al., 2013).
Moreover, we identified orthologous genes between AdWRKY
and AiWRKY based on phylogenetic relationship using above
method (Dutilh et al., 2007; Altenhoff and Dessimoz, 2012).

Non-synonymous (Ka) and synonymous (Ks) substitution of
each duplicated AdWRKY and AiWRKY genes were calculated
by PAL2NAL program (Suyama et al., 2006), which is based on
codon model program in PAML (Yang, 2007). Generally, Ka/Ks
(ω) =1, >1, and <1 indicated neutral, positive, and purifying
selection, respectively. To detect whether the AdWRKY and
AiWRKY genes underwent positive selection under site model
and branch-site model, PAML program was applied in this study.
In site model, M0 (one ratio), M1a (neutral), M2a (selection), M3
(discrete),M7 (beta), andM8 (beta+ω) were applied to selection
pressure analysis. We detected absolute value in the ω ratio
parameter among sites using likelihood ratio test (LRT) for M1a
vs. M2a, M0 vs. M3 and M7 vs. M8. In Branch-site model, the ω

ratio between clades was used for comparison. The phylogenetic
trees were constructed using sequences from the amino acid by
the MEGA 6.0 (Tamura et al., 2013). Posterior probabilities were
estimated using the Bayes Empirical Bayes (BEB) method (Yang,
2007).

Plant Materials and Hormone Treatment
To analyze expression pattern of deduced potential SA- and
JA- related WRKY genes in different tissues, root, stem, leaf,

flower, and seed of cultivated peanut (Luhua 14) were harvested
from experimental farm in September, 2015. To examine the
expression of 13 deduced potential SA- and JA- related WRKY
genes under SA and MeJA treatment, peanut seeds were
germinated on humid filter paper in growth chamber at 28◦C,
and then growth for 4 weeks at room temperature (∼32◦C).
SA and MeJA solution (0.1 mM) was applied to the leaves,
respectively. Fresh leaves were harvested after 0, 6, 24, 36, and
48 h of treatments.

Gene Expression Analysis by qRT-PCR
Total RNA was extracted using CTAB method (Chang and
Puryear, 1993). The first-strand cDNAs were obtained using 2µg
of DNA-free RNA using Reverse Transcriptase M-MLV System
(Takara, Dalian, China).

Actin gene was used as a reference gene to quantitative the
expression of AhWRKY genes (Xia et al., 2013). The reaction was
carried out using fluorescent dye SYBR-Green (Takara, Dalian,
China). qRT-PCR was carried out using Fast Start Universal
SYBR Green Master (ROX) with a 7500 real-time PCR machine
(ABI). The reaction was carried out as follows: 30 s at 95◦C for
denaturation, followed by 40 cycles of 5 s at 95◦C and 30 s at 60◦C.
A melting curve analysis was performed at the end of the PCR
run over a range of 55–99◦C. Three biological replicates were
used. The 11Ct method was used for quantification (Livak and
Schmittgen, 2001). A pairwise student’s t-test was performed to
obtain the P values using JMP 9.0. If P < 0.05, we considered the
WRKY genes as differential expressed genes.

RESULTS AND DISCUSSION

WRKY Proteins in Two Wild Type Peanuts
A total of 75 and 77 WRKY proteins were identified from A.
duranensis and A. ipaënsis, respectively, using bioinformatics
approach (Tables S1, S2). They were named as AdWRKY1
to AdWRKY75, and AiWRKY1 to AiWRKY 77, respectively.
Among 75 AdWRKY sequences, six were partially sequenced
without complete sequence in the released genome draft, namely
AdWRKY3, 11, 15, 24, 55, and 73. The length of other 69
full-length sequences ranged from 291 to 3477 bp (Table S1).
AdWRKY8 and 35 sequences contained internal termination
codon, indicating these two sequences were pseudogene or
sequencing errors. In 77 AiWRKY sequences, nine were partially
sequenced without complete sequence in the genome draft,
including AiWRKY10, 24, 29, 30, 36, 40, 69, 70, and 71. The
length of remaining 68 AiWRKY sequences ranged from 291 to
3564 bp (Table S2).

AdWRKYproteins could be classified into three groups, group
I (16 sequences), group II (46 sequences) and group III (13
sequences). Similarly, AiWRKY proteins could be classified into
group I (14 sequences), group II (48 sequences), and group
III (15 sequences) based on the number of WRKY domain
and the type of zinc finger motif (Table 1). Forty-six group II
AdWRKY proteins could further be classified into five subgroups,
IIa (4 sequences), IIb (10 sequences), IIc (18 sequences), IId (7
sequences), and IIe (7 sequences); The 48 group II AiWRKY
could be classified into subgroup IIa (4 sequences), IIb (10
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sequences), IIc (18 sequences), IId (7 sequences), and IIe (9
sequences) based on the phylogenetic trees (Table 1, Figures S1,
S2). The number and type of AdWRKY and AiWRKY proteins
in the corresponding subgroup was similar (Table 1). These
results were consistent with the results described by Ding et al.
(2015) that no significant gene domain or number difference was
detected between two Gossypium species. Similar results were
found in Brassica species (Table 1).

