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In plants, sex determination is a comprehensive process of correlated events,

which involves genes that are differentially and/or specifically expressed in distinct

developmental phases. Exploring gene expression profiles from different sex types will

contribute to fully understanding sex determination in plants. In this study, we conducted

RNA-sequencing of female and male buds (FB and MB) as well as ovulate strobilus

and staminate strobilus (OS and SS) of Ginkgo biloba to gain insights into the genes

potentially related to sex determination in this species. Approximately 60 Gb of clean

reads were obtained from eight cDNA libraries. De novo assembly of the clean reads

generated 108,307 unigenes with an average length of 796 bp. Among these unigenes,

51,953 (47.97%) had at least one significant match with a gene sequence in the public

databases searched. A total of 4709 and 9802 differentially expressed genes (DEGs)

were identified in MB vs. FB and SS vs. OS, respectively. Genes involved in plant

hormone signal and transduction as well as those encoding DNAmethyltransferase were

found to be differentially expressed between different sex types. Their potential roles in

sex determination of G. biloba were discussed. Pistil-related genes were expressed in

male buds while anther-specific genes were identified in female buds, suggesting that

dioecism in G. biloba was resulted from the selective arrest of reproductive primordia.

High correlation of expression level was found between the RNA-Seq and quantitative

real-time PCR results. The transcriptome resources that we generated allowed us to

characterize gene expression profiles and examine differential expression profiles, which

provided foundations for identifying functional genes associated with sex determination

in G. biloba.

Keywords: Ginkgo biloba, sex determination, RNA-sequencing, plant hormone signal and transduction, DNA

methyltransferase, hydroxysteroid dehydrogenase

INTRODUCTION

Sexual phenotypes in plants are exceedingly diverse and understanding the mechanisms underlying
sex determination will require data from ecology, developmental biology, and genetics (Ming
et al., 2011). Hermaphroditic or monoecious species make up 94% of all flowering plants, while
dioecious species make up only 4% (Renner and Ricklefs, 1995). Dioecious species are ideal models
for studying sex determination. Species such as Silene latifolia have been extensively investigated
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and several sex-linked genes have been identified and isolated
(Matsunaga et al., 1996; Guttman andCharlesworth, 1998;Moore
et al., 2003; Wu et al., 2010). Nevertheless, sex determination
in plants is a complex process that involves various genes
that are differentially and/or specifically expressed in different
developmental phases, the identification and characterization
of only a scant handful of involved genes will not provide
a full understanding of the mechanism of sex determination
(Charlesworth, 2002; Charlesworth and Mank, 2010). Previously
used transcriptome techniques, such as expressed sequence tags
(ESTs) and microarray analysis (Irizarry et al., 2005; Terefe
and Tatlioglu, 2005; Akao et al., 2007; Andersen et al., 2008),
suffered from a limited depth of coverage and sensitivity as well
as background or cross-hybridization problems that restricted
their applications in fully elucidating the functional complexity
of plant sex determination. Furthermore, it is more difficult
to identify candidate genes in non-model plant species that
the total genome sequences are unknown. The introduction
of high-throughput RNA-sequencing (RNA-Seq) technology for
transcriptome analysis has provided a more powerful and cost-
efficient approach (Wang et al., 2009, 2010). RNA-Seq has been
used extensively and successfully in transcriptome analyses of
willow (Liu et al., 2013), wheat (Yang et al., 2015) and cucumber
(Wu et al., 2010) to greatly accelerate the understanding of the
complexity of gene expression, regulation, and networks in plant
sex determination.

Ginkgo biloba L. (also referred as the “golden living
fossil”) is a typical dioecious gymnosperm species with great
economic and ecological values (Zhang et al., 2015). Like
other gymnosperms such as species of Cycadopsida and
Gnetales, the reproductive organ of male ginkgo individual
is staminate strobilus (male cone) while female one bears
ovulate strobilus (female cone) (Wu, 1999) (Figures 1A,B).
The morphological traits, growth habits, and physiological
characteristics are significantly different between mature female
and male individuals, which directly influence the practical
uses of this plant (Huang et al., 2013). Male individuals are
mainly used in ornamental horticulture and wood industry while
female ones are used for seed production. These differences
are directly derived from sex determination and the following
sex differentiation in G. biloba, however, sex determination
has not yet been explored in this species. Furthermore,
to our knowledge, previous and recent genomic studies on
G. biloba mainly focused on genes involved in ginkgolides
and/or bilobalide biosynthesis (Han et al., 2015; He et al.,
2015), no genome-wide analyses to systematically characterize
gene expression levels and to compare differentially expressed
genes between male and female reproductive organs has been
conducted so far. Such information is essential to understand
the mechanism of sex determination in this species. Considering
that sex determination involves genes expressed in different
developmental stages, in the present study we used RNA-
Seq to investigate and compare the transcriptomes of buds
(Figures 1C,D) and strobilus of G. biloba. Genes related
to phytohormone signal and transduction, DNA methylation
were found to be differentially expressed between male and
female organs. Our results provided valuable transcriptome