Previous studies found that WRKYGQK heptapeptide prone
to mutate (Dou et al., 2014; Song and Nan, 2014; Song
et al., 2014; Ding et al., 2015). WRKYGQK sequence is
considered to be important for recognizing and binding to
W-box elements. WRKYGKK sequences represented the major
variant in AdWRKY and AiWRKY proteins. We found that
WRKYGKK was also the most common variant in LjWRKY
(Song et al., 2014) and GmWRKY (Song et al., 2016). The
WRKYGKK sequence in tobacco WRKY12 bound specifically to
WK-box (TTTTCCAC), which was significantly different from
the consensus sequence of a W-box (C/TTGACT/C) (van Verk
et al., 2008). WRKYGKK sequence was observed in AdWRKY21,
25, 26, 30, 59, 63, 69, and 72 proteins (Table S1). Among
them, AdWRKY21, 25, 30, 59, 69, and 72 proteins belonged
to subgroup IIc; AdWRKY26 belong to subgroup IId, and
WRKYGKK sequence was located in the N-terminal WRKY
domain sequence of AdWRKY63 protein, which belonged to
group I (Table S1). Three WRKYGEK sequences were found
in AdWRKY18 (subgroup IIc), AdWRKY20 (group III), and
AdWRKY62 (group I). GRKYGEK, WRKYDEK, WRKYEEN,
and WRKYGRK heptapeptides were detected in AdWRKY51
(subgroup IId), AdWRKY37 (group III), AdWRKY7 (subgroup
IIc) and C-terminal WRKY domain sequence of AdWRKY63
(group I) (Table S1). In AiWRKY proteins, five WRKYGKK
peptides were found in AiWRKY14, 18, 30, 32, and 48,
which belonged to subgroup IIc (Table S2). Two WRKYGEK
sequences were found in AiWRKY24 (group III) and AiWRKY26
(subgroup IIc) proteins, and two WRKYEEN sequences were
identified in AiWRKY59 (subgroup IIc) and AiWRKY77
(subgroup IIc) proteins. Moreover, RKKYGQK, WCKYGEK,
and WRKHGQK sequences were found in AiWRKY76 (group
III), AiWRKY71 (subgroup IIc) and AiWRKY25 (group III)
(Table S2). Group I AiWRKY contained one WRKYDKK and
one WHKYGKK in WRKY N-terminal domain. These results

showed that WRKYGQK sequence in subgroup IIc WRKY
proteins prone to mutate. In soybean WRKY proteins we also
found that some WRKY domains in subgroup IIc were likely
to mutate (Song et al., 2016). These results suggested that
subgroup IIc proteins might potentially carry out a variety of
biological functions. It is noteworthy that mutation occurred
in WRKYGQK sequence of AdWRKY63 and AiWRKY51,
suggesting their possible involvement in multiple biological
functions when bind to different W-box elements.

WRKY proteins contained two types of zinc-finger motif,
CX4−5CX22−23HXH and CX7CX23HXC (Eulgem et al., 2000;
Rushton et al., 2010). We found these two zinc-finger motifs
were presented in peanut WRKY proteins. Furthermore, most of
zinc-finger motifs in N-terminal of group I are CX4CX22HX1H
but not CX4CX23HX1H. In other words, N-terminal zinc-finger
motif contained onemore amino acid residue between the second
C and the first H in the zinc-finger structure than that in C-
terminus (Tables S1, S2). On the other hand, CX5CX23HX1H
always located in fabaceous group I WRKY proteins (Song and
Nan, 2014; Song et al., 2014). However, we found AdWRKY3
(group I) contained CX7CX23HX1C zinc-finger motif. This type
of zinc-finger structure was also found in Oryza sativa group I
WRKY (Ross et al., 2007), indicating CX7CX23HX1C zinc-finger
structure has appeared before the divergent of gramineous and
leguminous species.

AdWRKY10, AdWRKY37, and AiWRKY28, belonged to
group III, contained the nucleotide-binding site-leucine-rich
repeat (NBS-LRR) domain. Previous studies showed that plants
contained a larger number of NBS-LRR proteins to confer
resistance to diverse pathogens (Jones and Dangl, 2006; McHale
et al., 2006). It is known that someWRKY proteins contain NBS-
LRR domain (Deslandes et al., 2003; Shen et al., 2007; Chang
et al., 2009), and group IIIWRKY proteins are mainly involved in
plant disease resistance (Kalde et al., 2003; Eulgem and Somssich,
2007). Our results suggested AdWRKY10, AdWRKY37, and
AiWRKY28 were possibly involved in disease resistance.

Origin of WRKY Protein in Leguminous
Plants Remain to be Solved
The phylogenetic relationship fromWRKYdomains of AtWRKY,
MtWRKY, LjWRKY, GmWRKY, AdWRKY, and AiWRKY is

TABLE 1 | Number of WRKY proteins in plants.

Species Group I Subgroup IIa Subgroup IIb Subgroup IIc Subgroup IId Subgroup IIe Group III Total

Arachis duranensis 16 4 10 18 7 7 13 75

Arachis ipaensis 14 4 10 18 7 9 15 77

Gossypium raimondiia 20 7 16 26 16 13 14 112

Gossypium arboreuma 19 7 16 26 14 13 14 109

Gossypium hirsutumb 16 7 12 28 15 11 10 99

Brassica rapec 31 7 17 38 14 13 25 145

Brassica rapa ssp. pekinensisd 31 7 17 38 14 13 25 145

Brassica oleracea var. capitatae 36 6 17 36 14 15 24 148

aData from Ding et al. (2015); bdata from Dou et al. (2014); cdata from Kayum et al. (2015); ddata from Tang et al. (2014); edata from Yao et al. (2015).
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FIGURE 1 | Phylogenetic tree of WRKY domains in six plants. The phylogenetic tree was constructed using MEGA 6.0 by the Neighbor-Joining (NJ) method

with 1000 bootstrap replicates.
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consistent with the results of previous study (Zhang and Wang,
2005). The findings revealed that based on the phylogenetic trees
WRKY sequences could be classified into eight subgroups: I-N, I-
C, IIa, IIb, IIc, IId, IIe, and III (Zhang andWang, 2005). However,
phylogenetic relationship of MtWRKY and LjWRKY showed
that some group II or III members were nested in subgroup I-
N or subgroup I-C (Song and Nan, 2014; Song et al., 2014).
As shown in Figure 1, subgroup I-C contained other group
members, including AiWRKY56, MtWRKY4, GmWRKY130,
GmWRKY131, GmWRKY183, and AtWRKY10. It indicated that
the mixture was not only found in leguminous plants, but
also in other dicotyledonous plants. Subgroup I-N contained
MtWRKY2 from IIc, and AiWRKY6c from I-C. Group I
proteins were found in other groups. For example, two WRKY
domains of each AdWRKY63 and AiWRKY51 were found in
subgroup IIc. Two WRKY domains of AdWRKY3 were located
in subgroup III in the phylogenetic tree. These findings indicated
that the origin of leguminous WRKY proteins is still to be
clarified.

There are different opinions about origination of each type
of WRKY proteins. In the beginning, researchers considered

that the group II and III WRKY domains are the descendants
originated from C-terminal WRKY domain of group I (Eulgem
et al., 2000; Zhang and Wang, 2005). However, Zhu et al. (2013)
found that Triticum aestivum IIc WRKY domains originated
from the N-terminal WRKY domain of group I. Song et al.
(2014) found that some L. japonicus and M. truncatula group
II WRKY proteins derived from the N-terminal WRKY domain
of group I. Wei et al. (2012a) demonstrated that group I
WRKY protein firstly appeared in monocotyledons, followed
by group III and II. In contrast, some researchers do not
agree that group I WRKY protein is the ancestral member.
Brand et al. (2013) reported that group I and other WRKY
proteins likely originated from subgroup IIc. Recently, Rinerson
et al. (2015) proposed two alternative hypotheses of WRKY
protein evolution, “Group I Hypothesis” and “IIa + b Separate
Hypothesis”. “Group I Hypothesis” considered all WRKY
proteins evolving from C-terminal WRKY domains of group I
proteins, whereas the “IIa + b Separate Hypothesis” considered
groups IIa and IIb evolving directly from a single domain algal
gene separated from group I-derived lineage (Rinerson et al.,
2015).

FIGURE 2 | Chromosomal location of AdWRKY and AiWRKY genes. The chromosome numbers were shown at the top of each chromosome (black bars). The

location of each WRKY gene was pointed out by a line. The solid lines indicated orthologous genes locations on the two peanut species’ chromosomes. The dotted

lines indicated the segmental duplicated genes. The black boxes indicated the tandem duplication genes. Italic indicated predicated chromosomal location in this

study.
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TABLE 2 | The information of orthologous genes in AdWRKY and AiWRKY.