FIGURE 1 | Samples used in this study. (A) Staminate strobilus (SS); (B)

Ovulate strobilus (OS); (C) male bud (MB); (D) female bud (FB).

resources for a non-model gymnosperm species and may
help to reveal clues for further investigations on plant sex
determination.

MATERIALS AND METHODS

Plant Materials and RNA Extraction
The G. biloba plants used in this study were planted in the
Forestry Experimental Field of Shandong Agriculture University
located in Taian, Shandong Province, China (35◦38′−36◦28′ N,
116◦02′−117◦59′ E). Five male trees and five female ones of 25-
year-old from the same family were chosen to exclude stochastic
error caused by different genetic background. For female and
male buds as well as ovulate strobilus and staminate strobilus,
two samples were collected from each tree on 4th and 28thMarch
2015, respectively, based on the development stages categorized
previously (Shi et al., 1998; ZhangW. P. et al., 2001). For the buds,
the bud bracts were removed immediately after sampling. All the
materials were frozen in liquid nitrogen and stored at −80◦C till
used.

For each group of materials, five samples from different
trees of the same gender were pooled to form one biological
sample [two biological replicates were performed for each group
as in other studies (Frey et al., 2015; Yang et al., 2015)] for
total RNA extraction using TRIZOL reagent according to the
manufacturer’s instructions (Invitrogen, USA). The quality and
quantity of the total RNAwere assessed using 1% agarose gels and
a NanoPhotometer R© spectrophotometer (Implen, CA, USA).
Subsequently, genomic DNA was digested by treatment with
DNase I and mRNA was isolated using Dynabeads Oligo (dT)
(Invitrogen, USA). Then, the concentration and integrity of the
mRNA were quantified using a Qubit R© RNA Assay Kit in Qubit
2.0 Fluorometer (Life Technologies, CA, USA) and RNA Nano
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6000 Assay Kit in an Agilent Bioanalyzer 2100 system (Agilent
Technologies, CA, USA).

Libraries Construction, Deep Sequencing,
and De novo Assembly
Eight transcriptome sequencing libraries were generated using
a NEB Next R© UltraTM RNA Library Prep Kit for Illumina R©

(NEB, USA) following themanufacturer’s recommendations. The
libraries were sequenced on an Illumina HiSeq 2500 platform.
To obtain high-quality clean reads for assembly, the raw reads
were filtered through in-house perl scripts by removing adaptor
sequences, reads containing poly-N sequences, and low quality
reads. All the downstream analyses were conducted using the
clean read sequences. All the clean reads were pooled and
assembled using the Trinity de novo assembly program (Grabherr
et al., 2011) with the minimum kmer_cov set to 2 as the default,
and all other parameters set to their default values (He et al.,
2015).

Functional Annotation
The assembled unigenes were searched against the Nr and Nt
databases, and the Swiss-Prot protein and COG/KOG databases
using BLAST with an cutoff E-value of 1e−5. To assign functional
annotations, the unigenes were searched against Pfam using
HMMER 3.0 (Finn et al., 2011) with E-value of 1e−2, the KEGG
database using KAAS (KEGG Automatic Annotation Server)
(Moriya et al., 2007) with E-value of 1e−10, and the GO database
using Blast2GO (Gotz, 2008) with an E-value of 1e−6.