Gene paris Groups Chromosome CDS

identity (%)

Protein

identity (%)

AdWRKY2-AiWRKY39 IIb-IIb 7−7 96.64 91.52

AdWRKY3-AiWRKY57 I-III 7−8 95.37 94.34

AdWRKY4-AiWRKY21 III-III 4−4 97.92 95.69

AdWRKY5-AiWRKY61 IIa-IIa 10−10 98.23 97.17

AdWRKY6-AiWRKY36 III-III 3−3 98.10 97.55

AdWRKY7-AiWRKY59 IIc-IIc 7−7 98.57 97.23

AdWRKY8-AiWRKY47 I-I 4−4 98.82 95.86

AdWRKY9-AiWRKY22 III-III 8−2 98.73 98.08

AdWRKY10-AiWRKY28 III-III 10−10 98.61 97.22

AdWRKY11-AiWRKY10 IIe-IIe 6−6 98.68 98.57

AdWRKY12-AiWRKY52 I-I 7−7 96.83 95.94

AdWRKY13-AiWRKY49 III-III 7−8 99.29 73.31

AdWRKY14-AiWRKY17 IId-IId 2−3 99.15 99.15

AdWRKY15-AiWRKY13 IIb-IIb 10−10 95.74 93.47

AdWRKY16-AiWRKY56 I-IIb 2−2 98.04 85.65

AdWRKY17-AiWRKY46 I-I 1−1 99.23 99.18

AdWRKY18-AiWRKY26 IIc-IIc 3−3 98.94 98.72

AdWRKY19-AiWRKY69 IIb-IIb 4−4 97.18 96.82

AdWRKY20-AiWRKY24 III-III 7−7 95.50 88.99

AdWRKY21-AiWRKY14 IIc-IIc 10−10 97.94 94.79

AdWRKY22-AiWRKY12 IIe-IIe 4−4 97.19 97.09

AdWRKY23-AiWRKY19 IIc-IIc 10−10 98.63 92.79

AdWRKY24-AiWRKY62 IIb-IIb 3−3 94.53 90.36

AdWRKY25-AiWRKY48 IIc-IIc 3−3 96.24 94.59

AdWRKY26-AiWRKY63 IId-IId 3−3 98.66 99.07

AdWRKY27-AiWRKY44 III-III 7−7 97.96 95.80

AdWRKY29-AiWRKY66 I-I 7−7 98.94 98.41

AdWRKY33-AiWRKY20 IIc-IIc 6−6 98.30 81.29

AdWRKY34-AiWRKY9 IIb-IIb 3−3 96.52 90.89

AdWRKY36-AiWRKY42 IIb-IIb 1−1 98.59 96.70

AdWRKY38-AiWRKY58 IId-IId 1−1 96.42 83.38

AdWRKY39-AiWRKY33 IIc-IIc 3−3 99.42 98.82

AdWRKY40-AiWRKY23 IIc-IIc 3−3 96.63 96.99

AdWRKY41-AiWRKY7 IIa-IIa 6−6 99.13 98.87

AdWRKY42-AiWRKY40 IIa-IIa 9−9 99.07 99.38

AdWRKY43-AiWRKY5 III-III 6−6 98.62 97.24

AdWRKY44-AiWRKY68 IIe-IIe 4−4 97.71 97.57

AdWRKY45-AiWRKY3 III-III 5−5 98.81 96.41

AdWRKY46-AiWRKY50 IId-IId 8−8 98.94 98.26

AdWRKY47-AiWRKY67 I-I 1−1 98.19 96.89

AdWRKY48-AiWRKY60 I-I 10−10 96.47 92.45

AdWRKY49-AiWRKY41 IId-IId 1−1 97.44 97.80

AdWRKY50-AiWRKY1 IIc-IIc 3−3 98.84 98.83

AdWRKY51-AiWRKY27 IId-IId 6−6 97.46 95.36

AdWRKY53-AiWRKY16 I-I 7−7 98.00 97.57

AdWRKY54-AiWRKY8 I-I 6−6 98.50 98.07

AdWRKY55-AiWRKY72 IIe-IIe 5−5 97.19 96.34

AdWRKY56-AiWRKY54 I-I 6−6 98.28 98.34

AdWRKY57-AiWRKY55 IIc-IIc 4−4 95.60 93.26

AdWRKY59-AiWRKY32 IIc-IIc 6−6 97.87 95.91

(Continued)

TABLE 2 | Continued

Gene paris Groups Chromosome CDS Protein

identity (%) identity (%)

AdWRKY60-AiWRKY11 I-I 5−5 98.42 98.28

AdWRKY61-AiWRKY35 IIe-IIe 5−5 97.06 96.88

AdWRKY62-AiWRKY53 I-I 2−2 97.31 93.74

AdWRKY64-AiWRKY65 IIa-IIa 6−6 96.84 94.90

AdWRKY65-AiWRKY38 III-III 8−7 98.17 97.69

AdWRKY66-AiWRKY15 IIb-IIb 4−4 96.55 96.61

AdWRKY67-AiWRKY43 IId-IId 6−6 99.35 99.34

AdWRKY68-AiWRKY31 I-I 5−5 98.80 93.91

AdWRKY69-AiWRKY18 IIc-IIc 8−7 96.02 68.82

AdWRKY71-AiWRKY29 IIb-IIb 3−3 93.91 92.68

AdWRKY73-AiWRKY45 IIe-IIe 2−2 97.70 95.97

AdWRKY74-AiWRKY64 IIc-IIc 1−1 96.39 95.54

AdWRKY75-AiWRKY34 III-III 10−10 98.68 87.46

Italic indicated predicated chromosome.

WRKY Orthologous were Located in
Syntenic Locus of Two Arachis Genomes
As shown in Figure 2, AdWRKY and AiWRKY genes were
randomly distributed across 10 chromosomes. Chromosome
A6 contained the largest number of WRKY genes (12), while
chromosome A9 contained the least number of WRKY genes
(1) in A. duranensis. In A. ipaënsis, 13 genes were distributed in
chromosome B3, whereas only two WRKY genes were found in
chromosome B9. The length of A. duranensis chromosome A7
(79.13 cM) and A8 (49.46 cM) is shorter than that of A. ipaënsis
chromosome B7 (126.23 cM) and B8 (129.61 cM). However,
chromosome 7 and 8 in these two species all contained 10 and
5 WRKY genes, respectively (Figure 2). There was no positive
correlation between the chromosome length and the number
of WRKY genes. In soybean, we found that most GmWRKY
genes were located in the chromosome arm (Song et al., 2016).
Same distribution pattern was observed in peanut. Previous study
found more colinearity between Arachis and Glycine to compare
with other leguminous plants (Nagy et al., 2012). The ends of
chromosome exhibited stronger synteny than the central regions
of chromosomes (Nagy et al., 2012).

In this study, we detected 63 orthologous gene pairs according
to the phylogenetic relationship ofAdWRKY andAiWRKY genes
(Table 2, Figure S3). Among which 56 orthologous gene pairs
were found on the syntenic locus in A. duranensis and A. ipaënsis
chromosome (Table 2, Tables S1, S2). However, the location of
six AdWRKY genes (AdWRKY3, 9, 13, 14, 65, and 69) did not
correspond to their orthologous gene in A. ipaënsis (AiWRKY57,
22, 49, 17, 38, and 18; Figure 2, Table 2). Physical mapping
revealed that WRKY genes in Gossypium arboreum were not
located in the corresponding chromosomes of G. raimondii,
suggesting the occurrence of large chromosome rearrangement
in the diploid cotton genomes (Ding et al., 2015).

AdWRKY16 gene has temporarily no precise location
information in chromosome. Its orthologous gene, AiWRK56,
was located in lower end of chromosome B2 (Figure 2). We
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speculated that AdWRKY16 gene might be distributed in the
corresponding locus on chromosome A2 (Figure 2, italics bold).

Segmental Duplication Events Played a
Major Role in Arachis WRKY Gene
Evolution
Gene duplication events occurred universally in WRKY genes
(Cannon et al., 2004). Duplicated genes were considered to be the
raw materials for the evolution of new biological functions and
played crucial roles in adaption (Nei and Rooney, 2005). In this
study, we employed duplicatedGmWRKY genes (Yin et al., 2013)
as query sequences to construct the molecular phylogenetic tree
with AdWRKY and AiWRKY genes, respectively (Figures S4,
S5). Results showed that gene duplication was detected for
22 AdWRKY and 26 AiWRKY genes (Table 3). Eight and 14
AdWRKY genes were experienced four tandem duplication
and seven segmental duplication events, respectively (Figure 2,
Table 3). Among the AiWRKY genes, four tandem duplication
events with nine genes and 10 segmental duplication events
with 17 genes were observed (Figure 2, Table 3). These results

indicated that segmental duplication events played a major
driving force for AdWRKY and AiWRKY evolution. This result
is consistent with that most WRKY genes in soybean were
derived from segmental duplication (Yin et al., 2013). However,
the birth of WRKY gene in cotton and cocao genomes were
considered through segmental duplication followed by tandem
duplication (Dou et al., 2014; Ding et al., 2015). We calculated
the Ks and Ka values and found that all duplicated AdWRKY and
AiWRKY gene pairs with a ω value of <1. This result indicated
that purifying selection occurred on these duplicated gene pairs,
which was agreed to the results of Brassica rapa (Tang et al., 2014).