Identification of Differentially Expressed
Genes (DEGs)
For all the comparisons, read counts were normalized by
calculating the FPKM value (Trapnell et al., 2010) to obtain
relative expression levels. An FPKM value >0.3 was defined
as the threshold of significant gene expression. Differential
expression analysis was performed using the DESeq R package
1.10.1 (Anders, 2010), which provides statistical routines for
determining differential expression in digital gene expression
data using a model based on the negative binomial distribution.
The resulting P-values were adjusted using the Benjamin and
Hochberg’s approach for controlling the false discovery rate
(Storey and Tibshirani, 2003). Unigenes with an adjusted
P < 0.05 determined by DESeq were assigned as DEGs. GO
enrichment analysis of the DEGs was performed using the GOseq
R packages based on the Wallenius’ non-central hypergeometric
distribution (Young et al., 2010), which can adjust for gene length
bias in DEGs. We also used the KOBAS software (Mao et al.,
2005) to test the statistical enrichment of DEGs in the KEGG
pathways.

qRT-PCR Validation
Based on the classification of genes and/or pathways revealed
in this study (see below), we selected 26 genes from different
categories generated by RNA-Seq for validation. We designed
specific primers that corresponded to the conserved region of
each cDNA in the sequenced database (Table S1). Real-time
assays were performed with SYBR Green Dye (Takara, Dalian,

China) using a Bio-Rad CFX96 real-time PCR platform (BioRad
Laboratories, Hercules, CA, USA) with the following cycle
conditions: 95◦C for 5 min, followed by 45 cycles of 95◦C for 10 s,
60◦C for 10 s, and 72◦C for 20 s. Three biological replicates were
used for each gene. RNA transcript fold changes were calculated
using the 2−11Ct method (Livak and Schmittgen, 2001) with
GAPDH as the internal control (Wang et al., 2012).

RESULTS

Sequencing Analysis and De novo

Assembly
Eight cDNA libraries were constructed using female and male
buds (FB and MB) as well as ovulate strobilus and staminate
strobilus (OS and SS) of 25 year-old G. biloba trees. The
libraries were sequenced on an Illumina Hiseq 2500 platform.
The sequences of the raw reads have been deposited in
NCBI Sequence Read Archive (SRA) under accession numbers
SRR2147720 (SS), SRR2147715 (OS), SRR2147717 (FB), and
SRR2147721 (MB). After the raw reads were filtered, 119,494,172
(MB), 115,958,434 (FB), 121,730,470 (SS), and 116,504,860 (OS)
clean reads were obtained (Table S2). All the clean reads were
pooled together and assembled de novo using Trinity (Grabherr
et al., 2011). A total of 108,307 unigenes with an average length
of 796 bp and a N50 of 1648 bp were obtained, among which
23,624 unigenes (21.81%) were longer than 1000 bp. The length
distribution of the unigenes is shown in Figure S1. The fasta
file of the unigene set is available from the Dryad Digital
Repository (http://dx.doi.org/10.5061/dryad.nb028). To evaluate
the efficiency of short-read usage during the de novo assembly,
the clean reads were mapped back onto the unigenes using RSEM
(Bo and Dewey, 2011). A total of 100,682,078 (MB), 98,967,076
(FB), 104,142,618 (SS), and 99,124,608 (OS) sequences were
mapped (∼85%), which indicated that the assembled unigenes
could be used for the subsequent analysis.

Functional Annotation of the Unigenes
The unigenes were matched against sequences in the Nr, Nt,
Swiss-Prot, COG/KOG, Pfam databases to assign functional
annotations. A total of 6347 (5.86%) unigenes found matches in
all the searched databases and 51,953 (47.97%) unigenes matched
sequences in at least one of the databases; 56,354 (52.03%)
unigenes did not match any of the known sequences in the
public databases (Table 1 and Table S3). The number of unigenes
assembled and annotated varied between the present study and
other transcriptomic studies of G. biloba (Han et al., 2015; He
et al., 2015), which may result from the novel genes specially
expressed in different organs, or they may be the result of
technical or biological biases (Rao et al., 2014).

The GO database was searched using Blast2GO (Conesa
et al., 2005) to functionally classify the unigenes. In several
cases, multiple categories were assigned to the same unigene. A
total of 180,424 terms were assigned under 23 subcategories of
biological process, 14 subcategories of molecular function, and
18 subcategories of cellular component (Figure 2). The KEGG
pathway database was used to predict the biological functions and
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the interactions of the gene products. Overall, 15,216 unigenes
were assigned to 32 KEGG pathways (Figure 3).