Different Selection Pressure in Two Wild
Peanut Species
Site model and branch-site model were used to estimate the
selection pressure of AdWRKY and AiWRKY proteins. The
results of site model showed that AdWRKY and AiWRKY
proteins underwent purifying pressure during evolution
(Table S3). It was showed that cotton WRKY proteins within
each group are under strong purifying pressure (Ding et al.,

TABLE 3 | Ka/Ks calculation of each duplicated AdWRKY and AiWRKY genes pairs.

Duplication gene pairs S N Ka Ks Ka/Ks Duplicated type Selection pressure

ARACHIS DURANENSIS

AdWRKY58-AdWRKY75 187.0 674.0 0.9273 4.4201 0.2098 Segmental Purify selection

AdWRKY64-AdWRKY41 138.4 587.6 0.6971 3.6742 0.1897 Tandem Purify selection

AdWRKY6-AdWRKY45 258.5 740.5 0.3031 0.6350 0.4773 Segmental Purify selection

AdWRKY14-AdWRKY67 102.6 353.4 0.0343 0.6434 0.0533 Segmental Purify selection

AdWRKY12-AdWRKY17 410.9 1245.1 0.1650 0.7778 0.2121 Segmental Purify selection

AdWRKY26-AdWRKY38 218.0 634.0 0.1855 1.3704 0.1353 Segmental Purify selection

AdWRKY30-AdWRKY72 153.5 416.5 0.0350 0.0719 0.4873 Tandem Purify selection

AdWRKY10-AdWRKY37 694.6 2098.4 0.1355 0.2489 0.5445 Tandem Purify selection

AdWRKY15-AdWRKY24 214.7 736.3 0.3077 1.2914 0.2382 Segmental Purify selection

AdWRKY20-AdWRKY27 158.6 570.4 0.3698 0.6555 0.5641 Tandem Purify selection

AdWRKY21-AdWRKY25 31.9 160.1 0.1534 0.9160 0.1674 Segmental Purify selection

ARACHIS IPAËNSIS

AiWRKY7-AiWRKY65 142.1 589.9 0.6849 3.7187 0.1842 Tandem Purify selection

AiWRKY3-AiWRKY36 265.7 733.3 0.3034 0.6263 0.4845 Segmental Purify selection

AiWRKY17-AiWRKY43 209.8 819.2 0.1174 0.8335 0.1408 Segmental Purify selection

AiWRKY58-AiWRKY63 221.8 612.2 0.1670 1.3355 0.1250 Segmental Purify selection

AiWRKY30-AiWRKY71 105.9 323.1 0.2019 0.4765 0.4238 Segmental Purify selection

AiWRKY11-AiWRKY47 428.4 1428.6 0.5001 54.6848 0.0091 Segmental Purify selection

AiWRKY13-AiWRKY62 255.2 833.8 0.3370 1.2712 0.2651 Segmental Purify selection

AiWRKY35-AiWRKY73 70.7 235.3 0.3145 1.7563 0.1791 Segmental Purify selection

AiWRKY59-AiWRKY77 107.0 433.0 0.2700 0.7250 0.3724 Tandem Purify selection

AiWRKY59-AiWRKY55 161.4 582.6 0.8853 2.9049 0.3048 Segmental Purify selection

AiWRKY77-AiWRKY55 173.2 591.8 0.7702 3.4467 0.2235 Segmental Purify selection

AiWRKY24-AiWRKY44 133.6 466.4 0.2987 0.7527 0.3968 Tandem Purify selection

AiWRKY49-AiWRKY57 97.3 376.7 0.4404 1.2697 0.3468 Tandem Purify selection

AiWRKY49-AiWRKY70 132.4 443.6 0.3201 0.5728 0.5588 Tandem Purify selection

AiWRKY57-AiWRKY70 59.0 238.0 0.3353 1.3690 0.2450 Tandem Purify selection

AiWRKY14-AiWRKY48 32.0 160.0 0.1449 0.9221 0.1572 Segmental Purify selection

S, number of synonymous sites; N, number of non-synonymous sites; Ka, non-synonymous substitution rate; Ks, synonymous substitution.
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2015). Li et al. (2015) found a strong acting of purifying selection
in the evolution of Salvia miltiorrhizaWRKY proteins. Similarly,
Group III WRKY proteins from L. japonicus (Song et al., 2014),
M. truncatula (Song and Nan, 2014) and C. sativus (Ling et al.,
2011) were considered to be under purifying selection. Although,
AdWRKY and AiWRKY proteins underwent purifying selection,
positive selected sites in group I (1 site), subgroup IIc (4 sites), IIe
(5 sites), and group III (7 sites) AdWRKY proteins were detected
using branch-site model (Table S4). In AiWRKY proteins,
positive selected sites were discovered in group I (1 site),
subgroup IIe (3 sites), and group III (1 site) (Table S5). More
positive selected sites were detected in AdWRKY proteins than in
AiWRKY proteins, indicating the existence of different degrees of
positive selective pressure in AdWRKY and AiWRKY proteins.
Purifying selection may generate genes with conserved functions
or pseudogenization, but hard for neofunctionalization or
subfunctionalization (Zhang, 2003). Based on this consideration,
we tentatively suggested that AdWRKY group III and AiWRKY
sungroup IIe genes may have various biological functions,
instead, AdWRKY subgroup IIa, IIb and IId and AiWRKY
subgroup IIa, IIb, IIc, and IId genes possibly have conserved
biological functions.

Positively-selected sites were found using branch-site model.
In cotton, group IIa and IId WRKY proteins were found many
positive selection sites, while group I and subgroup IIc proteins
had the lowest and no positive selection sites was found in
cotton WRKY group III (Ding et al., 2015). GmWRKY group
I, IIc, IIe, and III WRKY proteins had positive selection sites
(Yin et al., 2013). The group IIc and III WRKY proteins
from eggplant (Solanum melongena) and turkey berry (Solanum
torvum) detected positive selection (Yang et al., 2015). Li et al.
(2015) found that positive selection sites were presented in
SmWRKY subgroup IIb, IIc, IId, IIe, and group III genes, while
no positive selection site was detected in group I and subgroup
IIa.

Arachis WRKY Gene Activities Respond to
SA and MeJA
We intended to translate the knowledge from above wild
ancestral peanut study to benefit disease resistance research
in economic-important cultivated peanut. To obtain specific
AdWRKY and AiWRKY that potentially involved in both SA
and JA signaling pathways, we constructed phylogenetic tree

FIGURE 3 | The expression pattern of AhWRKY genes in different tissues. The abbreviation Rt, Sm, Lf, Fr, and Sd in the tissue label indicated root, stem, leaf,

flower and seed, respectively.
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using AdWRKY, AiWRKY, and AtWRKY proteins, respectively
(Figures S6, S7), and then deduced SA- and JA-relative
AdWRKY and AiWRKY proteins were determined if proteins
were classified in the same clade of specific AtWRKY proteins
known for being involved in both SA and JA signaling pathways
(Dong et al., 2003; Schluttenhofer et al., 2014). The deduced SA-
and JA-related AdWRKY and AiWRKY genes were used as query
sequences to identify cultivated peanutWRKY genes (AhWRKY)
using local BLASTN against the peanut transcriptome database
and the peanut genome (unpublished data). Ultimately, we
found 13 AhWRKY genes, named AhWRKY1 to AhWRKY13
(Tables S6, S7), were deduced to be potentially involved in both
SA and JA signaling pathways in cultivated peanut.

We examined the transcriptional levels of these 13 genes in
five different tissues by qRT-PCR and found each gene could
be detected in at least one of the five tested tissues (Figure 3).
Previous studies demonstrated that mostWRKY genes expressed
constitutively (Huang et al., 2012; Wei et al., 2012b; Dou et al.,
2014; Jiang et al., 2014). The expression of AhWRKY1, 2, 3, 4,
5, 6, 7, 9, 11, and 13 genes could be detected in all five tissues
(Figure 3). The expression of AhWRKY5, 8 and 10 genes were
not detected in root; the expression of AhWRKY5 and 12 genes

was not detected in seed. All 13 AhWRKY genes were expressed
in stem, leaf and flower (Figure 3). AhWRKY2, 3, 4, 6, 8, 10, and
13 genes were mainly expressed in seed, indicating their function
in seed development. Ding et al. (2015) showed that most cotton
WRKY genes were highly expressed in all developmental stages
of seed. These genes could be good candidates for Aspergillus
flavus resistance, because Fountain et al. (2015) found thatWRKY
genes may play important roles in maize kernels against A. flavus
infection.