Analysis of DEGs
To identify unigenes potentially involved in sex determination
of G. biloba, we compared the transcriptome profiles between
FB and MB, and between OS and SS. The total numbers of
differentially expressed genes (DEGs) in MB vs. FB and SS vs. OS
were 4709 and 9802 respectively, in which 1944 unigenes were
commonly expressed (Figure 4), with an adjusted P < 0.05 as
the threshold. In MB vs. FB, 2235 genes were up-regulated and
2474 were down-regulated, while in SS vs. OS, 5849 genes were
up-regulated and 3953 were down-regulated.

GO enrichment analysis of the DEGs in MB vs. FB showed
that they were enriched in 36 categories with metabolic process
(GO:0008152; 2154 unigenes) and cellular metabolic process
(GO:0044237; 1678 unigenes) representing the most abundant
categories, followed by cell part (GO:0044464; 1241 unigenes)
and cellular macromolecule metabolic process (GO:0044260;
1222 unigenes) (Figure S2). Among the 9802 DEGs in SS vs.
OS, 3115 were enriched in 18 categories. Cellular component

TABLE 1 | Summary of functional annotation of the unigenes.

Number of unigenes Percentage (%)

Annotated in NR 40494 37.38

Annotated in NT 19771 18.25

Annotated in KO 15216 14.04

Annotated in SwissProt 35521 32.79

Annotated in PFAM 34700 32.03

Annotated in GO 35190 32.49

Annotated in KOG/COG 19000 17.54

Annotated in all Databases 6347 5.86

Annotated in at least one Database 51953 47.96

biogenesis (GO:0044085; 427 unigenes) and ribonucleoprotein
complex biogenesis (GO:0022613; 272 unigenes) were the most
abundant categories, followed by ribosome biogenesis (GO:
0042254; 268 unigenes) and hydrolase activity, acting on glycosyl
bonds (GO:0016798; 233 unigenes) (Figure S3). The most
enriched KEGG pathways in SS vs. OS were ribosome (143
unigenes) and starch and sucrose metabolism (97 unigenes),
followed by plant hormone signal transduction (76 unigenes)
and phenylpropanoid biosynthesis (67 unigenes) (Figure S4).
Among the 76 DEGs annotated to be involved in plant hormone
signal and transduction (Table S4), 11 DEGs were commonly
differentially expressed in MB vs. FB and SS vs. OS (Table 2,
Data sheet 1), which might be involved in sex determination
of G. biloba. In MB vs. FB, ribosome (190 unigenes) and
phenylpropanoid biosynthesis (33 unigenes) were the most
enriched pathways (Figure S5).

qRT-PCR Analysis
qRT-PCR was performed on 26 unigenes including 5 out of
the 11 commonly differentially expressed unigenes involved in
plant hormone signal and transduction (c29262_g2, c30951_g1,
c31971_g1, c32243_g1, c38393_g3) to valid the expression
profiling results obtained from the RNA-Seq data (Figure 5).
The qRT-PCR and RNA-Seq results in the different organs were
compared and the correlation between them was determined
by calculating the correlation coefficient (R2). High correlation
(R2 >0.9) was found between the RNA-Seq and qRT-PCR results,
which indicated that the measured changes in gene expression
detected by RNA-Seq reflected the actual transcriptome
differences between the different libraries (Figure S6).

DISCUSSION

Sex determination is regulated at several points in the intricate
network of involved genes in plants (Aryal and Ming, 2014).
Moreover, genes known to be implicated in floral development

FIGURE 2 | Gene ontology (GO) functional classification of unigenes.
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FIGURE 3 | Kyoto encyclopedia of genes and genomes (KEGG) classification of unigenes.

(e.g., ABC model genes) do not have direct roles in sex
determination (Hardenack et al., 1994; Ainsworth et al., 1995).
It is well-appreciated that plant sex determination is mainly
regulated by genes involved in phytohormone synthesis and
transduction (Guo et al., 2010; Aryal and Ming, 2014; Zhang
et al., 2014). As shown in Table 2, abscisic acid (ABA)-related
genes encoding PP2C (protein phosphatase 2C, c42368_g2),
and PYL (abscisic acid receptor 2, c27303_g1) that negatively
regulated ABA transduction were down-regulated while one
SNF1-related protein kinase subfamily 2 (SNRK2) gene that
positively regulating ABA signaling was up-regulated in male
organs. Antisense expression of SNRK gene in Hordeum vulgare
interfered with pollen development, which caused male sterility
(Zhang Y. et al., 2001). This may suggest that these proteins
involved in ABA signaling inG. biloba is critical for reproduction
development (Fujii and Zhu, 2009; Park et al., 2009). An auxin-
reduced SAUR (small auxin up RNA) gene (c30951_g1) was
down-regulated in male, two other SAUR genes (c19444_g1 and
c28880_g2) and one GH3 (Gretchen Hagen3) gene (c39074_g1)
involved in auxin response showed higher expression level in
male, which indicated that auxin related genes possessed diverse
functions as in other plants (Kong et al., 2013). Coronatine
insensitive 1 (COI1), which involved in jasmonate (JA) perception