Then we asked if gene activities of 13 AhWRKY genes were
affected by SA and MeJA treatments. As shown in Figure 4,
AhWRKY1, 7, 8, 9, 10, 11, 12, and 13 genes were down-regulated
at all five time points under SA treatment. However, AhWRKY5,
6, and 12 genes was up-regulated and the AhWRKY1, 7, 8, and
13 genes were down-regulated at all five time points under MeJA
treatment (Figure 5). AhWRKY12 genes showed an opposite
response to SA and MeJA treatment, while AhWRKY1, 7, 8, and
13 genes responded similar to these two hormones. Previous
studies showed shat SA and MeJA signaling pathways often
play an opposite role in defense, but synergistic effect between
these phytohormones had also been reported (Mur et al., 2006).
Lai et al. (2008) found that AtWRKY4 played positive role in

FIGURE 4 | The expression pattern of AhWRKY genes after SA treatment. The Y-axis indicates the relative expression level; X-axis (0, 6, 24, 36, and 48 h)

indicated hours of SA treatment. The standard errors are plotted using vertical lines. * and ** mean significant difference at P < 0.05 and P < 0.01, respectively.
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FIGURE 5 | The expression pattern of AhWRKY genes after MeJA treatment. The Y-axis indicates the relative expression level; X-axis (0, 6, 24, 36, and 48 h)

indicated hours of MeJA treatment. The standard errors are plotted using vertical lines. * and ** mean significant difference at P < 0.05 and P < 0.01, respectively.

plant resistance to necrotrophic pathogens, while overexpression
of AtWRKY4 increased the plant susceptibility to biotrophic
pathogen. However, AtWRKY70 (Li et al., 2004) and CaWRKY27
(Dang et al., 2014) regulated simultaneously SA and MeJA
signaling pathways and acted as a positive regulator in response
to pathogen.

AhWRKY1, 7, 8, 12, and 13 genes are orthologous genes of
AtWRKY53, 40, 53, 21, and 3, respectively (Table S6).AtWRKY53
showed a strong increase in expression within the first 2 h
but the transcript level greatly reduced at later time under SA
treatment (Yu et al., 2001; Kalde et al., 2003). Miao and Zentgraf
(2007) found that 4 h MeJA treatment reduced expression of
AtWRKY53. AtWRKY40 gene was not considered as a positive
regulator for systemic acquired resistance (Wang et al., 2006).
Knocking out the AtWRKY40 gene led to the increased resistant
to Golovinomyces orontii (Shen et al., 2007) and Pseudomonas
syringe (Xu et al., 2006). Kalde et al. (2003) found that the
expression of AtWRKY21 was induced by SA. CrWRKY36,
orthologous gene of AtWRKY21, was up-regulated after 2 h
MeJA treatment (Schluttenhofer et al., 2014). AtWRKY3 gene
was involved in SA and JA signaling pathways. AtWRKY3 gene
played a negative role in SA signaling pathway and mediated

resistance to biotrophic pathogens, while it played a positive
role in MeJA mediated resistance to necrotrophic pathogen
(Lai et al., 2008). Interestingly, the expression of AhWRKY3
and 12 (paralogous genes), orthologous genes of AtWRKY21,
responded oppositely to SA and MeJA treatments. Orthologous
genes shared a conserved ancestral gene function in different
species, while function of paralogous genes diversified through
gene duplication (Koonin, 2005; Gabaldón and Koonin, 2013).

CONCLUSIONS

Similar number of WRKY proteins was identified in A.
duranensis and A. ipaënsis. Orthologous gene pairs were found
on the identical or similar locus on chromosomes in these
two species. Our results showed that segmental duplication
events played a major role in AdWRKY and AiWRKY evolution.
Peanut WRKY proteins were under strong purifying pressure.
Similar or opposite response of peanut WRKY genes to SA and
JA treatments was observed. Our results could help to select
appropriate candidate genes for further characterization of their
pathogen resistant functions in Arachis species.
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Figure S3 | Phylogenetic tree of AdWRKY and AiWRKY proteins. The

phylogenetic tree was constructed using MEGA 6.0 by the Neighbor-Joining (NJ)

method with 1000 bootstrap replicates.
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both response to SA and MeJA. The phylogenetic tree was constructed using
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branch-site models. ω, Ka/Ks value; ωb0, Ka/Ks value in background

under model 0; ωb1, Ka/Ks value in background under model 1; ωb2a,

Ka/Ks value in background under model 2a; ωb2b, Ka/Ks value in

background under model 2b; ωf0, Ka/Ks value in foreground under model

0; ωf1, Ka/Ks value in foreground under model 1; ωf2a, Ka/Ks value in

foreground under model 2a; ωf2b, Ka/Ks value in foreground under model

2b; p, the number of free parameters for the ω ratios; p0, the number of

free parameters for the ω ratios under model 0; p1, the number of free

parameters for the ω ratios under model 1; p2a, the number of free

parameters for the ω ratios under model 2a; p2b, the number of free

parameters for the ω ratios under model 2b.

Table S5 | Tests for selection among codons of AiWRKY using

branch-site models. ω, Ka/Ks value; ωb0, Ka/Ks value in background
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