and transduction in plants, showed higher expression level in
male.Mutations ofCOI1 inArabidopsis displayed various degrees
of male sterility (Ellis and Turner, 2002; Turner et al., 2002).
The higher expression of COI1 in male indicated that JA may
play a crucial role in male reproductive development and sterility
in G. biloba. Higher expression of NPR1 (nonexpressor of PR
gene) implicated in salicylic acid (SA) signaling in male may
directly correlate with immunity to pathogens in G. biloba (Mou
et al., 2003). Furthermore, interaction of these phytohormones
may play important roles in G. biloba sex determination as in
other developmental processes (Domagalska and Leyser, 2011;
de Jong et al., 2014), further studies are needed to testify this
hypothesis.

It is well-appreciated that transcription factors play important
roles in regulating gene expression by temporarily and spatially
regulating the transcription of their target genes (Hobert, 2008).
Transcription factors such as a maize DELLA protein D8 and
a melon zinc finger protein (CmW1P1) (Peng et al., 1999;
Martin et al., 2009) have been shown to be associated with
the sex determination process. Several transcription factors that
belong to the C2C2-GATA, VOZ, and BZR1-BES1 families may
play important roles in sex determination of cucumber (Guo
et al., 2010). In the present study, a DELLA protein involved
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FIGURE 4 | Heatmap of hierarchical clustering of DEGs. Each column

represens a sample, each row represents a unigene. The differences in

expression level were shown in distinct colors. Positive numbers indicate

up-regulation DEGs and negative number indicates down-regulated DEGs.

SS, staminate strobilus; OS, ovulate strobilus; MB, male bud; FB, female bud.

in gibberellin (GA) transduction (c31971_g1) and ethylene-
insensitive protein 3 (EIN3) (c32243_g1) showed simultaneously
high expression level in male (Table 2). Ethylene plays a
significant role in sex determination of plant species and can
induce femaleness (Sisler, 1994). In cucumber, genes involved
in ethylene biosynthesis and perception, as well as some
ethylene-induced genes, have been found to be involved in sex
determination (Boualem, 2009; Wu et al., 2010). Arabidopsis

insensitive mutant, ein3, was defective in its ability to perceive or
respond to ethylene (Solano et al., 1998). The higher expression of
EIN3 in male may inhibit the perceive and response to ethylene,
which may result in male differentiation.

There is increasing evidence that DNA methylation is
an important regulatory factor in plant sex determination.
Furthermore, DNA methylation is hypothesized to be the
first step toward the evolution of dioecy (Gorelick, 2003).
Exploration of the methylation status in various species will
help to understand the evolution of sex determination and sex
chromosomes in plants (Aryal and Ming, 2014). In maize, sex
determination was regulated by various small non-coding RNAs
through DNA methylation (Parkinson et al., 2007; Hultquist and
Dorweiler, 2008). Female sex suppression in S. latifoliamales was
depended on methylation of specific DNA sequences in the Y
chromosome (Janoušek et al., 1996). In Populus, which has a ZW
sex chromosome system, two genes related to DNA methylation
were reported to be localized in the sex determining region of
chromosome 19 (Song et al., 2013). At least 200 unigenes related
to methyltransferase activity in GO enrichment analysis (e.g.,
GO0032259, GO0008168, GO0008649, see Table S5) showed
higher expression level in female than those in male, which
included genes that have been reported previously to be involved
in plant sex determination, such asMET1 and COMT1 (Do et al.,
2007; Schmidt et al., 2013). This is similar to the findings in
Populus where more methylation sites were detected in female
flowers compared with that in male flowers (Song et al., 2012).
We suggested that the differentially expressed unigenes that
encode proteins involved in DNA methylation may be related to
sex determination inG. biloba. This result may help provide clues
to the role of primary DNA methylation in sex determination in
this species.

In plants, the formation of unisexual flowers can be classified
mainly into two types. The first type includesAsparagus officinalis
(Lazarte and Palser, 1979), cucumber (Bai et al., 2004), Ceratonia
siliqua (Tucker, 1992), and S. latifolia ssp. alba (Ye et al.,
1991) in which, at early developmental stages, male and female
floral primordia are initially bisexual and contain primordial
anthers and pistils. Sex determination appears to be the result
of the selective arrest of pistillate primordial in male and
of staminate primordial in female (Lazarte and Palser, 1979).
Thus, sex determination genes do not become active at the
moment of flower initiation when the different organ primordia
appear, but at a crucial time during a later developmental
stage (Caporali et al., 1994). The second type includes species
such as Spinacia oleracea and Mercurialis annua (Sherry et al.,
1993; Pannell, 1997), in which there are no traces of gynoecia
in male flowers or of stamens in female flowers. Thus, sex
determination occurs before inflorescence development, prior
to or at evocation (Sherry et al., 1993). In MB, unigenes
encoding pistil-specific extensin-like proteins were detected and
expressed at a relatively high level (FPKM= 203.76). Similarly,
in FB, unigenes encoding the pollen-specific protein SF21 and
anther development proteins were detected (FPKM = 19.64
and 7.7 respectively). Furthermore, unigenes encoding apoptosis
regulator proteins (e.g., metacaspase involved in regulation of
apoptosis and apoptosis-related protein) and hydroxysteroid
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TABLE 2 | The fold changes and KO annotations of 11 commonly DEGs in MB vs. FB and SS vs. OS.

Gene ID Log2FC
a(SS vs. OS) P adjb Log2FC(MB vs. FB) P adj KO name KO description

c19444_g1 4.2839 1.73E-12 1.2588 4.77E-05 SAUR SAUR family protein

c27303_g1 −1.1861 0.010399 −.61099 0.00955 PYL Abscisic acid receptor PYR/PYL family

c28880_g2 3.0377 1.37E-08 1.7311 0.030609 SAUR SAUR family protein

c29262_g2 1.0321 0.03239 0.65653 0.001973 SNRK2 Serine/threonine-protein kinase SRK2

c30951_g1 −2.4569 5.55E-08 −1.1063 5.35E-07 SAUR SAUR family protein

c31971_g1 −2.8478 3.08E-12 −1.144 7.84E-10 DELLA DELLA protein

c32243_g1 1.5082 0.000256 0.63111 0.000377 EIN3 Ethylene-insensitive protein 3

c38393_g3 1.8563 5.93E-05 0.53353 0.006448 COI-1 Coronatine-insensitive protein 1

c39074_g1 2.236 0.00436 1.682 0.001339 GH3 Auxin responsive GH3 gene family

c42368_g2 −1.0309 0.02231 −0.54099 0.003132 PP2C Protein phosphatase 2C

c43648_g4 3.5413 5.10E-06 0.61076 0.024029 NPR1 Regulatory protein NPR1

aLog2FC: Log2 (foldchange).
bP adj: P adjusted.

FIGURE 5 | Expression analysis of 26 genes in different samples. Relative expression level in ovulate strobilus was set to 1.0. Error bars indicate the calculated

maximum and minimum expression quantity of replicates. SS, staminate strobilus; OS, ovulate strobilus; MB, male bud; FB, female bud.

dehydrogenase (e.g., 3-beta hydroxysteroid dehydrogenase) were
detected in both MB and FB (Table S6), which involved in
triggering the organ death program and contributed to the

selective abortion of the development of either the staminate or
the pistillate primordia (DeLong et al., 1993). Based on these
findings, we suggested that the formation of dioecism inG. biloba
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may resulted from the selective arrest of reproductive primordia
and the unigenes implicated in the apoptosis pathway may play
specific roles.

CONCLUSIONS

In the present study, we sequenced and characterized the
transcriptomes of G. biloba female and male buds and
strobilus. The transcriptome resources that we obtained provided
foundations for identifying functional genes related to sex
determination in G. biloba. Based on these resources, we found
that genes involved in plant hormone signal and those encoding
DNA methyltransferase were differentially expressed between
different sex types and dioecism in G. biloba was caused by the
selective abortion of reproductive primordia. Concerted efforts
with various model and non-model systems and studies over
a pool of putative regulatory elements are necessary to further
understand the complex mechanism of sex determination in
plants.
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